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Abstract 
The objective of discovering network communities, an es-
sential step in complex systems analysis, is two-fold: identi-
fication of functional modules and their semantics at the 
same time. However, most existing community-finding 
methods have focused on finding communities using net-
work topologies, and the problem of extracting module se-
mantics has not been well studied and node contents, which 
often contain semantic information of nodes and networks, 
have not been fully utilized. We considered the problem of 
identifying network communities and module semantics at 
the same time. We introduced a novel generative model 
with two closely correlated parts, one for communities and 
the other for semantics. We developed a co-learning strate-
gy to jointly train the two parts of the model by combining a 
nested EM algorithm and belief propagation. By extracting 
the latent correlation between the two parts, our new method 
is not only robust for finding communities and semantics, 
but also able to provide more than one semantic explanation 
to a community. We evaluated the new method on artificial 
benchmarks and analyzed the semantic interpretability by a 
case study. We compared the new method with eight state-
of-the-art methods on ten real-world networks, showing its 
superior performance over the existing methods. 

 1. Introduction   
Complex systems, which are best represented as networks, 
are often organized in functional modules that directly or 
indirectly interact with one another. For example, large 
companies are typically organized in units with designated 
functions, and proteins in the cell typically form complexes 
to exert their functions. Therefore, it is essential to identify 
communities or modules in networks of interest, where 
nodes within a community are densely connected (Fortu-
nato 2010). Identification of communities of a network 
helps understand how the system is organized and how 
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individual modules function. It is equally important to 
identify the underlying semantics of communities so as to 
explain the meaning or extract the functions of the com-
munities, i.e., to functionally annotate the communities.  

Most conventional community detection algorithms only 
use network topologies. The premise is that functional 
communities have structural signatures (Yang and Lesko-
vec 2014). Many community detection methods have been 
proposed (Fortunato 2010; Fortunato and Hric 2016) based 
on various assumptions and using different techniques, 
including hierarchical clustering (Girvan and Newman 
2002; Newman 2004), modularity optimization (Blondel et 
al. 2008; Duch and Arenas 2005), spectral partition (White 
and Smyth 2005), Markov dynamics (Rosvall and Berg-
strom 2008), and statistical inference (Karrer and Newman 
2011; He et al. 2015; Yang and Leskovec 2013).  

Node contents, particularly the attributes of nodes, have 
been recently used in finding communities. It is believed 
that individuals or objects with similar attributes or fea-
tures are likely to belong to the same community. Different 
from network structures that specify node connectivities, 
node contents provide semantic information of nodes and 
underlying network. Such semantics may capture deep 
knowledge of the nature of communities and are orthogo-
nal and complementary to structural information. When 
used together, missing structural information may be com-
pensated by content information, and vice versa, to im-
prove community detection. Indeed, methods using these 
two types of information have been proposed (Bal-
asubramanyan and Cohen 2011; Sun, Aggarwal and Rela-
tion 2012; Xu et al. 2012; Yang et al. 2009; Mcauley and 
Leskovec 2014; Pei, Chakraborty and Sycara 2015; Ruan, 
Fuhry and Parthasarathy 2013).  

In addition to improving community detection, node 
contents may also provide semantic descriptions of com-
munities. Such descriptions may help explain why certain 
nodes belong to a community, or help reveal the functions 
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or characteristics of communities. Community semantics 
certainly make network analysis valuable. It has been pro-
posed recently to use structural and content information to 
identify communities and derive descriptions (Pool, 
Bonchi and Leeuwen 2014; Yang, McAuley and Leskovec 
2013; Liu et al. 2015; Wang et al 2016). 

However, these newly developed methods have at least 
three serious problems. First, they typically assume that 
network structures and node contents share the same in-
formation of node community memberships, which is often 
nota the case in practice. For example, the social relation-
ships in Twitter often reflect user groups directly, while 
users may generate messages of diverse contents (Pei, 
Chakraborty and Sycara 2015), so that contents and 
community structures may not align at all. When node con-
tents do not match well with the underlying community 
structures, these algorithms perform poorly. Second, they 
assume one topic per community, an assumption that does 
not hold in practice. In social networks again, users tend to 
twit frequently over more than one topic, so that a commu-
nity may better be characterized by multiple topics. Focus-
ing on one topic for a community limits the applicability of 
the existing methods. Third, the existing methods handle 
topologies and node contents separately. As a result, they 
need to balance the effects of the two on community detec-
tion, which is difficult to achieve.  

