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Abstract

Geospatial data is at the core of the Semantic Web, of which
the largest knowledge base contains more than 30 billions
facts. Reasoning on these large amounts of geospatial data re-
quires efficient methods for the computation of links between
the resources contained in these knowledge bases. In this pa-
per, we present Rapon — efficient solution for the discovery of
topological relations between geospatial resources according
to the DE9-IM standard. Our evaluation shows that we out-
perform the state of the art significantly and by several orders
of magnitude.

1 Introduction

Geo-spatial datasets belong to the largest sources of Linked
Data. For example, LinkedGeoData' contains more than 20
billion triples which describe millions of geo-spatial enti-
ties. Datasets such as NUTS? use polygons of up to 1500
points to describe resources such as countries. As pointed
out in previous works (Ngonga Ngomo 2013), only 7.1%
of the links between resources connect geo-spatial entities.
This is due to two main factors. First, the large number
of geo-spatial resources available on the Linked Data Web
requires scalable algorithms for computing links between
geo-spatial resources. In addition, the description of geo-
spatial resources being commonly based on polygons de-
mands the computation of particular relations, i.e., topolog-
ical relations, between geo-spatial resources. According to
the Linked Data principles® and for the sake of real-time
application such as structured machine learning (e.g., DL-
Learner (Lehmann 2009)) and question Answering (e.g.,
DEQA platform (Lehmann et al. 2012)), the provision of
explicit topological relations between resources is of central
importance to achieve scalability. However, only a few ap-
proaches have been developed to deal with geo-spatial data
represented in RDF. For example, (Ngonga Ngomo 2013)
uses the Hausdorff distance to compute a topological dis-
tance between geo-spatial entities. (Smeros and Koubarakis
2016) builds upon MultiBlock to compute topological rela-
tions according to the DE-9IM standard.

Copyright © 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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We go beyond the state of the art by providing a novel in-
dexing method combined with space tiling that allows for the
efficient computation of topological relations between geo-
spatial resources. In particular, we present a novel sparse
index for geo-spatial resources. We then develop a strategy
to discard unnecessary computations for DE-9IM relations
based on bounding boxes. Our extensive experiments show
that our approach scales well and outperforms the state of
the art by up to 3 orders of magnitude w.r.t. to its runtime.
The contributions of this paper can be summarized as fol-
lows: (1) We present a novel indexing algorithm for geo-
spatial resources based on an optimized sparse space tiling.
(2) We provide a novel filtering approach for the rapid dis-
covery of topological relations (Rapon), which uses mini-
mum bounding box (MBB) approximation. (3) We show that
Rapon is able to discover any of the DE-9IM relations that
involve intersection of at least one point. (4) We evaluate
Rapon on real datasets and show that it clearly outperforms
the state of the art.

2 Preliminaries

Let K be a finite RDF knowledge base. K can be regarded
as a set of triples (s,p,0) € (RUB)XP X (RU LU B),
where R is the set of all resources, B is the set of all blank
nodes, P the set of all predicates and £ the set of all liter-
als. Given a set of source resources S and target resources 7'
from two (not necessarily distinct) knowledge bases K; and
K, as well as a relation R, the goal of Link Discovery (LD)
is to find the set of mapping M = {(s,t) € S X T : R(s,1)}.
Naive computation of M requires quadratic time complex-
ity to compare every s € S with every t € T, which is
clearly impracticable for large datasets such as geo-spatial
datasets, which are the focus of this work. Here, we present
an algorithm for efficient computations of topological rela-
tions between resources with geo-spatial descriptions (i.e.,
described by means of vector geometry).* We assume that
each of the resources in S and T considered in the subse-
quent portion of this paper as being described by a geome-
try, where each geometry is modelled as sequence of points.
An example of such resources is shown in Figure 1(a).

The Dimensionally Extended nine-Intersection Model

“Most commonly encoded in the WKT format, see http://www.
opengeospatial.org/standards/sfa.
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Figure 1: City of Leipzig from NUTS (in gray) together with
topologically related geometries from CLC (in green and
blue). See Section 4 for description of NUTS and CLC.

