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Abstract

Visual sentiment analysis is raising more and more attention
with the increasing tendency to express emotions through im-
ages. While most existing works assign a single dominant
emotion to each image, we address the sentiment ambigu-
ity by label distribution learning (LDL), which is motivated
by the fact that image usually evokes multiple emotions. Two
new algorithms are developed based on conditional probabil-
ity neural network (CPNN). First, we propose BCPNN which
encodes image label into a binary representation to replace
the signless integers used in CPNN, and employ it as a part
of input for the neural network. Then, we train our ACPNN
model by adding noises to ground truth label and augmenting
affective distributions. Since current datasets are mostly an-
notated for single-label learning, we build two new datasets,
one of which is relabeled on the popular Flickr dataset and
the other is collected from Twitter. These datasets contain
20,745 images with multiple affective labels, which are over
ten times larger than the existing ones. Experimental results
show that the proposed methods outperform the state-of-the-
art works on our large-scale datasets and other publicly avail-
able benchmarks.

Introduction

In recent years, lots of attention has been paid to affec-
tive image classification (Jou et al. 2015; Joshi et al. 2011;
Chen et al. 2015). Most of these works are conducted
by psychological studies (Lang 1979; Lang, Bradley, and
Cuthbert 1998), and focus on manual design of features
and classifiers (You et al. 2015a). As defined as a single-
label learning (SLL) problem which assigns a single emo-
tional label to each image, previous works (You et al. 2016;
Sun et al. 2016) have performed promising results.

However, image sentiment may be the mixture of all com-
ponents from different regions rather than a single repre-
sentative emotion. Meanwhile, different people may have
different emotional reactions to the same image, which is
caused by a variety of elements like the different culture
background and various recognitions from unique experi-
ences (Peng et al. 2015). Furthermore, even a single viewer
may have multiple reactions to one image. Figure 1 shows
examples from a widely used dataset, i.e. Abstract Paintings
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Figure 1: For each image, its sentiment label distribution is
shown at the bottom. Both images are selected from the Ab-
stract Paintings, and annotated by 14 users. Different colors
indicate different sentiments, e.g. red is for amusement, and
yellow is for contentment.

(Machajdik and Hanbury 2010), which provides detailed an-
notations by 14 users. Existing works use this dataset for
SLL task, that is, for each image the category with the most
votes is selected as the ground truth. Surprisingly, the 14
users can not reach an agreement on any of the total 228
samples, which indicates using the dominant votes as senti-
ment label misses the diversity of viewer emotions. This fact
encourages us to explore multiple affective labels in images.

Multi-label learning (MLL) studies the problem where
one instance is associated with a number of class labels
(Zhou and Zhang 2006). Since MLL does not fit some real
applications well where the overall distribution of the impor-
tance of the labels matters, label distribution learning (LDL)
is proposed to cover a certain number of labels, representing
the degree to which each label describes the instance (Geng
2016). A state-of-the-art algorithm is conditional probabil-
ity neural network (CPNN) (Geng, Yin, and Zhou 2013).
However, CPNN uses signless integers as label representa-
tion and inputs them into the network for computation. It’s
unreasonable doing this in sentiment prediction systems, be-
cause it is meaningless to add two sentiment labels or sub-
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tract one label from another. Besides, CPNN aims to predict
probability density of various classes which needs abundant
samples in training phase, while labeling image sentiments
is subjective and time-consuming.

To address the problems, we introduce two new al-
gorithms named BCPNN and ACPNN, respectively. In
BCPNN, the integer labels are replaced by an m-
dimensional binary code, where m is the number of cate-
gories in affective datasets. Thus, each emotional class owns
its weight in network instead of sharing with others, which
further boosts performance. Then, we build ACPNN based
on BCPNN, aiming to augment sentiment labels based on
the observation that image sentiments are usually unbal-
anced. We add noises to the ground truth sentiment labels
to generate more roughly labeled distributions and samples.
These augmented labels have similar properties with the
ground truth while varying in concrete degrees, which make
our model more robust.