We introduced a generative model for jointly identifying 
communities and deriving their semantic description at the 
same time. The model accommodates two sets of variables, 
one for communities and the other for description, which 
are implicitly correlated. To train the model, we developed 
an effective method to combine a nested expectation-
maximization (EM) algorithm and a belief propagation 
process, which is named as NEMBP. The learning process 
models and explores the hidden correlation between the 
two parts of the model to improve community detection 
and description extraction.  

2. The Model  
We aim at developing a novel generative model for undi-
rected and unweighted networks with node contents (Fig-
ure 1). An attributed network G of n nodes and m node 
attributes can be represented by an adjacency matrix A = 
(aij)n×n and an attribute matrix X = (xik)n×m, where aij = 1 if 
an edge exists between nodes vi and vj, or 0 otherwise, and 
xik = 1 if node vi has the kth attribute wk, or 0 otherwise.   

Our objective is twofold: 1) to partition the nodes sepa-
rately into communities and clusters of contents and 2) to 
seek the best association between the two so as to best an-
notate communities using semantics from content clusters.  

In particular, we divide the set of nodes V into c network 
communities such that the nodes within a community are 

densely connected and nodes in different communities are 
sparsely linked, and partition V into c content clusters such 
that the nodes in a cluster share common attributes, which 
are named as semantic topics in topic modeling (Blei, Ng 
and Jordan 2003). Ideally, we want to associate a commu-
nity with at least one content cluster as its semantics, i.e., 
we seek the best interpretation of the communities using 
the content clusters and their topics. In the process, we 
search for communities and content clusters at the same 
time using the association between the two derived so far 
as a guide. 

We fold the two objectives into a unified model, which 
is specified by three types of quantities. The first is the set 
of observed quantities, including the adjacency matrix A 
and the attribute matrix X. The second is the set of latent 
quantities, including the community memberships z where 
zi is the label of the community that node vi belongs to, and 
the topic (or content) assignments g where gik is the label 
of topic that the node-attribute pair <vi, wk> specifies. The 
third is the set of model parameters: 1) π = (πr)1×c, where πr 
= p(zi = r) is the probability that the node vi belong to the 
rth community; 2) Θ = (θrs)c×c, where θrs = p(zi = r, zj = s) is 
the probability that a pair of nodes in the rth and sth com-
munities is connected; 3) H = (ηrs)c×c, where ηrs = p(gik = s | 
zi = r) is the probability that node vi is in the sth content 
cluster given that it belongs to the rth community (inde-
pendent of attribute wk); and 4) B = (βsk)c×m, where βsk = 
p(xik = 1 | gik = s) is the probability that the sth topic uses 
the kth attribute, which is independent of node vi.  

Note that we use the shared latent variables (g) for nodes 
and attributes, in order to make the content clusters (denot-
ed by H) to be associated with the topics consisting of at-
tributes (denoted by B), so that a cluster has a topic to rep-
resent its semantic. Besides, we use didjθrs instead of θrs to 
denote the probability p(zi = r, zj = s), where di is the de-
gree of node vi. This corresponds to the degree-corrected 
stochastic blockmodel (DCSBM) (Karrer and Newman 
2011) that can better describe network communities.  
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Figure 1: A sketch of the model of communities and semantics. 
The right part is the fitting of the model (with latent communities 
z, their prior π and block matrix Θ = (θrs)c×c) to the observed net-
work data in adjacency matrix A = (aij)n×n. The upper-left part is 
the prior for generating topics g with distribution H = (ηrs)c×c 
under communities z. The lower-left part is the fitting of the mod-
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el (with g and topic-attribute distribution B = (βsk)c×m) to the given 
content information (in attribute matrix X = (xik)n×m). 