(DE-9IM) (Clementini, Sharma, and Egenhofer 1994) is
a standard used to describe the topological relations be-
tween two geometries in two-dimensional space. The spa-
tial relations expressed by the model are topological and
are invariant to rotation, translation and scaling transforma-
tions (Egenhofer and Franzosa 1991). The basic idea behind
DE-9IM is to construct the 3 X 3 intersection matrix:
dim(I(g1) N 1(g2)) dim(I(g1) N B(g2)) dim(I(g1) N E(g2))
DE9IM(a,b) |dim(B(g1) N 1(g2)) dim(B(g1) N B(g2)) dim(B(g1) N E(g2))| (1)
dim(E(g1) N 1(g2)) dim(E(g1) N B(g2)) dim(E(g1) N E(g2))

where dim is the maximum number of dimensions of the
intersection N of the interior (1), boundary (B), or exterior
(E) of the two geometries g; and g,. The domain of dim is
{-1,0, 1,2}, where —1 indicates no intersection, O stands for
an intersection which results into a set of one or more points,
1 indicates an intersection made up of lines and 2 standard
for an intersection which results in an area. A simplified bi-
nary version of dim(x) with the binary domain {true, false}
is obtained using the boolean function B(dim(I(g)) = false
iff dim(1(g)) = —1 and true otherwise.

The major insight behind RapoN is that one condition
must hold for any of the entries of the DE-9IM matrix to be
true: There must be at least one point in space that is com-
mon to the perimeters of the polygons. Note that the only
spatial relation for which all entries are O is the disjoint
relation, which RApon can easily compute by computing the
inverse of the intersects relation. Hence, by accelerating
the computation of whether two geometries share at least
one point, we can accelerate the computation of any of the
DE-9IM entries. Therewith, we can also accelerate the com-
putation of any topological relation, as they can all be de-
rived from the DE-9IM entries. We implement this insight
by using an improved indexing approach based on minimum
bounding boxes and space tiling.

The minimum bounding box (MBB) of a geometry g in n
dimensions (O’Rourke 1985) (also called its envelope) is the
rectangular box with the smallest measure (area, volume, or
hypervolume in higher dimensions) within which all points
of g lie. Let «;(p) denote the i dimension coordinate of a
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point p. To obtain the MBB of a geometry g, we have to find
the lowest point coordinate cl.l = min e, {k;(p)} and the high-
est point coordinate ¢/ = maxe,{«;(p)} in each dimension
i €{0,...,n}. Then, the 2" vertices of the MBB in n dimen-
sions are all the vectors (cg), c(]'), ey cﬁ,')), where () € {L, T}.
Figure 1(b) shows an example of using the MBB to abstract
the running example in Figure 1(a).

Space tiling is an indexing technique for spatial data in-
spired by tessellation and previously used by LD optimiza-
tion approaches such as Orcuip (Ngonga Ngomo 2013) and
HR® (Ngonga Ngomo 2012). The main idea behind space
tiling is to divide n-dimensional affine spaces into arbitrarily
many hypercubes with the same edge length £. These hyper-
cubes are indexed with vectors i € N" to serve as addressable
buckets for geometries. In turn, the obtained index structures
can be exploited by various optimization techniques. We call
A = ¢! the granularity factor. This notion of space tiling
can be generalized to hyperrectangles, in which case there
exist n independent granularity factors A; where i € {0...n}.
Note that although we eventually use hyperrectangles, we
will stick to the term hypercube for the sake of simplicity
and just define independent granularity factors when neces-
sary. Figure 1(c) shows our running example along with a
grid of hypercubes using A = 2, where the green area will
be indexed to each highlighted hypercube.

3 Approach

We have now introduced all ingredients necessary for defin-
ing the Rapon algorithm (Algorithm 1). Rapon takes a set of
source resources S, a set of target resources 7' and a topo-
logical relation r as input. The goal of Rapon is to generate
the mapping M = {(s,t) € S X T : r(s, 1)} efficiently, where
r is a topological relation. Rapon addresses this challenge
by means of three optimization steps: Swapping for index
size minimization, space tiling for indexing and filtering to
improve the runtime of the computation of topological rela-
tions. In the following, we detail each of these steps.