As aforementioned, most previous works employ a domi-
nant emotion as image label. For example, a weakly labeled
dataset (Borth et al. 2013) from Flickr is generated by ad-
jective noun pairs to distinguish positive and negative emo-
tions (You et al. 2015b). To evaluate our proposed methods,
we relabel a subset of the Flickr dataset with eight emo-
tions {Amusement, Anger, Awe, Contentment, Disgust, Ex-
citement, Fear, Sadness}, and name it as Flickr LDL. Then,
we download 30,000 images from Twitter, labeling them in
the same eight emotions space. We provide an extra option
to label an image as neutral when no obvious emotions can
be found. As a result, about two-thirds of images are re-
moved in this process. The rest images with multiple labels
are named Twitter LDL. We evaluate our proposed meth-
ods on both of these large-scale datasets, as well as other
two benchmark datasets, i.e. Abstract Paintings (Machajdik
and Hanbury 2010) and Emotion6 (Peng et al. 2015). The re-
sults show ACPNN is superior to BCPNN and both of them
outperform the state-of-the-art works.

Our contributions are threefold. First, we introduce MLL
and LDL into image sentiment prediction, while previous
works usually treat it as a SLL problem. Second, we propose
two new models, BCPNN and ACPNN, to address the prob-
lem, which take advantage of binary label representation
and augment affective labels, respectively. Last, two large-
scale affective datasets with multiple labels are collected.
These new datasets contain over ten times images than the
available benchmarks. We make the datasets publicly avail-
able to peer researchers at http://cv.nankai.edu.cn/projects/
SentiLDL, which will be beneficial to further researches in
this field.

Related Work

Emotion Modeling

Existing approaches can be grouped into two aspects:
dimensional spaces and categorical states. Researches on
dimensional approaches map affective representations into
valence-arousal space (Nicolaou, Gunes, and Pantic 2011;
Xu et al. 2008) or activity-weight-heat space (Solli and
Lenz 2009). In contrast, categorical approaches (Chen et

al. 2014b; Zhao et al. 2014) classify emotions into rep-
resentative categories. Compared to the former, categori-
cal models make it easier for people to understand. Typ-
ical categorical methods try to solve the problem using
low-level features and mid-level representations, while sev-
eral recent works exploit deep features and achieve signif-
icant progress (Chen et al. 2014a). You (You et al. 2015b;
2016) proposes a novel progressive CNN architecture to
make use of noisy data, and further performs benchmarking
analysis on a massive scale well-labeled dataset.

Although visual sentiment has been studied from various
perspectives, the destination of all these works is to predict
one most descriptive word from the label set. However, as
emotions evoked by images are affected by various factors,
choosing one single emotion to represent the whole image is
insufficient and unreliable. According to Plutchik’s wheel of
emotion theory (Plutchik 1980), only small amounts of emo-
tions are the basic ones, based on which occurring the other
emotions as the combination results. Each affective image,
on the contrary to the single emotion assumption of most ex-
isting methods, usually reflects a mixture of basic emotions
with different intensities.

Label Distribution Learning

Learning with ambiguity has been a popular topic of ma-
chine learning for years, and MLL is successfully applied to
many computer visual tasks. In the framework of MLL, each
instance is represented by a single feature vector simultane-
ously associated with multiple class labels (Zhang and Wu
2015; Bengio, Weston, and Grangier 2010). However, MLL
can hardly deal with the problem of describing the exact role
of each label, in which it is unlikely that multiple affective
labels happen to be equally relevant to the image. Therefore,
this work represents sentiment via a distribution constituted
by degrees to basic emotions and employs LDL for predic-
tion.

In a recent work, LDL is used to transform a single la-
bel into a Gaussian function (Geng, Yin, and Zhou 2013).
Then, CPNN is proposed to predict label distribution. Be-
sides, existing methods in computer vision are improved
through different strategies, such as problem transformation
(PT), algorithm adaption (AA), and specialized algorithms
design(SA), to deal with LDL problem. The structure of
CPNN is similar to a neural network having only one hid-
den layer except for two differences. One is that CPNN takes
both features and labels as input, the other is it outputs label
distribution while neural network outputs predicted proba-
bility of single or multiple labels.

