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Abstract

Network embedding, aiming to learn the low-dimensional
representations of nodes in networks, is of paramount im-
portance in many real applications. One basic requirement of
network embedding is to preserve the structure and inherent
properties of the networks. While previous network embed-
ding methods primarily preserve the microscopic structure,
such as the first- and second-order proximities of nodes, the
mesoscopic community structure, which is one of the most
prominent feature of networks, is largely ignored. In this pa-
per, we propose a novel Modularized Nonnegative Matrix
Factorization (M-NMF) model to incorporate the commu-
nity structure into network embedding. We exploit the con-
sensus relationship between the representations of nodes and
community structure, and then jointly optimize NMF based
representation learning model and modularity based commu-
nity detection model in a unified framework, which enables
the learned representations of nodes to preserve both of the
microscopic and community structures. We also provide effi-
cient updating rules to infer the parameters of our model, to-
gether with the correctness and convergence guarantees. Ex-
tensive experimental results on a variety of real-world net-
works show the superior performance of the proposed method
over the state-of-the-arts.

Introduction

Network analysis has attracted considerable attention as net-
works exist in various complex systems, such as biological
and social systems. Network analysis heavily relies on the
network representation, which is traditionally represented
as discrete adjacency matrix. However, this straightforward
representation usually cannot well reflect the underlying dis-
tinct structural characteristics of networks and suffers from
the data sparsity issue (Perozzi, Al-Rfou, and Skiena 2014).
In recent years, network embedding, i.e., learning an effec-
tive low-dimensional vector representations of nodes while
preserving the network structure, has aroused considerable
research interest in network analysis (Perozzi, Al-Rfou, and
Skiena 2014). Benefited from this, a variety of applica-
tions on networks, such as node classification (Bhagat, Cor-
mode, and Muthukrishnan 2011), can be directly conducted
by the off-the-shelf machine learning methods in the low-
dimensional vector space.
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One basic requirement of network embedding is that the
learned representations of nodes should preserve the net-
work structure and its inherent properties (Ou et al. 2016).
Along with this direction, some network embedding meth-
ods, e.g., IsoMap (Tenenbaum, De Silva, and Langford
2000), are proposed to preserve the first-order proximity be-
tween nodes; the second-order proximity between nodes are
then considered in (Tang et al. 2015; Wang, Cui, and Zhu
2016), and (Cao, Lu, and Xu 2015) further extends to cap-
ture higher-order proximity.

Essentially, these methods mainly focus on the micro-
scopic structure of network, i.e., the pairwise relationship
or similarity between nodes. Nevertheless, the community
structure, one important mesoscopic description of network
structure, is largely ignored. Many networks consists of dif-
ferent communities with dense connections within commu-
nities but sparser connections between them (Girvan and
Newman 2002). It is well recognized that community struc-
ture is one of the most prominent features of networks,
which reveals the organizational structures and functional
components of networks (Wang et al. 2016). Therefore,
whether the learned embedding space can well reflect the
community structures in the original network is a critical re-
quirement for network embedding methods.

Moreover, different from the microscopic structure, the
mesoscopic community structure imposes constraints in a
higher structural level on the node representations. The rep-
resentations of nodes within a community should be more
similar than those belonging to different communities. Also,
for two nodes within a community, even if they only have
weak relationship in microscopic structure due to the data
sparsity issue, their similarities will also be strengthened by
the community structure constraint. Thus, the incorporation
of community structure in network embedding can provide
effective and rich information to solve data sparsity issues
in microscopic structures and also make the learned node
representations more discriminative.

In this paper, we propose a novel Modularized Nonnega-
tive Matrix Factorization (M-NMF) model which preserves
both the microscopic structure (pairwise node similarity)
and mesoscopic structure (community) for network embed-
ding. In particular, for microscopic structure, we incorpo-
rate first- and second-order proximities of nodes to learn the
representations using matrix factorization; for mesoscopic
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structure, the communities are detected by a modularity con-
straint term. Then these two terms are connected by exploit-
ing the consensus relationship between the representations
of nodes and community structure of network with an aux-
iliary community representation matrix, and thus they can
be jointly optimized. We provide the multiplicative updating
rules, as well as their correctness and convergence guaran-
tees, to infer the parameters of M-NMF. Extensive exper-
iments on various real networks, in comparison with sev-
eral state-of-the-arts, are conducted on two network analysis
tasks (node clustering and classification) to assess the per-
formance of M-NMF.