3.1 Swapping Strategy

We introduce the Estimated Total Hypervolume (ETH) of a
set of geometries X as

1

d
emC0) = X1 [ [ 5 2, (rgg;{m(p)} - rggg{xi<p>}), @)
i=1 xeX

with d being the number of dimensions of the resource ge-
ometries and ;(p) denoting the coordinate of a point p in the
i" dimension. If eTH(T") < ETH(S ), RADON swaps S and T and
computes the reverse® relation # instead of r (Lines 2-3).
For example, if r were the topological relation covered and
ETH(S) < ETH(T'), then Rapon swaps T and S and compute
the reverse relation of r, i.e., coveredBy. The rationale be-
hind using ETH instead of the size of the datasets is that even
small datasets can contain very large geometries that span
over a large number of hypercubes and would lead to large

SFormally, the reverse relation " of a relation r is defined as
'y, x) & r(x,y).



spatial index when used as source. For the sake of illustra-
tion, consider the running example in Figure 1(a). Here, we
can see that the erH of NUTS (containing only the gray ge-
ometry) is greater than the et of CLC (containing the green
and blue areas). Thus, we set S = CLC and T = NUTS.

3.2 Optimized Sparse Space Tiling

In its second step, Rapon utilizes space tiling to insert all
geometries s € S and r € T into an index I, which maps
resources to sets of hypercubes. Let A, and A, be the gran-
ularities across the latitude and longitude (several strate-
gies can be used to compute these values. We present and
evaluate them in Section 4). For indexing a resource x, we
begin by computing its MMB’s upper left and lower right
corners coordinates (¢;(x), 41(x)) and (p,(x), A2(x)) respec-
tively (Line 8). Then, we map each x to all hypercubes over
which its MBB spans (Lines 9-11). To this end, we trans-
form the MBB’s corner coordinates into hypercube indices
using ¥, and Y+ from Equation 3.

Y (x) = Lx - Ayl Y0 =[x A, 3)
We then map x to all hypercubes with indices (i, j) where
i,j € Z, Y (p1(x) < i <Y (pa(x)) and Y (A (x) < j <
¥ (A(x)). Note that the special case of geometries passing
over the antimeridian is detected and dealt with by split-
ting such geometries into 2 geometries before and after the
antimeridian. The index I now contains the portions of the
space (i.e., the hypercubes) within which portions of x can
potentially be found. It is important to notice that entities
in portions of space that do not belong to the hypercubes
which contain elements of S (denoted /(S)) will always be
disjoint with the elements of 7. We leverage this insight as
follows: We first index all s € S. Then we follow the same
procedure for € T (Lines 14-21) but only index geome-
tries ¢ that are potentially in hypercubes already contained
in I(S). This optimized sparse space tiling is the motivation
for the previously introduced swapping strategy. Indexing
the dataset with the least ETH first results in an index / with
less hypercubes.

Consider again our running example in Figure 1(c)
for the sake of illustration. Assume the granularity
factors are A, = A; = 2. The green area’s MBB
has the following corner coordinates: (¢1(g), 41(g))
= (12.340703846780286, 51.28797110806819)
and  (¢2(9), L(g) = (12.389192648396918,
51.33902633403139). Therefore, y*(¢i(g)) = 24,
() = 102, YT (p2(g)) = 25, yT(d(g) = 103
and thus this geometry will be indexed into the four high-
lighted hypercubes with index vectors (24, 102), (24, 103),
(25,102) and (25,103). In Figure 1(d), we highlighted
all hypercubes containing the gray geometry after the
optimized sparse space tiling. Notice that many hypercubes
are empty as a result of not containing any portion of the
other dataset’s geometries.