The model is sketched in Figure 1 and can be generated 
in the following.  

For each node vi: 
(a) Draw community assignment zi ~ Multinomial(π)  
(b) For each node vj with j > i: 

Draw edge aij ~ Bernoulli( ) 
(c) For each of the kth attribute with xik = 1: 

i. Draw topic assignment gik ~ Multinomial( ) 
ii. Draw attribute wk ~ Multinomial( ) 

Then, the likelihood that G is generated by the model is 

 (1) 

subject to , , and . 
Eq. (1) has four parts. The first two parts are the fitting 

of the model to network structures, the third part is the 
prior probability of generating content clusters (with their 
topics) g under communities z with distribution H. The 
fourth part is the fitting to contents. Generally, the fitting to 
structures and fitting to contents are dominant in the likeli-
hood, and the prior helps improve the overall model fitting.  

The latent correlation matrix H is a matrix of probabilis-
tic transitions from communities to content clusters and is 
critical for finding communities and content clusters. When 
the communities and content clusters at hand match well, 
H will be close to an identity matrix. We may use the cor-
relations in H, along with the topics derived, to interpret 
the communities. Even if the communities and content 
clusters do not match well, we may still utilize the correla-
tions in H to improve the community result through the 
projection from the clusters to communities. On the other 
hand, if the communities and content clusters do not match 
at all, H will be nearly homogenous in that its values are 
nearly the same so that no correspondence between com-
munities and clusters will emerge. This may occur when 
there exists indeed a disparity between network structures 
and node contents in the data. For this case, we may ignore 
the contents and return communities as the only result.  

Besides, in the case when the contents are too noisy to 
form clusters regardless if they match with communities. 
The fitting to the contents will have little effect on the like-
lihood, so that the prior and the fitting to network struc-
tures are dominant. Therefore, the communities depend 
mainly on network topologies, and the correlation matrix H 
will be almost an identity one as it can help maximize the 
likelihood. Likewise, when the network has a poor com-

munity structure, the priori and the fitting to contents will 
be main factors on the likelihood and H will also be an 
identity matrix. Then, the communities and content clusters 
will be the same, which depend on contents only.  

This is a probabilistic model with two parts (for com-
munities and clusters of contents/topics) that are linked 
through latent associations. As such, it does not require a 
parameter to balance the two parts like some existing 
methods do. Finding these associations is a central piece of 
model training.  

3. Training the Model 
The model is trained through a nested expectation-
maximization (EM) algorithm with an inference process of 
belief propagation.  

3.1 Fitting the Model to Data 
Given the observed data, we aim to find the model parame-
ters π, Θ, H and B to maximize the likelihood in (1). Since 
this is difficult, we instead maximize its logarithm: 

 (2) 

Since maximizing (2) is still nontrivial, we adopt an EM 
algorithm (Dempster, Laird and Rubin 1977). By applying 
the Jensen’s inequality to (2), we have the expected log 
likelihood . 

 

where q(z) is a distribution over community memberships 
z such that ,  is the marginal 
probability within q(z) that node vi belongs to community 
r,  is the joint marginal probability 
that nodes vi and vj belong to communities r and s, respec-
tively, and  is the Kronecker delta.  

The maximum of  with respect to possible choices of 
distribution q(z) is achieved when . Following Jen-
sen’s inequality, this is when 

    (4) 

Thus, maximization of L with respect to π, Θ, H and B to 
obtain the best parameters is equivalent to maximization of 
its lower bound  with respect to q(z) (making ) and 
the parameters. The EM algorithm for this dual maximiza-
tion is to repeatedly maximize q(z) (i.e., the E-step) first 
and then π, Θ, H and B (i.e., the M-step), which can be 
proven to monotonically converge to a local maximum.  
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3.1.1 The E-Step with Belief Propagation 
It is possible to infer the optimal q(z) using (4) in the E-
step, but this amounts to computing all possible cn commu-
nity assignments z in the denominator, which is infeasible 
for all but some small networks. The standard way around 
this problem is to approximate the distribution q(z) by an 
importance sampling using Markov chain Monte Carlo.  