To summarize, we make the following contributions:
• We proposed a novel Modularized Nonnegative Ma-

trix Factorization (M-NMF) model for network embed-
ding, which preserves both the microscopic structure (first-
and second-order proximities) and mesoscopic community
structure.
• We derived efficient updating rules to learn the param-

eters of M-NMF, and provided the theoretical analysis on
their correctness and convergence.
• M-NMF was extensively evaluated on nine real net-

works and two network analysis tasks, which demonstrated
its effectiveness and robustness to the model parameters.

Related Work

Network embedding. Several network embedding methods
have been proposed recently. For example, DeepWalk (Per-
ozzi, Al-Rfou, and Skiena 2014) shows that the distribution
of nodes appearing in short random walks is similar as the
distribution of words in natural language, so it employes
Skip-Gram, a word representation learning model (Mikolov
et al. 2013), to learn the representations of nodes. LINE
(Tang et al. 2015) first learns the representations of nodes
which preserve the first- and second-order proximities, re-
spectively, and then concatenates them as the final represen-
tations. Thereafter, GraRep defines different loss functions
to capture different k-order proximities and combines the
representations learned from each function (Cao, Lu, and Xu
2015). By proving DeepWalk is equivalent to matrix factor-
ization, TADW incorporates the text information associated
with each node to network embedding (Yang et al. 2015).
Further, the labeling information is considered by combining
the matrix factorization and the max-margin classifier (Tu et
al. 2016). In order to capture the non-linear network struc-
ture, (Wang, Cui, and Zhu 2016) proposes a deep model with
non-linear functions, also, the first- and second-order prox-
imities are preserved. By using matrix factorization to ap-
proximate high-order proximity based on asymmetric transi-
tivity, (Ou et al. 2016) preserves the asymmetric transitivity
property of directed network. (Grover and Leskovec 2016)
defines a flexible notion of a node’s neighborhood and de-
signs a biased random walk procedure, and then learns the
representations of nodes by maximizing the likelihood of
preserving network neighborhoods of nodes. All the meth-
ods above mainly focus on preserving the microscopic struc-
ture of network, while the mesoscopic community structure
is ignored.

Community detection. A number of community detec-
tion methods have been proposed from different perspec-
tives. For example, one direction is to carefully design a met-
ric to describe the quality of community structure, such as
modularity (Newman 2006b). By optimizing this metric, the
community structure can be uncovered. Another idea is to
utilize a generative model to describe the generation process
of network. By fitting an empirical network to this model,
the underlying community structure can be inferred (Karrer
and Newman 2011; Jin et al. 2016). To cover all commu-
nity detection methods is beyond the scope of this paper,
and an elaborate review can be found in (Fortunato and Hric
2016). However, investigating the community structure in a
low-dimensional vector space and establishing the coopera-
tion between community structure and network embedding
together have not been fully considered.

M-NMF Model

Consider an undirected network G = (V,E) with n nodes
and e edges, represented by a binary adjacency matrix A =
[Aij ] ∈ R

n×n, here we aim to learn the representations of
nodes U ∈ R

n×m, where m (m ≤ n) is the dimension of
representation.