3.3 Link Generation

After the computation of the index I, RapoN implements
the last speedup strategy using a MBB-based filtering tech-
nique. For each hypercube with indexed geometries from
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both § and 7 (Line 24), Rapon first discards unnecessary
computations using the TEsTMBB procedure. TEsTMBB op-
timizes the subset of DE-9IM relations for relations where
one geometry has interior or boundary points in the exte-
rior of the other geometry, i.e. s C tor ¢t C s (e.g. equals,
covers, within formally defined in the annex (Sherif et
al. 2016)). Let O(g) denote the MBB geometry of a geom-
etry g. Note that g C O(g) always holds. We can now in-
fer —r(O(s), 0(f)) = -r(s, t) using the transitivity of C. For
all other relations, TESTMBB simply returns true. For ex-
ample, in our running example in Figure 1(b), if r is the
within topological relation, we do not need to compute r
for the blue geometry, as its MBB is not completely within
the gray geometry’s MBB. In case the TEstTMBB method
returns true, RADON carries out the more expensive compu-
tation of the topological relation between the geometries s
and ¢ (Line 31). If r(s, ) holds, Rapon adds the pair (s, f) to
the result mapping M. To make sure that we compute each
pair (s,¢) € S X T at most once, we cache the computed pairs
(s, 1) in the mapping C (Lines 27-29).

Proposition 1. RapoN is complete and correct w.r.t. the ap-
plication of space tiling.®

4 Evaluation

Topological relations Only a subset of the topological
relations obtainable through DE-9IM reflects the seman-
tics of the English language (Clementini, Di Felice, and
van Oosterom 1993; Clementini, Sharma, and Egenhofer
1994) including equals, within, contains, disjoint,
touches, meets, covers, coveredBy, intersects,
inside, crosses and overlaps. Note that some of these
relations are synonyms (e.g., touches(x,y) © meets(x,y))
while others are combinations of more atomic relations,(e.g.,
equals(x,y) & within(x,y) A contains(x,y)). Moreover,
some relations are the reverse of some other relation. Hence,
in this evaluation, we focused on the rapid computation of
those 7 relations.” In our running example in Figure 1(a),
if we dub the blue, green and gray areas in a;, a, and as re-
spectively. Then, distinct(a;, ay), within(a,, a3) and in-
tersects(ay, az) hold.

Hardware and Software All experiments were carried
out on a 64-core 2.3 GHz PC running OpenJDK 64-Bit
Server 1.7.0 75 on Ubuntu 14.04.2 LTS. Each experiment
was assigned 20 GB RAM and a timeout limit of 2 hour. Ex-
periments which ran longer than this upper limit were ter-
minated and the processed data percentage as well as the
estimated time are reported. We evaluate Rapon against two
state-of-the-art approaches; (1) Sik as it is (to the best of
our knowledge) the only LD framework that supports the
discovery of topological relation, (2) STRABON as it imple-
ments the standard GeoSPARQL (OGC 2010) and is based
on PostGIS. For Stk experiments, we ran our experiments
using its latest version (v2.6.1) with a blocking factor of 10
as in (Smeros and Koubarakis 2016). For STRABON, we also
used the latest version (v3.2.10) with the accordingly tuned

Proof is given in the annex (Sherif et al. 2016).
7See the annex (Sherif et al. 2016) for the formal definitions.



Algorithm 1: Rapon

input : S, set of source resources. 7T, set of target
resources. r, topological relation.
output: M, Mapping {(s,7) € S X T : r(s, 1)}
1 reversed « false;
2 if ETH(T) < ETH(S ) then
3 swapP(S, T);
4 rer;
5 reversed « true;

/* Get index I using optimized sparse
space tiling */
6 (Ay, Ay) <« FINDBESTGRANULARITY(S, T');
7 foreach geometry s € S do
8 | (@105, 21(9), 9a(9), Aa(s))
GETMBBDI1AGONALCORNERS(S);
9 fori < |@(s)- Ayl to[pa(s) - AT do

10 for j « [A1(s) - Ayl to [A2(s) - A ] do
11 InserTINTOHYPERCUBE(/(S), 1, J, 5);
12 jej+ 1

13 i—i+1;

14 f(;reach geometryt € T do

15 (p1(), 21(), 2(1), 2(1))
GETMBBDI1AGONALCORNERS(?);

16 fori « [@(1) - Ayl to [@a(1) - AyT do

17 for j « [A1(t) - A ] to [A2(2) - AT do

18 if GETHYPERCUBE(I(S)), i, j) is not empty
then

19 L InserTINTOHYPERCUBE(I(T), I, j, 1)}

20 je—j+1;