Here, we instead use a recently proposed method based 
on a fast belief propagation (BP) (Decelle et al. 2011; Mar-
tin, Ball and Newman 2016). We first define the BP mes-
sage  to follow the marginal probability that node vi 
belongs to community r in absence of node vj. We then 
derive the BP equations that are a good approximation for 
large sparse networks to speedup the computation.  

In the approximation, if there is an edge between vi and 
vj (i.e., aij = 1) the BP equation for the message  is: 

(5) 
where  is the normalization coefficient to ensure 

, and ∂i the neighbor set of vi. But for the 
non-neighboring vj’s of node vi (i.e., aij = 0), as an approx-
imation we force them to share the same message  : 

   (6) 

where  is for normalization so that , and  

                                          (7) 

The BP equations (5) and (6) can be solved by iteration. 
Upon convergence, we have the one-node marginal proba-
bility , and the two-node marginal probability  

              (8) 

where and 
. As to be 

shown shortly, we only need to calculate ’s with aij = 1. 
3.1.2 The M-Step with a Nested EM Procedure 
We now consider maximizing  in (3) with  and  
fixed. To maximize over π and Θ, we differentiate  with 
respect to πr, subject to the condition , gives 

                                                            (9) 

Ignoring the terms beyond the first order, we substitute 
 

into (3). Taking derivative and setting the result to zero, the 
maximum with respect to θrs is 
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where we use  in the denominator because for a 
large sparse network the community assignments of distant 
nodes are not correlated. 

However, maximizing  with respect to H and B is com-
plicated as it is contained by latent variables g. Again, we 
use the EM algorithm and apply Jensen’s inequality to (3),  

  (11) 

where  can be any distribution subject to . 
Eq. (11) ignores the items in  in (3) which can be regard-
ed as the constant with respect to H and B. The exact 
equality of (11), and hence the maximum of the right-hand 
side, is achieved when 

                                          (12) 

As before, we can maximize the left-hand side of (11) by 
repeatedly maximizing the right-hand side with respect to 

 using (12) and with respect to H and B by differentia-
tion. Differentiating the right-hand side of (11) with re-
spect to , subject to  for r = 1…c, results in 

                      (13) 

where . Similarly, differentiating with re-
spect to , subject to  for s = 1…c, gives 

 (14) 

Subsequently, optimal H and B can be derived by iterating 
through (12), (13) and (14) until convergence. 

3.2 Summary and Complexity Analysis 
The nested EM algorithm with belief propagation, named 
as NEMBP, is in Algorithm 1. In our experiments we set 
iteration steps L1 = 100 and L2 = L3 = 20. Small numbers of 
iterations of L2 = L3 = 20 are adequate for obtaining rea-
sonable results in the early stage of the method and suffi-
cient for convergence to local optima in the late stage.   

Algorithm 1: Nested EM with BP (NEMBP) 
Input: A, X and c 
Output: ’s, H and B 
Initialize π, Θ, H and B randomly 
For l1 = 1: L1 //main EM 
    For l2 = 1: L2 //belief propagation 

Update beliefs via (7), (5) and (6) 
    Get one-node marginal probabilities via  
    Calculate two-node marginal probabilities via (8) 
    Update π and Θ via (9) and (10) 
    For l3 = 1: L3 //nested EM 
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Update ’s, H and B via (12), (13) and (14) 

At a local optimum, we use: 1) ’s (where  is the 
marginal posterior probability that node vi belongs to 
community r) to identify the final network communities, 2) 
B (where βsk is the probability that topic s selects the kth 
attribute) to extract the semantic for each content cluster, 
and 3) the correlation matrix H (where ηr is the distribution 
of the content clusters and their topics over community r) 
for finding the dominant topics for each community. 