Modeling community structure. The modularity max-
imization based community detection method, one of the
most widely used algorithms (Newman 2006a), is adopted
to model the community structure. Specifically, given a net-
work A with two communities, the modularity is defined as
follows (Newman 2006b):

Q =
1

4e

∑
ij

(Aij − kikj
2e

)hihj , (1)

where ki is the degree of node i and hi = 1 if node i be-
longs to the first community, otherwise, hi = −1. Notice
that kikj

2e is the expected number of edges between nodes
i and j if edges are placed at random, so intuitively, the
modularity measures the difference between the number of
edges falling within communities and the expected num-
ber in an equivalent network with edges place at random.
By defining the modularity matrix B ∈ R

n×n whose ele-
ment Bij = Aij − kikj

2e , we have Q = 1
4eh

TBh, where
h = [hi] ∈ R

n is the community membership indicator.
To extend this to k > 2 communities, we can generalize

the community membership indicator as H ∈ R
n×k with

one column for each community. In each row of H, only
one element is 1 and all the others are 0, so we have the
constraint tr(HTH) = n. After suppressing the constant
which has no effect on the maximum of the modularity, we
have

Q = tr(HTBH), s.t. tr(HTH) = n, (2)

where tr(X) is the trace of matrix X.
Modeling microscopic structure. Specifically, the first-

order proximity is defined as follows (Tang et al. 2015):
Definition 1. (First-order proximity S(1) = [S

(1)
ij ] ∈

R
n×n) The first-order proximity is the observed pairwise

proximity between two nodes, i.e., if Aij > 0, there exists
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positive first-order proximity between nodes i and j, other-
wise, the first-order proximity is 0.

Here, we consider the adjacency matrix A as the first-
order proximity. Basically, because the first proximity is the
the most direct expression of network, it is necessary to pre-
serve the first-order proximity. It demonstrates that if two
nodes have an edge, then these two nodes should be simi-
lar in the low-dimensional vector space. However, the ob-
served edges in a real network are usually sparse. For two
nodes with no edge, it does not imply these two nodes have
no similarity. So it is oversimplified to compute the simi-
larity between two nodes by taking the first-order proxim-
ity into account alone. A complementary solution is to con-
sider their common neighbors. Intuitively, if two nodes share
many neighbors, even if they do not have a direct link, they
are still similar, which gives rise to the second-order prox-
imity as follows:

Definition 2. (Second-order Proximity S(2) = [S
(2)
ij ] ∈

R
n×n) Let Ni = (S

(1)
i,1 , ..., S

(1)
i,n) be the first-order proxim-

ity between node i and other nodes. Then the second-order
proximity is determined by the similarity of Ni and Nj .

Here we consider the cosine similarity as the second-order
proximity, i.e., for nodes i and j, S(2)

ij =
NiNj

‖Ni‖‖Nj‖ , where
‖X‖ is the norm of vector X. In this way, the second-order
proximity is between [0, 1].

To preserve both of the first- and second-order prox-
imities, we obtain the final similarity matrix using S =
S(1) + ηS(2), where η > 0 is the weight of the second-
order proximity and we set η = 5 uniformly here. Then in
the framework of NMF, we introduce a nonnegative basis
matrix M ∈ R

n×m and a nonnegative representation matrix
U ∈ R

n×m, where m is the dimension of representation
and the i-th row of U (Ui) is the representation of node i.
With these two matrices, we expect to approximate the sim-
ilarity matrix S, which gives rise to the following objective
function:

min ‖S−MUT ‖2F s.t. M ≥ 0, U ≥ 0. (3)

Please note that our model is not limited to preserve the first-
and second-order proximities of nodes. By adding additional
higher-order proximity, such as third- and fourth-order prox-
imities (Cao, Lu, and Xu 2015), to S in the same way, our
model is able to preserve these proximities simultaneously.

The unified network embedding model. In this section,
we aim to combine the above two models together so that we
can incorporate the community structure to guide the learn-
ing process of representation matrix U. To this end, we in-
troduce an auxiliary nonnegative matrix C ∈ R

k×m, named
community representation matrix, where the r-th row (Cr)
is the representation of community r. If the representation
of a node is highly similar to that of a community, the node
may have a high propensity to be in this community. For-
mally, the propensity of node i belonging to community r
can be formulated as UiCr. So if the representation of node
i is orthogonal to that of community r, i.e., their representa-
tions are totally different, then this node must not be in this
community. As the community indicator matrix H offers a
guidance for all the nodes, we expect UCT to be as closely

consistent as possible with H. Finally, together with the ob-
jective function (2) and (3), we have the following overall
objective function:

min
M,U,H,C

‖S−MUT ‖2F + α‖H−UCT ‖2F − βtr(HTBH)

s.t.,M � 0,U � 0,H � 0,C � 0, tr(HTH) = n,
(4)

where α and β are positive parameters for adjusting the
contribution of corresponding terms. As we can see, with
the community representation matrix C, we project the node
representation matrix U into the community indicator H. In
this way, we establish the consensus relationship between
them. The representations of nodes U are constrained by
both the microscopic structure (reflected by S in the first
term) and mesoscopic community structure (reflected by H
obtained from the third term), so that U contains more struc-
tural information and becomes more discriminative.

