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Abstract

We propose a new deep neural network architecture, TabNet,
for table type classification. Table type is essential informa-
tion for exploring the power of Web tables, and it is impor-
tant to understand the semantic structures of tables in order to
classify them correctly. A table is a matrix of texts, analogous
to an image, which is a matrix of pixels, and each text con-
sists of a sequence of tokens. Our hybrid architecture mirrors
the structure of tables: its recurrent neural network (RNN)
encodes a sequence of tokens for each cell to create a 3d ta-
ble volume like image data, and its convolutional neural net-
work (CNN) captures semantic features, e.g., the existence
of rows describing properties, to classify tables. Experiments
using Web tables with various structures and topics demon-
strated that TabNet achieved considerable improvements over
state-of-the-art methods specialized for table classification
and other deep neural network architectures.

Introduction

The World Wide Web consists of a huge amount of struc-
tured data in the form of HTML tables. Initial studies by
(Cafarella et al. 2008a) investigated 14 billion tables and
showed that 154 million of them contained relational knowl-
edge. More recently, (Lehmberg et al. 2016) released the
WDC Web Table Corpora consisting of 233 million tables
extracted from the July 2015 Common Crawl containing
1.78 billion pages. Recent work exploring the power of ta-
bles has yielded some interesting applications: table search
(Tam et al. 2015), table extension (Lehmberg et al. 2015),
query answering (Yin, Tan, and Liu 2011), and knowledge
base construction (Dong et al. 2014).

The most fundamental technology for such applications is
the means to examine the structures of tables, i.e., table type
classification. (Crestan and Pantel 2010; 2011) proposed a
fine-grained classification taxonomy as to whether they con-
tain semantic triples of the form (subject, property, object)
or whether they are used for layout purposes.

A number of studies on table type classification have pro-
posed various features of tables and used machine learning
for classification. The most recent work by (Eberius et al.
2015) listed 127 handcrafted features considering global fea-
tures for tables as a whole and local features per row and per
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Figure 1: Concept of TabNet. An RNN first encodes a se-
quence of tokens in each cell, and a CNN then extracts se-
mantic features for table type classification.

column, e.g., the deviation of the number of characters per
cell, the ratio of cells containing colons, and so on. How-
ever, their features do not contain ones capturing the seman-
tic structures of tables despite that table types are defined
on the basis of semantic relations among cells. The building
blocks of the structures have different semantics, shapes, and
sizes: e.g., columns listing subjects, rows describing proper-
ties, and blocks of object cells that belong to the same class.
It is difficult to form such complex building blocks by using
handcrafted features.

Here, we should notice that a table is a matrix of texts,
analogous to an image, which is a matrix of pixels, and
each text consists of a sequence of tokens (html tags and
words). Recently, deep neural networks have been very suc-
cessful in capturing semantic representations of sequential
and matrix data. The recurrent neural network (RNN) is a
neural sequence model that has state-of-the-art performance
on various important tasks, including machine translation
(Bahdanau, Cho, and Bengio 2015). On the other hand, the
convolutional neural network (CNN) can compose a local
patch of lower level features into a higher level representa-
tion and achieves state-of-the-art performance for computer
vision tasks, especially image classification (He et al. 2015).

In this study, we try to determine whether deep neural net-
works can capture the semantic structures of tables in order
to classify them by type. The contributions of this study are
summarized as follows.
• We propose a new architecture, TabNet, combining an

RNN and a CNN for classifying tables by type (Figure 1).
• TabNet has considerable advantages over state-of-the-art
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Figure 2: Examples of genuine tables. Left: (a,b) vertical re-
lational, Middle: (c,d) horizontal entity, and Right: (e,f) ma-
trix tables. Red, green, blue cells denote subjects, properties,
and objects, respectively.

methods specialized for table classification and other deep
neural network architectures. The best result of TabNet
was 91.05% in terms of a weighted macro-averaged F1

score, for 3,567 tables of 200 unseen websites.
The rest of the paper proceeds as follows. First, we present

background and give definitions relevant to our study. Next,
we describe our neural network architecture. After that, we
show experimental results for Web tables covering various
structures and topics. Before concluding the paper, we dis-
cuss the contributions and originality of our study.

Preliminaries

Web Tables

Let us give definitions for explaining Web tables. Table type
is defined on the basis of the semantic knowledge that tables
and text around the tables contain (Crestan and Pantel 2011).

Definition 1 Web tables are tabular structures and consist
of an ordered set of N rows and M columns.