Building Datasets for LDL

Some datasets have been designed for single label affec-
tive image classification, including IAPSa (Lang, Bradley,
and Cuthbert 1999), Artphoto, Abstract Paintings (Macha-
jdik and Hanbury 2010), F&I (You et al. 2016), and Flickr
(Borth et al. 2013). People also collect two datasets from
Twitter (Borth et al. 2013; You et al. 2015b) and label the im-
ages with binary emotions. For convenience, they are named
as Twitter I and Twitter II in this paper, respectively. All of

225



Table 1: Sentiment datasets in different systems. “F&I” is
the abbreviation of Flickr and Instagram, and “Abstract” de-
notes the Abstract Paintings dataset.

Label Type Dataset Classes# Images#

Single

IAPSa 8 395
Artphoto 8 882
Twitter I 2 596
Twitter II 2 1,269
F & I 8 23,308
Flickr 2 484,222

Multiple

Abstract 8 228
Emotion6 7 1,980
Flickr LDL 8 10,700
Twitter LDL 8 10,045

aforementioned datasets are used for SLL tasks, except for
Emotion6 which has multiple affective labels (Peng et al.
2015). However, this dataset doesn’t use the eight emotions
space, and it is mainly built for transfering emotions among
images. Table 1 briefly summarizes current datasets, as well
as our proposed Flickr LDL and Twitter LDL. More details
are discussed in the supplemental material.

In this paper, we establish two new large-scale datasets
for learning visual sentiment distributions. First, we extract
a subset from the Flickr dataset (Borth et al. 2013). Unlike
the other datasets that use the name of emotions to search
images, the Flickr dataset is gathered upon 1,200 adjective
noun pairs, reaching half million images. We hire 11 viewers
to label the subset wth the eight commonly used emotions.
Finally, Flickr LDL containing 10,700 images is generated,
in which the numbers of each class are roughly equal.

Twitter is another valuable source of affective images. Ex-
isting Twitter datasets contain only several hundreds of im-
ages and are labeled with binary emotions. To build a large-
scale LDL dataset from Twitter, we collect about 30,000 im-
ages by searching various sentiment key words. For exam-
ple, “sad”, “heart-broken” and “grieved” are used to search
sad images. To avoid duplication, the images with high sim-
ilarity are filtered by several rounds of hand operation, be-
fore 8 viewers are hired to label this dataset. Finally, there
are 10,045 images in the so-called Twitter LDL dataset. In
both datasets, the votes from the workers are integrated to
generate the ground truth label distribution for each image.

Methods

We first formulate the state-of-the-art LDL algorithm
CPNN (Geng, Yin, and Zhou 2013), then propose our
BCPNN and ACPNN successively.

For an image x, the description degree dyx ∈ [0, 1] is as-
signed to each affective label y, representing the degree to
which y describes x. dyx satisfies the constrains

∑
y d

y
x = 1,

which can be represented by the conditional probability
p(y|x). Special attention should be paid to the meaning of
dyx , which is not the probability that y correctly labels x, but
the proportion that y accounts for in a full class description
of x. Thus, all the affective labels with a non-zero descrip-

(a) Abstract Painting

(c) Flickr_LDL (d) Twitter_LDL

(b) Emotion6

Figure 2: Images for learning visual sentiment distributions.

tion degree are actually the ’correct’ labels to describe the
image, but just with different importance measured by dyx .

Let n denote the number of images and m denote the
number of affective classes. Given a training set S =
{(x1, D1), (x2, D2), . . . , (xn, Dn)}, where xi is the i-th im-
age and Di = {dy1

xi , d
y2
xi , . . . , d

ym
xi } is the label distribution

associated with xi, our goal is to learn a conditional prob-
ability mass function p(y|x) from S. Suppose p(y|x) is a
parametric model p(y|x;w), where w is the vector of the
model parameters. Then, we further find the w that can gen-
erate a distribution similar to Di given the instance xi. If the
Kullback-Leibler divergence is used as the measurement of
the similarity between two distributions, then the best model
parameter vector w∗ is determined by

w∗ = argmin
w

∑
i

∑
j

(d
yj
xi ln

d
yj
xi

p(yj |xi;w)
)

= argmax
w

∑
i

∑
j

d
yj
xi ln p(yj |xi;w).