Optimization

The objective function (4) is not convex, and we separate the
optimization of (4) to four subproblems and iteratively opti-
mize them, which guarantees each subproblem converges to
the local minima.

M-subproblem: Updating M with other parameters in
(4) fixed leads to a standard NMF formulation (Lee and Se-
ung 2001), so the updating rule for M is

M ← M� SU

MUTU
. (5)

U-subproblem: Updating U with other parameters in (4)
fixed leads to a joint NMF problem (Akata, Thurau, and
Bauckhage 2011), whose updating rule is

U ← U� STM+ αHC

U(MTM+ αCTC)
. (6)

C-subproblem: Updating C with other parameters in (4)
fixed also leads to a standard NMF formulation, so the up-
dating rule of C is

C ← C� HTU

CUTU
. (7)

H-subproblem: when update H with other parameters in
(4) fixed, we need to solve the following function:

min
H≥0

L(H) =α‖H−UCT ‖2F − βtr(HT (A−B1)H),

s.t. tr(HTH) = n,
(8)

where the element in B1 is kikj

2e . Recall that H is the com-
munity indicator matrix, and the constraint makes the opti-
mization of (8) an NP-hard problem. Instead, we relax the
constraint to HTH = I. Finally, by introducing a regular-
ization coefficient λ for HTH = I, we transform (8) to the
following function:

min
H≥0

L(H) =− βtr(HTAH) + βtr(HTB1H)

+ α‖H−UCT ‖2F + λ‖HTH− I‖2F ,
(9)
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where λ > 0 should be large enough to insure the orthog-
onality satisfied and we fix it as 109 in our experiments.
We then introduce a Lagrange multiplier matrix Θ = [Θij ]
for the nonnegative constraint on U and utilize ‖X‖2F =
tr(XTX), resulting the following function:

L′(H) =− βtr(HTAH) + βtr(HTB1H)

+ αtr(HHT − 2HCUT +UCTCUT )

+ λtr(HTHHTH− 2HTH+ I) + tr(ΘHT ).
(10)

Set derivative of L′(H) with respect to H to 0, we have:

Θ =2βAH− 2βB1H− 2αH+ 2αUCT

− 4λHHTH+ 4λH.
(11)

Following the Karush-Kuhn-Tucker (KKT) condition for the
nonnegativity of H, we have the following equation:

(2βAH− 2βB1H− 2αH+ 2αUCT

− 4λHHTH+ 4λH)ijHij = ΘijHij = 0.
(12)

This is the fixed point equation that the solution must satisfy
at convergence. Given an initial value of H, the successive
updating rule of H is:

H ← H�
√

−2βB1H+
√
Δ

8λHHTH
, (13)

where Δ = 2β(B1H) � 2β(B1H) + 16λ(HHTH) �
(2βAH+ 2αUCT + (4λ− 2α)H).

The correctness of the updating rule (13) can be guaran-
teed by the following theorem.

Theorem 1. If the updating rule of H converges, then the
final solution satisfies the KKT optimality condition.