On sparse networks, the new method NEMBP is effi-
cient. The time to update all messages once via (5) to (7) is  

, (2e+f)c2, and 
2nc+c2, respectively, on a network of n nodes, e edges, and 
c communities, where di is the degree of node vi, dmax = 
max(d1,…,dn),  the number of attributes of vi, 

 the number of attributes in contents, and Kmax 
= max(K1,…,Kn). The time to compute the two-node mar-
ginal probabilities once via (8) is ec2. (Note that, we only 
need to consider ’s and ’s with aij = 1.) The time to 
calculate π and Θ once via (9) and (10) is nc+2c2(e+n). The 
time to calculate ’s, H and B once via (12) to (14) is 
mc2+ec2+ fc2. The time to compute the full likelihood once 
is 2nc+2ec2+fc2. Finally, the total complexity is no more 
than O((e(dmax+Kmax)+f)c2), which is nearly linear for large 
sparse networks. On a workstation (Intel(R) Xeon(R) CPU 
E3-1225 v3 @3.2GHz 3.2GHz processor with 16 Gbytes 
of main memory) running MatLab, NEMBP finished in 24 
seconds on the “PubMed” dataset with 19,729 nodes (see 
Table 1). 

4. Evaluation and Applications 
We evaluated the new method in three different ways, on 
artificial benchmarks, on an online music system to assess 
the interpretability of communities, and on 10 real net-
works with comparison to eight state-of-the-art methods. 

4.1 Artificial Benchmarks 
The first benchmark we used was the Newman’s model 
(Girvan and Newman 2002) for random networks. The 
networks have 128 nodes divided into 4 communities 
where each node has on average zin edges (i.e., internal 
degree) connecting to nodes of the same community and 
zout edges (i.e., external degree) to nodes of other commu-
nities, and zin + zout = 16. Note that pin (= zin/32) > pout (= 
zout/96), so that the internal degrees are more likely greater 
than the external degrees. We generated a 4h-dimensional 
binary attributes (i.e., xi) for each node vi to form 4 content 
clusters of nodes, corresponding to the 4 network commu-
nities. To be specific, for every node in the sth cluster, we 
use a binomial distribution with mean ρin = hin/h to gener-
ate a h-dimensional binary vector as its ((s − 1) × h + 1)-th 

to (s × h)-th attributes, and generated the rest attributes 
using a binomial distribution with mean ρout = hout/(3h). 
Since ρin > ρout, the h-dimensional attributes are associated 
with the sth cluster with a higher probability, whereas the 
rest 3h attributes are irrelevant. In our experiments, we set 
4h = 200 and the average number of attributes wk with xik = 
1 for each node vi to hin + hout =16. 

In the first experiment, we set zout = hout = 8 and generat-
ed networks with topologies and contents sharing the same 
community memberships. We then randomly selected a 
proportion (pmis) of nodes and swapped their attribute vec-
tors. The larger pmis is, the more content clusters mismatch 
with network communities. We varied pmis from 0 to 1 with 
an increment of 0.1, and tested our new method NEMBP. 
As shown in Figure 2, when pmis is small, i.e., content clus-
ters match well with communities, NEMBP significantly 
outperforms the degree-corrected stochastic blockmodel 
(DCSBM) (Karrer and Newman 2011). (DCSBM can be 
regarded as a variant of our method using topologies only.) 
Even when pmis is large, NEMBP can still utilize the con-
tent information to improve the results. When node con-
tents are not informative of communities (i.e., pmis = 1), 
they can be ignored, and the final result will be similar to 
that from DCSBM. Besides, the NMI (normalized mutual 
information) accuracy (Danon et al. 2005) of NEMBP is 
also greater than that of SCI method that uses both topolo-
gies and contents (Wang et al. 2016). This also showed that 
NEMBP can better utilize information of mismatched con-
tents. 

 

 
 (a)                                           (b) 

Figure 3: NMI accuracies of 3 methods on random networks as a 
function of (a) the number (hout) of irrelevant or noise attributes 
and (b) the average outside-community degree (zout) of nodes. 
Cont is our method (NEMBP) using contents information only. 
Each point in the figure is averaged over 50 problem instances. 