Definition 2 Each intersection between a row and a column
determines a cell cij , where 1 ≤ i ≤ N and 1 ≤ j ≤ M .

Definition 3 Genuine tables and text around the tables con-
tain semantic triples of the form (subject, property, object).

Genuine tables The WDC Web Table Corpora classi-
fies genuine tables into relational, entity, and matrix ta-
bles (Lehmberg et al. 2016), and we use this taxonomy in
this study. Figure 2 shows examples of genuine tables.

Definition 4 Relational tables list one or more properties
for a set of subjects or key aspects of a subject.

Relational tables contain complete semantic triples them-
selves (Figure 2(a)), or do not contain a subject (Fig-
ure 2(b)). The latter kind lists the key aspects of the subject
appearing outside the table, and the combination of an as-
pect and a subject forms a reified subject. The tables of Fig-
ure 2(a,b) are vertical; horizontal ones present their subjects
(or key aspects) in one row.

Definition 5 Entity tables describe one or more properties
for one subject.

Entity tables also contain complete triples or do not con-
tain a subject. Entity tables are different from relational ones

in that they describe semantic knowledge about a single
subject. Figure 2(c,d) shows horizontal tables; vertical ones
present a pair of property and object in a column.

Definition 6 Matrix tables have the same property for each
cell object at the junction of a row and a column.

Matrix tables do not contain complete semantic triples, as
shown in Figure 2(e,f); that is, the property is not explic-
itly contained in the table. The object value corresponds to
a combination of two or more subjects, including ones ap-
pearing outside the table.

Other genuine tables Another three types were described
by (Crestan and Pantel 2011). Enumeration tables list a se-
ries of objects that have the same ontological relation (e.g.,
hyponymy). Calendar tables are different from matrix tables
in that they have different properties (e.g., schedule names)
for each cell. Form tables are similar to entity tables; they
have empty object fields for the users to fill in or select.

Layout (Non-genuine) tables There are two categories.
Navigational tables consist of cells organized for naviga-
tional purposes. Formatting tables account for a large por-
tion of the tables on the Web; their only purpose is to orga-
nize elements visually. We treat both the other genuine tables
and the layout tables as the ’Other’ type.

Semantic Structures of Tables

Here, we present the main building blocks of the semantic
structures of genuine tables and show examples of the fea-
tures of previous studies (Crestan and Pantel 2011; Eberius
et al. 2015) that indirectly capture the semantic structures.

Subject rows and columns Vertical (horizontal) rela-
tional tables have one or more columns (rows) listing sub-
jects; matrix tables have both of them, and entity tables do
not list the subjects. The previous studies used the ratio of
distinct strings for capturing subject (i.e., key) rows and
columns.

Property rows and columns Vertical (horizontal) rela-
tional and entity tables have a row (column) describing prop-
erties; matrix tables do not explicitly contain its property. In
the studies, the ratio of cells containing colons was used for
finding the property columns of horizontal entity tables.

Blocks of sibling object cells Let a sibling block be a
group of cells that belong to the same class. The object cells
of vertical (horizontal) relational tables form multiple n×1
(1×m) sibling blocks along each column (row), while those
of matrix tables form one sibling block. Entity tables barely
contain sibling blocks. The related studies used the variance
in cell string length for capturing sibling blocks.

Network Architecture

Overview of Architecture

Figure 3 shows the overall architecture of our network. The
input table is fixed-sized (cropped or padded), consisting of
N rows and M columns and T tokens (vocabulary size: |V |)
in the cells. Our network begins with a token embedding that
creates a vectorial representation (size of E) of each token
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Figure 3: Entire architecture of TabNet. An embedding layer creates a vector (size of E) from a one-hot representation (size of
|V |) of each token. An RNN uses an LSTM with an attention mechanism to encode each cell into a vector (size of H). A CNN
uses one convolutional layer that has F filters and several stacked convolutional blocks with residual units to extract semantic
features for table classification. Fully connected classification layers compute the predictive probabilities for all six table types.