Proof. At convergence, H(∞) = H(t+1) = H(t) = H,
where t is the t-th iteration, i.e.,

H = H�
√

−2βB1H+
√
Δ

8λHHTH
. (14)

Then for each Hij , it is easy to check√
8λ(HHTH)ij =

√
−2β(B1H)ij +

√
(Δ)ij , (15)

so we have

[2β(B1H)ij + 8λ(HHTH)ij ]
2 = (Δ)ij . (16)

So by some algebraic operations, we can get the following
equation:

2β(AH)ij + 2α(UCT )ij + (4λ− 2α)Hij

= 4λ(HHTH)ij + 2β(B1H)ij ,
(17)

which satisfies (12).�
We now prove the convergence of the updating rule. To

achieve this goal, we will make use of an auxiliary function
as in (Lee and Seung 2001). The definition of the auxiliary
function is as follows:

Definition 3. A function V (H,H′) is an auxiliary func-
tion of function L(H) if V (H,H′) ≥ L(H), V (H,H) =
L(H) for any H,H′.

The auxiliary function gives rise to the following lemma
(Lee and Seung 2001):

Lemma 1. If V is an auxiliary function of L, then
L is nonincreasing under the updating rule H(t+1) =
argminH V (H,H(t)).

Now we show the specific form of the auxiliary function
V (H,H′) for the objective function L(H) in (9) based on
lemma 2.

Lemma 2. The function

V (H,H′) =− βtr(H′TAZ)− βtr(ZTAH′)− βtr(H′TAH′)

+
1

2
βtr(YTB1H

′) +
1

2
βtr(H′TB1Y)

− (2λ− α)tr(H′TZ)− (2λ− α)tr(ZTH′)

− (2λ− α)tr(H′TH′) + λtr(RH′TH′H′T )

− 2αtr(CUTZ)− 2αtr(CUTH′)
(18)

is an auxiliary function for L(H) in (9), where Rij =
H4

ij

H
′3
ij

,

Zij = H ′
ij ln

Hij

H′
ij

and Yij =
H2

ij

H′
ij

.

Proof. The function L(H) in (9) is equivalent to the func-
tion L′(H) in (10) without the last term.

By lemma 4 in (Wang et al. 2011), we have

−βtr(HTAH) ≤− βtr(H′TAZ)− βtr(ZTAH′)

− βtr(H′TAH′),
(19)

and

− (2λ− α)tr(HTH) ≤ −(2λ− α)tr(H′TZ)

− (2λ− α)tr(ZTH′)− (2λ− α)tr(H′TH′).
(20)

By lemma 6 in (Wang et al. 2011), we have

βtr(HTB1H) ≤ 1

2
βtr(YTB1H

′) +
1

2
βtr(H′TB1Y).

(21)
By lemma 2 in (Wang et al. 2011), we have

−2αtr(HCUT ) ≤ −2αtr(CUTZ)− 2αtr(CUTH′).
(22)

By lemmas 6 and 7 in (Wang et al. 2011), we have

λtr(HTHHTH) ≤ λtr(PH′TH′) ≤ λtr(RH′TH′H′T ),
(23)

where Pij =
(HTH)2ij
(H′TH′)ij

and Rij =
H4

ij

H
′3
ij

.

By combining (19), (20), (21), (22) and (23), we have the
final auxiliary function in lemma 2.�

Based on the lemmas 1 and 2, we can show the conver-
gence of the updating rule for H.

Theorem 2. The optimization problem (9) is nonincreas-
ing under the iterative updating rule (13).

Proof. According to lemma 2, we have the specific form
V (H,H′) of the auxiliary function for L(H) in (9). We
then can have the solution for minH V (H,H′) by setting
the derivative of V (H,H′) with respect to H to 0:
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Table 1: Accuracy (%) of node clustering (bold numbers represent the best results).

Methods DeepWalk LINE1 LINE2 GraRep Node2Vec M-NMF0 M-NMF
Cornell 32.82 35.38 42.56 33.85 34.36 40.00 43.05
Texas 37.97 40.64 55.61 35.29 50.27 47.06 63.10

Washington 35.65 38.70 53.48 36.52 41.74 55.65 59.57
Wisconsin 34.34 35.09 43.77 36.60 35.47 42.64 45.66
Polblogs 52.68 57.38 63.88 53.42 84.83 72.75 82.82
Amherst 10.34 42.36 44.38 46.41 41.66 43.54 47.25
Hamilton 10.15 33.47 31.30 38.81 35.41 38.34 42.49

Mich 11.66 15.58 14.63 35.12 14.05 29.66 31.50
Rochester 7.94 17.88 16.86 33.80 18.00 30.35 38.09

Table 2: Accuracy (%) of node classification (bold numbers represent the best results).