Figure 2: The NMI accuracies of 
3 methods compared on random 
networks as a function of the 
fraction (pmis) of nodes with mis-
matched community and contents 
memberships. Topo (DCSBM) is 
a variant to our method using 
topologies only. SCI uses topolo-
gies and contents.  
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We now consider the situation when node contents have 
poor cluster structures. For simplicity we set pmis = 0 to 
have the topologies and contents share the same member-
ship, although 0 < pmis << 1 will not affect the results. In 
our experiment, we first set zout = 8, and varied hout from 0 
to 12 with an increment 1. The larger hout is, the less struc-
tures in node contents. When hout = 12 (i.e., ρin = ρout), the 
contents do not have any cluster structure. In this special 
case our method NEMBP did not perform worse than the 
baseline method DCSBM which only uses topology infor-
mation, whereas SCI performed much worse (Figure 3(a)). 
The results also showed that NEMBP was able to exploit 
the structural information in node contents when hout < 12 
to better detect communities, and as a result outperformed 
SCI and DCSBM (Figure 3(a)). We then set hout = 8 and 
varied zout from 0 to 12. NEMBP was also able to fare well 
when the networks do not have any community structure 
when zout = 12 (Figure 3(b)). In short, this new method can 
combine the information of communities and node con-
tents to find better communities than the other methods. 

4.2 A Case Study  
We assessed whether the derived correlation H = (ηrs)c×c 
between communities and content clusters (with their top-
ics) can help to better interpret the communities. To this 
end, we used the LASTFM dataset (Cantador 2016) from 
an online music system Last.fm, which has 1,892 users 
connected in a social network of “friends”. Each user is 
described by 11,946 attributes, including a list of most lis-
tened music artists and tag assignments. Since no ground-
truth is known regarding user communities in the network, 
we set forth to look for 38 communities as did in (Wang et 
al. 2016).  

    
(a)                                             (b) 

    
(c)                                             (d) 

Figure 4: Three examples on community interpretation in the 
music domain. Shown are the word clouds of the dominant attrib-
utes of communities. Word sizes are proportional to the probabil-
ity they belong to a topic. (a) “topic 3, hardcore punk music” is 
the main topic of the 33th community. (b) “topic 37, Lady Gaga” 
is the main topic of the 14th community. (c) “topic 17, downtem-
po” and (d) “topic 25, intelligent dance music” are types of 

“electronic music” and the two main topics of the 15th communi-
ty.  

The 38 communities discovered form two groups. The 
first has 28 communities, each of which has one dominant 
topic, and the second has 10 communities, each of which 
has more than one topic. A close analysis of the results 
revealed that most of the communities are semantically 
meaningful and well supported by their topics. Due to lim-
ited space, we discuss here three examples of the results: 
two communities each with one dominant topic, and one 
community with two topics, shown in Figure 4.  

The first example is a community that has one dominant 
topic. As shown in Figure 4(a), this is a group of fans of 
hardcore punk music. Therefore, “screamo” is a kind of 
hardcore punk, “post-hardcore” is evolved from hardcore 
punk, and “deathcore”, “death metal” and “metalcore” are 
the same as hardcore punk in terms of styles and character-
istics of loud noise. The nature of the hardcore punk is 
“alternative” and “experimental”, and it is also labeled as 
“hardcore”, “rock” and “hard rock”. 

The second example is a community whose dominant 
topic is closely related to Lady Gaga, a well-known female 
singer, so that the community may be a group of her fans 
(Figure 4(b)). Lady Gaga is “female vocalists”, “diva”, 
“sexy” and “beautiful”. Her music is also known to have 
styles of “pop”, “dance”, “rock”, “electronic” and “love”. 

The third example is a community with two dominant 
topics (Figures 4(c) and 4(d)). One topic is highly related 
to downtempo, a kind of electronic music (Figure 4(c)). 
This music style is slow and, while being similar to “chill-
out”, has a little more beats than “chill-out” and “ambient”, 
and inclines to “instrumental”. “Post-rock”, another name 
for “experimental rock”, is also part of the nature of down-
tempo. The other topic is on idm (i.e., “intelligent dance 
music”), a kind of electronic music that comes from the 
dance floor (Figure 4(d)). It contains hard edge dance and 
slow beat music (like “ambient”). In addition, “minimal” 
and “techno” are also similar to idm. Note that these two 
topics on downtempo and idm belong to electronic music 
of different branches. Thus, this community is a group of 
fans of downtempo and idm who like some electro music. 