(1)

CPNN

CPNN (Geng, Yin, and Zhou 2013) models p(y|x;w) by
a three layer neural network, which is shown in Figure 3.
The input of CPNN includes both x and a discrete y, and the
output of the network is

p(y|x;w) = exp(b(x;w) + f(x, y;w)), (2)

where bias b(x;w) ensures that
∫
p(x)dx = 1. b(x;w) is

defined as
b(x;w) = − ln(

∑
y

exp(f(x, y;w))). (3)

The net activation of output f(x, y;w) is

f(x, y;w) =

M2∑
v=1

w31mG(

M1∑
k=0

w2vk(xk, yk)). (4)
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Figure 3: CPNN, BCPNN and ACPNN share the similar
structures, which have three layers, take feature vector and
label as input, and output the predicted distributions. Binary
coding and augmented label distributions are introduced into
BCPNN and ACPNN, respectively. “GT” indicates ground
truth.

Here, G is the sigmoid activation function, Ml is the number
of units on the l-th layer, and wlvk is the weight of the v-th
unit on the l-th layer associated with the output of the k-th
unit on the (l−1)-th layer. Recall Equation 1, then the target
function to minimize is

T (w) = −
∑
i

∑
j

d
yj
xi ln p(yj |xi;w)

= −
∑
i

∑
j

d
yj
xi (b(xi;w) + (f(xi, yj ;w))).

(5)

The gradient of Equation 5 w.r.t. w is

∂T (w)

∂w
= −

∑
i

∑
j

d
yj
xi (

∂b(xi;w)

∂w
+

∂(f(xi, yj ;w))

∂w
).

(6)

The partial derivative in Equation 6 can be calculated by
backpropagation (Modha and Fainman 1994), and finally the
weights are updated by the RPROP algorithm (Riedmiller
and Braun 1993).

BCPNN

CPNN has several disadvantages when applied to visual
sentiment prediction. For example, the target function of
CPNN in Equation 5 has two input terms. x is a feature vec-
tor, in which each value ranges from 0 to 1. yj is the j-th

affective category evoked by the image ranging from 1 to
m, where m is the number of categories. When they are in-
put into network simultaneously, it’s hard to balance x and
yj . Even yj is normalized, it’s meaningless adding two sen-
timent labels or subtracting one label from another.

Thus, we replace the typical signless integer y in CPNN
with a binary vector ŷ = [b(y1), b(y2), . . . , b(ym)], where
b(·) is a binary coding function. For the j-th affective cat-
egory, the binary value b(yj) is 1 and the other binary val-
ues are 0. We input ŷ into the network as well as the image
representations. Note our binary coding improves the length
of input label from 1 to m. It’s reasonable for computing
because compared to the dimensions of the feature vector,
m is small enough. For example, we employ mid-level fea-
tures and deep features in our experiments, whose lengths
are 1,200 and 4,096, respectively. However, m is very small
in a visual sentiment problem, the typical value is 2, 7, or
8. As with CPNN, the description degree d

yj
x is used as the

output of the network, which can be represented by the fol-
lowing conditional probability

p(ŷ|x;w) = exp(b(x;w) + f(x, ŷ;w)). (7)

As shown in Figure 3, the conditional probability neural
network with binary code is defined as BCPNN, which is
regarded as a preliminary form of augmented conditional
probability neural network (ACPNN). Our new target func-
tion is

T ′(w) = −
∑
i

∑
j

d
ŷj
xi (b(xi;w) + (f(xi, ŷj ;w))), (8)

where ŷj is the binary vector corresponding to the j-th af-
fective label. We use the similar approaches as CPNN to cal-
culate the partial derivative and update the weights.