Methods DeepWalk LINE1 LINE2 GraRep Node2Vec M-NMF0 M-NMF
Cornell 24.10 27.69 44.62 45.38 38.46 27.69 47.18
Texas 22.63 34.21 73.16 68.42 51.05 47.89 70.00

Washington 24.44 25.33 50.22 52.00 53.78 54.67 63.56
Wisconsin 26.15 28.46 51.54 59.62 44.62 39.62 61.15
Polblogs 64.77 83.02 80.87 89.60 84.03 80.20 90.67
Amherst 41.59 91.51 87.99 91.46 89.73 87.74 92.00
Hamilton 39.95 91.64 87.27 91.64 91.45 89.36 92.92

Mich 25.44 62.09 60.75 60.79 61.98 58.15 62.26
Rochester 34.78 87.04 84.23 85.47 83.65 84.28 87.18

∂V (H,H′)
∂Hij

= 4λ(H′H′TH′)ijH
4
ij + 2β(B1H

′)ijH
′2
ijH

2
ij

− 2β(AH′)ijH
′4
ij − 2α(UCT )ijH

′4
ij

− (4λ− 2α)H
′5
ij = 0.

(24)
By using the root of quadratic equation and the nonnega-
tive constraint, we can first get the updating rule for H2

ij ,
and then the updating rule for Hij is obtained, which is the
same as (13). Following lemma 1, under this updating rule
the objective function L(H) of (9) will be nonincreasing.�

Complexity analysis. Bulk of the computation depends
on the matrix multiplication in the updating rules. The com-
putations of updating rules in (5), (6), (7) and (13) run
in O(n2m + nm2),O(nm2 + n2m + m2k),O(kmn) and
O(n2k + k2n + mnk), respectively. Since usually m, k ≤
n, consequently, the overall computation of M-NMF is
O(n2m + n2k), which has the same order of magnitude
as (5). That is to say, although we incorporate additional
community information, the computation order of magni-
tude is not increased, compared with preserving the first- and
second-order proximities only. Besides, many optimized li-
braries for matrix multiplication1, such as OpenBLAS2, are
currently available to further speed up the computation.

1https://github.com/attractivechaos/matmul
2http://www.openblas.net/

Experimental evaluations

We employed the following real networks for the evalua-
tions. The WebKB network3 consists of 4 subnetworks with
877 webpages and 1608 edges. The subnetworks were gath-
ered from 4 universities, i.e., Cornell, Texas, Washington
and Wisconsin. Each subnetwork is divided into 5 com-
munities. Political blog network (Polblogs)4 (Adamic and
Glance 2005) (1222 nodes, 16715 edges) is composed of
blogs about US politics and the web links between them,
recorded in 2005. The blogs are divided into 2 communi-
ties according to their political labels (liberal and conserva-
tive). Facebook networks (Traud, Mucha, and Porter 2012)
are the facebook social networks at different universities in
US. For each user, there are six pieces of metadata, and ac-
cording to (Traud, Mucha, and Porter 2012), the class year
is used as the ground-truth of community structure. Partic-
ularly, we used four social networks in four universities,
i.e., Amherst (2021 nodes, 81492 edges, 15 communities),
Hamilton (2118 nodes, 87486 edges, 15 communities), Mich
(2933 nodes, 54903 edges, 13 communities) and Rochester
(4145 nodes, 145305 edges, 19 communities).

We compared M-NMF against the following five network
embedding algorithms: DeepWalk (Perozzi, Al-Rfou, and
Skiena 2014), LINE (Tang et al. 2015), GraRep (Cao, Lu,
and Xu 2015), Node2Vec (Grover and Leskovec 2016) and
M-NMF0. Typically, we use LINE1 to represent the LINE
preserving the first-order proximity and LINE2 to represent

3http://linqs.cs.umd.edu/projects/projects/lbc/
4http://www-personal.umich.edu/∼mejn/netdata/
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Figure 1: The effect of parameters α and β.

the LINE preserving the second-order proximity. M-NMF0
is our proposed M-NMF model which only preserves the
first- and second-order proximities. M-NMF0 is used to ver-
ify the effectiveness of incorporating community structure.
We uniformly set the representation dimension m = 100.
For the M-NMF, we set α and β ∈ {0.1, 0.5, 1, 5, 10}.