<td colspan="2">

Birthday February 22, 1732

George Washingtonrow 1

col 1 col 2

row 2 George Washington</a></td>

[<row1>,<col1>,<td_colspan>,<a>,george,washington,</a>,</td>]

HTML markup text

Tokenize

[<row1>,<col2>,<td_colspanned>,<a>,george,washington,</a>,</td>]

<a href="gw.html">

Figure 4: Example of tokenization of HTML markup text.

in the cells. Next, it encodes each cell (i.e., a sequence of
token representations) into a fixed-size vector (size of H)
using a recurrent neural network (RNN), which uses a long
short-term memory (LSTM) with an attention mechanism,
to obtain a semantic representation of each cell; the result
is an N×M×H third-order tensor. This tensor has the same
structure as image data, i.e., height, width, and depth; hence,
our network encodes the tensor using a convolutional neural
network (CNN) to capture high-level semantic representa-
tions of the cell matrix. The CNN consists of a convolu-
tional layer that has F filters and several stacked convolu-
tional blocks with residual units. Finally, it flattens the out-
put of the last convolutional layer (an N×M×F tensor) into
a vector and uses fully connected layers and a softmax func-
tion to compute the predictive probabilities for all the table
types.

Embedding Layer

Tokenization Our network considers words, HTML tags,
and row and column indexes of cells as tokens. The at-
tributes of the HTML tags are ignored, except for rowspan
and colspan, and spanned cells are discriminated from the
original cell by cell indexes and the tag name, as shown
in Figure 4. <thead>, <tbody>, <tr>, <colgroup>,
<col>, <caption> tags are not used. All word and tag
tokens are converted to lowercase.

Token embedding Each cell in a table is represented as a
fixed-sized (cropped or padded) sequence of T one-hot vec-
tors (x1, x2, . . . , xT ). A one-hot vector of the v-th token in
a vocabulary is a binary vector whose elements are all ze-
ros, except for the v-th element, which is set to one. An em-
bedding layer projects each of the one-hot vectors into a E-
dimensional continuous vector space with a weight matrix
We ∈ R

E×|V |,

et = Wext, (1)

where |V | is the number of unique tokens in a vocabulary.

Recurrent Neural Network

After the embedding layer, each cell has a sequence of
dense, real-valued vectors (e1, e2, . . . , eT ). Our network
uses a long short-term memory (LSTM), which reads the
input sequence in reverse, with an attention mechanism to
obtain a semantic representation of each cell.

Long Short-Term Memory LSTM is a special kind of
RNN capable of learning long-term dependencies (Hochre-
iter and Schmidhuber 1997; Gers, Schmidhuber, and Cum-
mins 2000). It defines a sequence of hidden states ht as⎛

⎜⎝
ft
it
ot
gt

⎞
⎟⎠ = Whht−1 +Wxet + b, (2)

ct = σ(ft)� ct−1 + σ(it)� tanh(gt), (3)
ht = σ(ot)� tanh(ct), (4)

where Wh ∈ R
4H×H , Wx ∈ R

4H×E , b ∈ R
4H are model

parameters, σ is the sigmoid function, and the � operator
denotes the Hadamard product.

Attention mechanism Our network has the same atten-
tion mechanism used by (Yang et al. 2016) for extracting
important tokens that strongly contribute to forming a se-
mantic representation of each cell:

ut = tanh(Waht + ba), (5)

αt =
exp(uᵀ

t ua)∑
t exp(u

ᵀ
t ua)

, (6)

s =
∑
t

αtht, (7)

where Wa ∈ R
C×H , ba ∈ R

C , and ua ∈ R
C are model

parameters.

Convolutional Neural Network

After the RNN, our network obtains an input volume, which
is an N×M×H tensor. A convolutional layer in a CNN con-
sists of a set of filters, which have a small receptive field, but
extend the full depth of the input volume. Each filter, which
computes the dot product between the entries of the filter
and the input, is convolved across the width and height of
the input volume and produces a two-dimensional activation
map of that filter.

Our network first applies one convolutional layer that has
F filters of size 3 × 3 with a stride of 1, followed by sev-
eral convolutional blocks that we explain below. It does not
conduct any pooling operations because they have a negative
effect on the predictive accuracy of TabNet.
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Convolutional blocks with residual units Deep residual
networks (ResNets) have high accuracy and nice conver-
gence behavior for image classification, as a result of us-
ing many (over 100 layers) stacked residual units (He et al.
2015; 2016a). This unit, which has a shortcut connection,
can be expressed in a general form:

xl+1 = f (h(xl) + F(xl,Wl)) , (8)

where xl and xl+1 are the input and output of the l-th unit,
and F is a residual function. Wl is a set of weights associ-
ated with the l-th unit.

Our network chooses two 3× 3 convolutional layers with
a stride of 1 as F . The function f is the ReLU function (Nair
and Hinton 2010). The function h is an identity mapping for
all stacked units: h(xl) = xl. This shortcut connection can
reduce the risks of overfitting.