ACPNN

Moreover, training a robust LDL model needs a num-
ber of affective images, while labeling image sentiment is
subjective and time-consuming. We propose our ACPNN
based on the previous binary conditional probability neural
network. Our target is to generate an extended training set
S′ = S + {(xi, D

v
i )|i = 1, 2, . . . , n; v = 1, 2, . . . } from

S, where Dv
i is the v-th augmented label distribution of im-

age xi. In our experiments, the max value of v is set to 5.
As defined before, Di = {dy1

xi , d
y2
xi , . . . , d

ym
xi } is the ground

truth label distribution. Thus, the augmented distribution is
calculated by

Dv
i = Di × (Im×m +

1

v
× diag(0, · · · , ρk, · · · , 0)) (9)

where Im×m is the identity matrix, diag() is a diagonal
matrix in the same size with Im×m, and has only one non-
zero element ρk at the position (k, k). ρk is defined as

ρk =

{
yk
i∑m

j=1 yj
i

if yki ≥ Threshold

0 else
(10)

where Threshold = E(d
yj
xi ) is represented by the expected

value of dyj
xi . We train ACPNN using both ground truth and

augmented distributions. Finally, the output of our model is
a predicted affective distribution for the testing image.
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Table 2: Experimental results of CPNN and our proposed BCPNN and ACPNN.
Features SentiBank Deep features from VGGNet
Criterion Cheb ↓ Clark ↓ Canber ↓ KLdiv ↓ Cosine↑ Intersec ↑ Cheb ↓ Clark ↓ Canber ↓ KLdiv ↓ Cosine ↑ Intersec ↑

Abstract
CPNN 0.2933 1.7612 4.1347 0.6377 0.6804 0.5692 0.2809 1.7434 4.1096 0.5839 0.7124 0.5839

BCPNN 0.2686 1.7607 4.1606 0.5611 0.7254 0.5877 0.2630 1.8058 4.3003 0.5877 0.7168 0.5868
ACPNN 0.2442 1.7389 4.0849 0.4797 0.7727 0.6212 0.2344 1.7675 4.1753 0.5134 0.7628 0.6176

Emotion6
CPNN 0.3495 1.7203 3.9554 0.7399 0.6544 0.5369 0.3561 1.6734 3.8118 0.6627 0.6684 0.5498

BCPNN 0.3542 1.6921 3.8667 0.7235 0.6591 0.5372 0.2983 1.6639 3.7135 0.5429 0.7454 0.6074
ACPNN 0.3452 1.6700 3.7845 0.6363 0.6833 0.5575 0.2799 1.6540 3.6909 0.5057 0.7658 0.6214

Flickr LDL
CPNN 0.4192 2.1369 5.3584 0.9399 0.5894 0.4472 0.3874 2.1315 5.3346 0.8315 0.6508 0.4847

BCPNN 0.3097 2.1337 5.2701 0.6550 0.7676 0.5842 0.2520 2.1089 5.1561 0.4732 0.8380 0.6550
ACPNN 0.2991 2.1196 5.2022 0.6156 0.7857 0.5997 0.2462 2.1158 5.1791 0.4686 0.8397 0.6617

Twitter LDL
CPNN 0.5177 2.4134 6.3725 1.2089 0.5250 0.3604 0.3873 2.4044 6.2942 0.8543 0.7332 0.5050

BCPNN 0.3555 2.4034 6.2696 0.7815 0.7794 0.5476 0.2828 2.3866 6.1661 0.5550 0.8499 0.6422
ACPNN 0.3500 2.4016 6.2529 0.7540 0.7874 0.5628 0.2781 2.4035 6.2453 0.5835 0.8432 0.6481
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Figure 4: Predicted affective label distributions using our proposed ACPNN and the state-of-the-art approaches. Images and the
corresponding ground truth distributions are shown in the first and last columns, respectively. “GT” indicates ground truth.

Experiments

Implementation Details

We execute our experiments on four datasets which
have multiple affective labels, including Abstract Paint-
ings (Machajdik and Hanbury 2010), Emotion6 (Peng et
al. 2015), and the proposed Flickr LDL and Twitter LDL.
While Emotion6 labels images in a new definition system
containing seven kinds of emotions {Anger, Disgust, Fear,
Joy, Sadness, Surprise and Neutral}, the other datasets use
the typical eight emotions space. In similar fashion with pre-
vious works, we randomly select 80% of images as training
set and the others for testing.

As SentiBank (Borth et al. 2013) has shown its superiority
to low-level features, we use it to extract mid-level features
in our experiments. Meanwhile, deep features extracted with
VGGNet (Simonyan and Zisserman 2015) are also applied.
For each image, we use the last fully connected layer out-
put as the sentiment representation and reduce it to 280 di-
mensions using principle component analysis (PCA). Table
2 demonstrates the effects of the two kinds of features.