Node clustering. In this section, we evaluated the per-
formance of node clustering. We applied K-means to the
learned representations of nodes and adopted accuracy (Cai
et al. 2011) to assess the quality of the node clustering re-
sults. Due to the sensitivity of K-means on the initial values,
we repeated the clustering 20 times, each with a new set
of initial centroid, the average results were reported here,
shown in Table 1. As we can see, M-NMF achieves the
best results on seven of nine networks (except Polblogs
and Mich). Especially on some networks, such as Texas,
Hamilton and Rochester, compared with the second best re-
sults, M-NMF still achieves 4 percent to 8 percent improve-
ment, demonstrating the superior performance of our model.
Moreover, please note that M-NMF consistently shows bet-
ter performance than M-NMF0 on all the tested networks,
further suggesting the importance of incorporating the com-
munity structure to learn the representations of nodes.

Node classification. In this section, we verified the effec-
tiveness of M-NMF on node classification task. The learned
representations of nodes were used to classify these nodes
into a set of labels. We used the LIBLINEAR package (Fan
et al. 2008) to train the classifiers. For each class of a given
network, we randomly selected 80% nodes as the training
nodes and the rest as the testing nodes. We repeated the
process 5 times and reported the average accuracy, shown
in Table 2. As we can see, M-NMF outperforms the other
methods on eight of nine networks (except Texas), which
demonstrates the effectiveness of M-NMF on classification
task. This is probably because that by utilizing the commu-
nity indicator to guide the representation learning, the role of
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Figure 2: The effect of the number of communities k.

community indicator is similar as the pseudo label, so that
the learned representations of nodes have more discrimina-
tive power. Besides, compared with M-NMF0, M-NMF sig-
nificantly improves the accuracies, which again verifies the
necessity of introducing mesoscopic community structure to
network embedding.

Parameter analysis. We tested the effect of parameters
α and β of M-NMF on the real networks. Because the re-
sults of different networks show similar tends, here we just
used two networks (Washington and Wisconsin) as exam-
ples. We displayed the accuracies of clustering and classifi-
cation with respect to α and β, respectively. As seen from
Figure 1, the accuracies do not change too much and the
performances are relatively stable. Also, we noticed that M-
NMF on these two networks still shows competitive perfor-
mances even when the accuracies are relatively low. For ex-
ample, in Figure 1(a), the worst result is about 43%, better
than most of the other methods.

We also tested the effect of the number of communities
k, shown in Figure 2. Here we randomly selected α = 0.5
and β = 5 and varied k from 3 to 13 with an increment of
2. As we can see, the curve of accuracies are relatively sta-
ble, indicating its robustness to the number of communities
k. Overall, it is always important and an open question to
accurately determine the number of communities k in a net-
work, but our method is not very sensitive to it. In Figure
3, we can see the objective function values are nonincreas-
ing and drop sharply within a small number of iterations (5
iterations). This empirically proves our convergence theory.

Conclusions

We developed a novel Modularized Nonnegative Ma-
trix Factorization (M-NMF) model for network embed-
ding, while preserving the microscopic structure (first- and
second-order proximities of nodes) and the mesoscopic
structure (community). NMF based learning model was
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Figure 3: Convergence analysis.

used to incorporate the first- and second-order proximities,
while the modularity based community detection model was
adopted to detect communities. Their cooperation was es-
tablished by exploiting the consensus relationship between
the representations of nodes and the community structure,
enabling us to jointly optimize them. The efficient updating
rules with correctness and convergence guarantees were also
provided. The extensive experimental results on node clus-
tering and classification, as well as the parameter analysis,
demonstrated the superiority of M-NMF.
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