Batch normalization Batch normalization (BN) is a tech-
nique to improve learning in neural networks by normaliz-
ing the distribution of each input feature in each layer across
each minibatch to N (0, 1) (Ioffe and Szegedy 2015). Our
network adapts BN right after each convolution and before
ReLU activation, in the same way as the original ResNet (He
et al. 2015). It does not use dropout (Srivastava et al. 2014)
in the overall architecture, including the RNN.

Classification Layers

At the end of the last convolution, our network has an
N×M×F tensor. It flattens the tensor into a vector and
uses several fully connected layers that reduce the size to
six classes of table types. Our network uses ReLU as the ac-
tivation function of the intermediate layers and adapts BN
before ReLU activation. The output of the last layer is fed to
a six-way softmax, which produces the predictive probabili-
ties for all table types.

Learning of Networks

The entire network can be trained end-to-end by using
stochastic gradient descent (SGD) with backpropagation and
can be easily implemented using common libraries without
modifying the solvers. It is worth noting that pre-training
only the embedding matrix with Word2Vec (Mikolov et al.
2013a; 2013b) or GloVe (Pennington, Socher, and Manning
2014) from a very large text corpus is effective when the
number of training tables is not so large.

Experiments

Dataset

The evaluation used a subset of April 2016 Common Crawl.
We collected 272,888 tables from the crawl data and ex-
tracted 190,288 tables of the top 500 websites containing the
most tables in the subset (the largest one is wikipedia.org).
We eliminated small tables with fewer than two rows or two
columns and nested tables from the dataset. In total, we ob-
tained 64,245 tables covering various structures and topics.
An expert annotated the type of table into six types: vertical
and horizontal relational (VR and HR), vertical and horizon-
tal entity (VE and HE), matrix (M), and other (O) tables.

Table 1: Numbers of table classes in the dataset.
table type train test total
Vertical Relational (VR) 11,397 328 11,725
Horizontal Relational (HR) 255 38 293
Vertical Entity (VE) 390 75 465
Horizontal Entity (HE) 15,618 879 16,497
Matrix (M) 662 18 680
Other (O) 32,356 2,229 34,585
total 60,678 3,567 64,245

Note that a website has a large number of very similar
tables, and random partitioning of the dataset causes the test
set to contain seen data. We therefore split up the dataset
by website; we used 60,678 tables in the top 300 of the 500
websites for training and the remaining for testing (Table 1).

Evaluation Metric

The training and test datasets are imbalanced. They contain
many more samples from VR, HE, and O types than from
the rest of the types. We therefore used a weighted macro-
averaged F1 score as the evaluation metric as in (Eberius et
al. 2015); it calculates F1 scores for each table type and finds
their average, weighted by the support (the number of true
instances for each type).

Baselines

We compared our method with several baseline methods, in-
cluding traditional approaches and neural network architec-
tures that can be used for table type classification.

Random Forests with handcrafted features A number
of studies proposed handcrafted features. We used Random
Forests with the features of the following studies.

• Cafarella08 (Cafarella et al. 2008b) described seven fea-
tures of the whole table; e.g., the number of columns with
non-string data and the variance in cell string length.

• Crestan11 (Crestan and Pantel 2011) considered local
features for the first two rows and columns as well as the
last row and column instead of only considering global
features for the table as a whole. They used 107 structural,
HTML, and lexical features per tables.

• Eberius15 (Eberius et al. 2015) extended Crestan11 by
adding global and local features. They used 127 features
per tables, and these features were used for building the
Dresden Web Table Corpus.

Neural networks To the best of our knowledge, deep neu-
ral networks have not yet been used for classifying tables.
We used a state-of-the-art document classification method
that is suitable for classifying tables.

• Hierarchical Attention Network (HAN) (Yang et al.
2016) is a two-layered RNN with an attention mechanism
for classifying documents that have a hierarchical struc-
ture (words form sentences, sentences form a document).
Tables have a hierarchical structure as well (tokens from
cells, cells from a row, rows from a table); therefore, we
constructed a three-layered HAN for encoding tables. We
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used the same RNN blocks that our architecture used as
the RNN encoder blocks of HAN.

• Bidirectional HAN uses another hierarchical structure in
which cells form a column and columns form a table.
The bidirectional HAN concatenates the outputs of rows-
directional and columns-directional HANs, and this con-
catenated vector is fed into the classification layers.