We compare our ACPNN and BCPNN with seven state-
of-the-art approaches, including CPNN, PT-Bayes, PT-

SVM, AA-kNN, AA-BP, SA-IIS and SA-BFGS (Geng, Yin,
and Zhou 2013). For fair comparison, the numbers of hid-
den layer units of CPNN, BCPNN and ACPNN are set to
the same value 100. Since evaluation measures for single-
label classification are not applicable, we employ Cheby-
shev distance (Cheb), Clark distance (Clark), Canberra met-
ric (Canber), Kullback-Leibler divergence (KLdiv), cosine
coefficient (Cosine), and intersection similarity (Intersec) to
evaluate the methods in this work, following the same rou-
tine of existing LDL algorithms (Cha 2007; Geng, Yin, and
Zhou 2013; Geng 2016). That is, we evaluate the perfor-
mance of LDL by computing the similarity or distance be-
tween the predicted label distribution and the real label dis-
tribution. In these measures, the first four are distance mea-
sures and the last two are similarity measures. As shown in
Table 2, 3, the “↓” after the distance measures indicates “the
smaller the better”, and the “↑” after the similarity measures
indicates “the larger the better”.

Results and Analysis

Since our proposed ACPNN and BCPNN are built based
on the typical CPNN algorithm, all these methods are ap-
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Table 3: Experimental Results on four datasets are shown as mean (rank). Since each of the measures may reflect a certain
aspect of an algorithm, “Average Rank” is used to indicate the overall performance. In these experiments, VGGNet is employed
to extract deep features. For each measure, the best performance is highlighted by boldface.

Dataset Criterion PT-Bayes PT-SVM AA-kNN AA-BP SA-IIS SA-BFGS ACPNN

Abstract

Cheb ↓ 0.3595(6) 0.2982(5) 0.2451(2) 0.2969(4) 0.2961(3) 0.4722(7) 0.2344(1)
Clark ↓ 1.9067(6) 1.7884(3) 1.7567(1) 1.8140(4) 1.8673(5) 2.3589(7) 1.7675(2)
Canber↓ 4.7501(6) 4.2884(3) 4.1063(1) 4.3479(5) 4.5087(4) 6.2439(7) 4.1753(2)
KLdiv ↓ 3.2678(7) 0.7076(4) 0.5154(2) 0.7815(5) 0.6443(3) 2.2815(6) 0.5134(1)
Cosine ↑ 0.6531(4) 0.6429(5) 0.7533(2) 0.6364(6) 0.6916(3) 0.5727(7) 0.7628(1)
Intersec ↑ 0.5176(6) 0.5393(5) 0.6090(2) 0.5403(4) 0.5771(3) 0.4170(7) 0.6176(1)
Average Rank 5.83 4.17 1.67 4.67 3.50 6.83 1.33

Emotion6

Cheb ↓ 0.3581(5) 0.3835(6) 0.2971(2) 0.3384(3) 0.3392(4) 0.3998(7) 0.2799(1)
Clark ↓ 1.9368(6) 1.7779(5) 1.6260(1) 1.6794(3) 1.7593(4) 1.9600(7) 1.6540(2)
Canber↓ 4.5906(6) 4.1740(5) 3.5440(1) 3.8244(3) 4.0494(4) 4.6715(7) 3.6909(2)
KLdiv ↓ 2.7178(7) 0.9286(4) 1.8683(6) 0.6832(2) 0.6937(3) 1.2111(5) 0.5057(1)
Cosine ↑ 0.6826(3) 0.5445(7) 0.7088(2) 0.6733(5) 0.6793(4) 0.6118(7) 0.7658(1)
Intersec ↑ 0.5473(5) 0.4554(7) 0.5965(2) 0.5498(4) 0.5644(3) 0.5133(6) 0.6214(1)
Average Rank 5.33 5.67 2.33 3.33 3.67 6.33 1.33