In summary, this case study not only validated that the 
new method can find semantically meaningful communi-
ties, but also showed that allowing more than one topic per 
community can help better interpret and understand net-
work communities as illustrated by the third example. 

4.3 Applications to Real Networks 
We applied the new method NEMBP to 10 real networks 
with known communities (Table 1). We considered three 
types of existing methods for comparison. The first, includ-
ing DCSBM (Karrer and Newman 2011) and BigCLAM 
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(Yang and Leskovec 2013), uses information of structures 
alone. The second, including LDA (Blei, Ng and Jordan 
2003), employs only node attributes. The third, including 
Block-LDA (Balasubramanyan and Cohen 2011), PCL-DC 
(Yang et al. 2009), CESNA (Yang, McAuley and Lesko-
vec 2013), DCM (Pool, Bonchi and Leeuwen 2014) and 
SCI (Wang et al. 2016), uses information of structures and 
contents. All these methods require the number of commu-
nities to be specified, which were set to the same number 
of communities of the ground truth. These algorithms ran 
with their default parameters. 

Table 1: Dataset used. n is the number of nodes, e the number of 
edges, m the number of attributes, c the number of communities. 

Datasets n e m c Descriptions (Sen et al. 2008; Leskovec 2016) 
Texas 187 328 1,703 5 The WebKB network consists of four subnet-

works from four American universities, which 
are Texas, Cornell, Washington and Wisconsin, 
respectively 

Cornell 195 304 1,703 5 
Washington 230 446 1,703 5 
Wisconsin 265 530 1,703 5 
Twitter 171 796 578 7 Largest subnetwork (id 629863) in Twitter data 
Facebook 1,045 26,749 576 9 Largest subnetwork (id 107) in Facebook data 
Citeseer 3,312 4,732 3,703 6 A Citeseer citation network 
Cora 2,708 5,429 1,433 7 A Cora citation network 
UAI2010 3,363 45,006 4,972 19 A Wikipedia articles network 
Pubmed 19,729 44,338 500 3 Publications in PubMed on diabetes 

Table 2: Comparison on disjoint communities in terms of AC and 
NMI. The best results are in bold. N/A means out of memory. 

Metrics 
(%) Methods Datasets 

Texas Cornell Washington Wisconsin Twitter Facebook Citeseer Cora UAI2010 Pubmed 

AC 

DCSBM 48.09 37.95 31.80 32.82 60.49 45.19 26.57 38.48 2.60 53.64 
LDA 56.28 44.62 65.90 76.72 37.04 31.59 31.34 37.19 34.07 46.30 

Block-LDA 54.10 46.15 39.17 49.62 35.80 37.66 24.35 25.52 16.04 49.01 
PCL-DC 38.80 30.26 29.95 30.15 56.79 51.04 24.85 34.08 28.82 63.55 

SCI 62.30 45.64 51.15 50.38 50.62 51.04 27.98 40.62 30.94 N/A 
NEMBP 53.55 47.17 42.85 63.35 62.96 56.27 49.51 57.57 46.25 65.66 

NMI 

DCSBM 16.65 9.69 9.87 3.14 57.48 43.38 4.13 17.07 31.21 12.28 
LDA 31.29 21.09 38.48 46.56 31.10 21.53 9.13 14.61 35.42 10.55 

Block-LDA 4.21 6.81 3.69 10.09 0 9.28 2.42 1.41 5.70 6.58 
PCL-DC 10.37 7.23 5.66 5.01 52.64 38.63 2.99 17.54 26.92 26.84 

SCI 17.84 11.44 12.37 17.03 43.00 30.01 4.87 19.26 24.80 N/A 
NEMBP 35.12 18.71 21.24 38.02 59.73 47.52 24.27 44.08 47.21 28.30 

Table 3: Comparison on overlapping community structures in 
terms of GNMI, F-score and Jaccard. 