Model Configuration

Pre-training We conducted pre-training for token embed-
ding. For word tokens, we obtained a pre-training word em-
bedding matrix using Word2Vec with the skip-gram model
and negative sampling (Mikolov et al. 2013a; 2013b). We
used full texts in Wikipedia article pages for pre-training,
where the tables in the pages were not included in the
test dataset. We only retained words appearing in the pre-
training and replaced the other words with a special UNK
token. For other tokens (HTML tags and row and column
indexes), we randomly initialized the columns of the em-
bedding matrix corresponding to the tokens. We set the size
of the token embedding, E, to 100.

Training We preliminary confirmed that the top-left part
of tables contains sufficient information to classify them; all
tables consisted of 8 rows and 8 columns cropped from the
top-left corner or padded with empty cells in the bottom-
right part. Also, each cell had 50 tokens cropped from the
beginning of sequences or padded with special PAD tokens
at the end of the sequences, where the PAD tokens were ig-
nored in the RNN encoding. This limitation can avoid the
slow processing of the RNN for very long texts in a cell.

We used Chainer (Tokui et al. 2015), a framework of
neural networks, for implementing our architecture. We ini-
tialized the weights for the CNN as in (He et al. 2015).
For the LSTM, we initialized the forget bias with ones as
in (Józefowicz, Zaremba, and Sutskever 2015), the hidden-
to-hidden weights with orthogonal initialization (Saxe, Mc-
Clelland, and Ganguli 2013), and input-to-hidden weights
with Xavier initialization sampled from a uniform distribu-
tion (Glorot and Bengio 2010). We used SGD with a mo-
mentum of 0.9 and a minibatch size of 50. The number of
epochs (one pass of all training tables) was five, and the
learning rates were 0.1, 0.1, 0.1, 0.01, and 0.001 for each
epoch. The hyperparameters of the models were tuned on a
validation set generated by selecting 60 websites in the train-
ing dataset: H = 100, C = 100, and F = 32. The number
of convolutional blocks with residual units was three, and
the number of fully connected layers was two (100 and 6
neurons). The total number of weighted layers was 12.

Results

Does our architecture work better than conventional
methods and other deep architectures? Table 2 shows
that weighted macro-averaged F1 scores for the test dataset
when each method was trained with the full training dataset.
Our architecture, TabNet, achieved the best F1 value by a
single model, 88.42%, averaged over five trials with dif-
ferent initializations. TabNet statistically significantly per-
formed better than Eberius15, a state-of-the-art method spe-

Table 2: Weighted macro-averaged F1 for the test dataset.
The results of NNs indicate mean ± SE over five trials.

method weighted macro F1

Cafarella08 0.6926
Crestan11 0.8114
Eberius15 0.8165
HAN 0.8409 ± 0.0056
Bidirectional HAN 0.8562 ± 0.0045
TabNet 0.8842 ± 0.0070
Ensemble of 5 HANs 0.8471
Ensemble of 5 Bidirectional HANs 0.8652
Ensemble of 5 TabNets 0.9105
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Figure 5: Effect of the number of training websites. The er-
ror bars of TabNet and Bidirectional HAN indicate standard
errors over five trials.

cialized for table classification, and Bidirectional HAN, an-
other deep neural network architecture (t-test; p < .05).

Table 2 also shows that an ensemble (majority voting,
where ties were broken randomly) of five TabNets, trained
with different weight initializations, outperformed a single-
model of TabNet, by up to 2.63%.

Do deep neural networks work well on a large number
of tables? We compared predictive accuracies while vary-
ing the number of training websites: 1, 100, 200, and 300
(29,050, 48,909, 57,665, and 60,678 tables, respectively).
Figure 5 shows that TabNet and Bidirectional HAN per-
formed well for larger numbers of training data. These re-
sults indicate that learning many tables covering various
structures and topics helps deep neural networks to under-
stand the semantic structures of tables.

Are the errors of our architecture reasonable? Fig-
ure 6 shows the confusion matrices of TabNet and Eberius15
across all six table types. Eberius15 overlooked most of the
M and HR tables and had unacceptable levels of confusion in
regard to the semantic definitions, e.g., VR vs. HE. On the
other hand, the level of confusion of TabNet, e.g., VR vs.
VE, was relatively reasonable. This analysis suggests that
TabNet captures high-quality semantic features from tables.