Flickr LDL

Cheb ↓ 0.4336(6) 0.4647(7) 0.2552(2) 0.3227(5) 0.3016(3) 0.3133(4) 0.2462(1)
Clark ↓ 2.1309(3) 2.2333(6) 1.7143(1) 2.1360(4) 2.1960(5) 2.2647(7) 2.1158(2)
Canber↓ 5.3584(4) 5.7418(6) 3.6099(1) 5.1559(2) 5.5495(5) 5.7963(7) 5.1791(3)
KLdiv ↓ 1.0086(5) 1.1680(6) 3.7965(7) 0.7052(3) 0.6302(2) 0.7593(4) 0.4686(1)
Cosine ↑ 0.5619(6) 0.4443(7) 0.8097(2) 0.7498(5) 0.7722(3) 0.7547(4) 0.8397(1)
Intersec ↑ 0.4225(6) 0.3981(7) 0.6567(2) 0.5823(5) 0.6079(3) 0.6035(4) 0.6617(1)
Average Rank 5.00 6.50 2.50 4.00 3.50 5.00 1.50

Twitter LDL

Cheb ↓ 0.5433(6) 0.6167(7) 0.2896(2) 0.3189(4) 0.2975(3) 0.3578(5) 0.2781(1)
Clark ↓ 2.4028(2) 2.5392(7) 1.4929(1) 2.4072(4) 2.4190(6) 2.5063(5) 2.4035(3)
Canber↓ 6.1905(2) 6.9866(7) 2.7822(1) 6.2677(4) 6.3051(5) 6.6617(6) 6.2453(3)
KLdiv ↓ 1.3221(4) 1.6761(6) 5.2344(7) 0.7007(3) 0.6404(2) 1.1326(5) 0.5835(1)
Cosine ↑ 0.4967(6) 0.3067(7) 0.8125(3) 0.8116(4) 0.8205(2) 0.7341(5) 0.8432(1)
Intersec ↑ 0.3423(6) 0.2585(7) 0.6562(1) 0.5968(4) 0.6347(3) 0.5893(5) 0.6481(2)
Average Rank 4.33 6.83 2.50 3.83 3.50 5.17 1.83

plied to four datasets and evaluated by the six measures. Ta-
ble 2 shows the superiority of our methods, where both mid-
level and deep features are extracted and the latter performs
sightly better in our experiments. The reason mid-level fea-
tures generate comparable results with deep features is that
SentiBank (Borth et al. 2013) is a well-designed affective
representation, while VGGNet is built for object recogni-
tion. The performance will be further improved if a special
network for affective prediction, e.g. progressive CNN (You
et al. 2015b), is applied to extract deep features. Note al-
though the datasets vary on scale and emotional categories,
ACPNN has shown its superiority to BCPNN and both of
them outperform CPNN.

Furthermore, we compare ACPNN with six working
methods which employ three strategies, i.e. problem trans-
formation, algorithm adaptation, and specialized algorithm
design. The results are shown in Table 3. For fair compari-
son, deep features extracted from VGGNet are applied to all
approaches, and the best performances are highlighted by
boldface. The ranks are given in the parentheses right after
the measure values, and the average ranks are given in the
last row of each subtable. As can be seen from Table 3, for
each particular dataset, ACPNN performs the best, while the
rankings of other six LDL algorithms are often different on
different measures. AA-kNN performs better than others be-
cause AA-kNN keeps the label distribution and thus keeps

the overall labeling structure for each instance, while others
break down the original label distributions by weighted re-
sampling. Figure 4 shows the predicted affective label distri-
butions on images from various datasets, in which ACPNN
generates the most similar distributions as the ground truth.

Conclusion

In this work, we introduce a challenging problem of pre-
dicting multi-emotions evoked in images. Due to the ab-
sence of large-scale datasets with multiple affective labels,
we build two new datasets named Flickr LDL and Twit-
ter LDL, where LDL indicates we employ label distribu-
tion learning to address the problem. Based on the state-
of-the-art conditional probability neural network (CPNN),
we encode its input label into a binary vector (BCPNN),
and then develop our ACPNN by augmenting distributions
with label noises. Mid-level features and deep features are
employed on Abstract Paintings, Emotion6, Flickr LDL and
Twitter LDL in our experiments, demonstrating ACPNN is
superior to BCPNN, and both of them outperform CPNN
and other contrastive methods.
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