Metrics 
(%) Methods Datasets 

Texas Cornell Washington Wisconsin Twitter Facebook Citeseer Cora UAI2010 Pubmed 

GNMI 

BigCLAM 0.75 0.58 0.77 0.44 14.04 21.54 0 0 11.94 0.57 
CESNA 0.69 2e-14 0.32 2e-14 15.53 27.02 2e-14 2.64 7.59 0 

DCM 1.17 0 0.17 0.51 1.75 22.42 0 1e-14 2.80 2e-14 
NEMBP 7.83 5.99 7.08 15.74 26.94 26.74 9.72 26.65 18.98 22.82 

F-score 

BigCLAM 20.64 13.23 13.35 12.84 39.79 40.06 9.30 18.89 16.99 7.72 
CESNA 23.54 23.48 21.91 23.17 43.72 49.05 3.38 31.05 32.32 27.97 

DCM 11.15 14.38 12.45 10.45 10.57 39.21 2.50 3.43 9.65 0.38 
NEMBP 38.56 41.73 38.92 50.00 49.07 51.25 46.41 56.55 43.43 64.45 

Jaccard 

BigCLAM 12.18 7.18 7.25 7.01 26.13 28.94 5.01 10.89 9.87 4.04 
CESNA 13.57 13.47 12.40 13.14 29.63 38.18 1.73 19.10 21.26 16.26 

DCM 6.03 7.95 6.72 5.54 5.75 28.46 1.27 1.76 5.77 0.19 
NEMBP 26.20 27.54 25.10 36.75 36.08 37.91 31.14 43.09 30.92 48.62 

Because the networks have known communities, we 
adopted accuracy (AC) (Liu et al. 2012) and normalized 
mutual information (NMI) (Danon et al. 2005) to compare 
all the methods against the ground truth. To accommodate 
overlapping communities, we also included the generalized 

NMI (GNMI) (Lancichinetti, Fortunato and Kertész 2009) 
for comparison. We adopted the metric of (Yang, McAuley 
and Leskovec 2013) for overlapping communities, i.e., we 
evaluated a set of detected communities C with the ground-
truth communities C* by 

, where  is a similari-
ty measure (F-score or Jaccard) between Ci

* and Cj.  
Our method NEMBP outperformed all 5 existing meth-

ods on 7 of the 10 networks in terms of AC and NMI (Ta-
ble 2). It was also the best on 9, 10 and 9 of the 10 net-
works in terms of GNMI, F-score and Jaccard, respectively 
(Table 3). It was among the top two except on Texas 
measured by AC.  

5. Conclusion and Discussion 
We proposed a generative model for attributed networks, 
and developed a novel and efficient learning method using 
a nested EM algorithm with belief propagation to train the 
model. The model describes communities and content clus-
ters using separate hidden variables, and extracts and ex-
plores the latent correlation between the two to better iden-
tify communities. It is able to fully utilize network struc-
tural information even when information of node contents 
is erroneous. The learned correlation between communities 
and content clusters (as well as the topics) can be used to 
extract community semantics, sometimes more than one 
topic per community, so as to better understand and inter-
pret the community. We evaluated the new method on arti-
ficial benchmarks and in a case study. The new method 
outperformed eight state-of-the-art community-finding 
methods on most of 10 large real complex networks. 

The strong performance of the new method is not obvi-
ous, since it would be possible that combining structural 
and semantic information may possibly make a communi-
ty-finding method ineffective. Indeed, LDA which uses 
information of node attributes alone outperforms several 
methods that use both structural and content information. 
The superior performance of the new methods is mainly 
due to three properties: 1) even when node contents does 
not match well with community structures, it is still able to 
utilize content information as much as possible to improve 
community detection; 2) when either the network or node 
contents contains no information of community structure, it 
can proceed with whatever information available; 3) it has 
no parameter to tune to balance the effects of network 
structures and node contents in training the model. 

Similar to the existing methods, our method needs the 
number of communities to be given. In addition, the num-
ber of communities may be different from the number of 
content clusters (and topics). These issues are related to the 
problem of model selection, which may be addressed using 
cross-validation (Chen and Lei 2014) or hierarchical 
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Bayesian (Jin et al. 2016), which are topics of our on-going 
research. 
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