Can our architecture capture the semantic features of ta-
bles? Figure 7 shows the averaged activations of parts of
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Figure 7: Visualization of activations of parts of filters in the
first (Left) and last (Right) convolutional layer. Activations
were grouped by table type and averaged over the test tables.
The six vertical boxes correspond to the same filter.

filters in the first and last convolutional layers for each ta-
ble type. Interestingly, relational and entity tables had line-
type activations in the last convolutional layer, which cap-
ture rows and columns describing properties, while such ac-
tivations hardly occurred in the maps of matrix tables that
do not explicitly contain property cells.

In addition, we see that the activations for matrix tables
were broadly distributed in the maps. This captures the sib-
ling relations between object cells that belong to the same
property. It is difficult to directly capture a semantic block
(not a sequence) of cells with the hierarchical RNNs of
HANs; the CNN of TabNet is effective for capturing vari-
ous building blocks that have different shapes and sizes.

Discussion

Contribution of this study to research on tables Table
type classification is a fundamental technology for exploit-
ing the potential of table knowledge. For example, Google’s
Knowledge Vault uses vertical relational tables as an infor-
mation source for constructing a knowledge base (Dong et
al. 2014). A Microsoft team constructed a fact lookup en-
gine based on horizontal entity tables (Yin, Tan, and Liu
2011). Concept-instance pairs were extracted by (Dalvi, Co-
hen, and Callan 2012) from vertical relational tables. The
concept expansion method proposed by (Wang et al. 2015)
found many entities from few entity seeds and vertical rela-
tional tables. (He et al. 2016b) extracted attribute synonyms
using query logs and vertical relational tables. Our study
contributes to all of these studies through the development
of a high-quality table corpus that they need.

Moreover, our study is independent of existing knowl-
edge bases, unlike the conventional studies for annotating

tables (Limaye, Sarawagi, and Chakrabarti 2010; Venetis et
al. 2011) or entity linking (Mulwad, Finin, and Joshi 2013;
Bhagavatula, Noraset, and Downey 2015). This is a good
characteristic for collecting detailed information that is not
included in the knowledge bases from Web tables.

Originality of our hybrid deep architecture Architec-
tures combined with RNNs and CNNs have been extensively
studied. Most representative studies are on image caption
generation (Xu et al. 2015), and they have been used in
other important tasks: image segmentation (Chen et al. 2015;
Visin et al. 2015), speech recognition (Sainath et al. 2015),
and document classification (Xiao and Cho 2016; Tang, Qin,
and Liu 2015). These architectures first use a CNN and then
an RNN, unlike our architecture. Our architecture is a novel
one that first uses an RNN to encode the semantics of cells
and then uses a CNN to learn relations among cell semantics.
Experimental results showed that it captures the structure of
tables, i.e., a matrix of token sequences.

Potential applications Although TabNet was designed to
mirror the structure of tables, it can be applied to any ma-
trix, including list (N×1 matrix), of sequences. Moreover,
although we have not yet confirmed that it has high lev-
els of accuracy on other datasets, we think that classifica-
tion of structured documents will be a promising application.
For example, in calculating the coherence of dialogue (Hi-
gashinaka et al. 2016), we can form a matrix of utterances:
each cell cij of the matrix contains an utterance (a sequence
of words) of speaker j at conversation turn i. Hierarchical
RNNs (Yang et al. 2016) or very deep CNNs (Conneau et al.
2016) would be competitive baselines.

Conclusions
We proposed a new deep neural network architecture, Tab-
Net, for table type classification, where six table types are
defined on the basis of semantic triples of the form (subject,
property, object) that the tables contain. Our architecture re-
flects the structure of tables: each cell has a sequence of to-
kens, and a table is a matrix of cells. It consists of an RNN
that encodes token sequences and a CNN that extracts se-
mantic features, e.g., the existence of rows describing prop-
erties, to classify table types.

We constructed a table corpus that contained 64,245 Web
tables covering various structures and topics by using a sub-
set of public Common Crawl data. Experimental results
showed that an ensemble of five TabNets with different
weight initializations achieved the best result, 91.05% in
terms of a weighted macro-averaged F1 score, for 3,567 un-
seen tables. This result is an improvement over those of the
state-of-the-art method specialized for table classification
(Eberius et al. 2015) and another deep architecture (Yang
et al. 2016) up to 9.40% and 5.43%, respectively. We con-
firmed that the error confusions of TabNet were reasonable
and that the semantic features for table type classification
were in the output of the CNN.

In the future, we plan to improve the knowledge-base con-
struction and knowledge search using the high-quality table
corpus that TabNet classified. We will also demonstrate our
architecture’s potential by applying it to other datasets.
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