21 L i—i+1;

/* Generate Links

22 foreach hypercube Hg € I(S) do

23 Hr «— GetHyPeErRcUBE(I(T), ¢(Hys), A(Hy));
24 if Hy is not empty then

25 for s € Hg do

26 for t € Hr do

27 if (s,7) ¢ C then

28 C—CuUl{(sn};

29 B — (¢1(5), 21(5), p2(), A2(5)),
(01(1), 41(0), @2(0), L (D)) ;

30 if TestMBB(r, B) then

31 if r(s, 1) is true then

32 L L M — MU{(s, D}

33 if reversed then return M’ ;
34 else return M ;

PostgreSQL (v9.1.13) and PostGIS (v2.0) as proposed by the
developers. A more complete list of results can be obtained
from the project website®. Note that Rapon achieves a preci-
sion, arecall and an F-measure of 1 by virtue of its complete-

8http://aksw.org/Projects/LIMES

178

ness and correctness. S1Lk and STrAaBON theoretically achieve
the same F-measure (we were not always able to check this
value for the two systems as the experiments did not always
terminate before the timeout).

Datasets We evaluated our approach using two real-world
datasets. (1) NUTS® is manually curated by the Eurostat
group of the European Commission. NUTS contains a de-
tailed hierarchical description of statistical regions for the
whole European regions. (2) CORINE Land Cover or sim-
ply CLC is an activity of the European Environment Agency
that collects data regarding the land cover of European coun-
tries. CLC contains 44 sub-datasets range in size from 240
to 248, 242 resources.'” For testing the scalability of Rapon,
we merged all subsets of CLC into one big dataset of size
2,209, 538 (dubbed CLC,,). We preprocessed the datasets in
the following fashion: To enable the processing of the NUTS
dataset by Rapon, Stk and STRABON, the ngeo:posList se-
rialisation was converted into the WKT format prior to ex-
periments. Moreover, because of a SiLk issue!', we had to
trim lines larger than 64 KB from all datasets in order to get
a fair comparison. All the reported dataset sizes are after
preprocessing.

Granularity Factor Selection Heuristic The aim of this
experiment was to evaluate different heuristics to approx-
imate the optimal granularity factors A, and A, used for
tiling the space and generating the sparse index of hyper-
cubes. We tried 4 different heuristics corresponding to a sta-
tistical measure: minimum, maximum, median and average.
Each heuristic first computes the respective statistical mea-
sure 17 independently for both datasets and both dimensions,
resulting in 4 temporary values hy,,(S), hyo(T), hya(S),
hyA(T). Finally, the granularity factor in each dimension is
the average of the two datasets. Formally,

ho(X) = 7 {max{sO(p)}—min{w(p)}} €]
xeX PEX PEX

&)

hya(X) and A, 3(S,T) are defined similarly. S, 7T are the
input source and target datasets, ¢(p) the latitude of a point
p, A(p) the longitude of p and n € {min, max, avg, median}.
We used all the 44 subsets of the CLC dataset as input for
this experiment and recorded how many times each heuris-
tic achieved the best runtime for the intersects relation.
Additionally, when a heuristic was not the best in a run, we
computed the percentage it was worse than the best one. The
average heuristic achieves the best result 24 times out of 44
experiments. Runner-up is median, achieving the best run-
time 17 times. Finally, the min and max heuristics achieved
only 2 and 1 time(s) respectively. Interestingly, average and
median were only 4% slower than the best measure on aver-
age when not being the best, while min and max where 34%

1
Apo(S,T) = E(h,W(S) + hyo(T))

Version 0.91 (http://nuts.geovocab.org/data/0.91/) is used in
this work.

%For more details about CLC see https://datahub.io/dataset/
corine-land-cover

https://github.com/silk-framework/silk/issues/57
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Figure 2: Speedup of Rapon over Suk for the within re-
lation. The x-axis represents the dataset sizes, y-axis repre-
sents the speedup. The blue line is the linear regression line.

and 61% worse on average respectively. Based on these re-
sults, we used the average heuristic as the granularity selec-
tion policy in the rest of the experiments.

The basic idea behind the first three sets of of experiments
is to quantify the speedup gained by Rapon over other LD
frameworks. To the best of our knowledge, only the Stk LD
framework recently (Smeros and Koubarakis 2016) imple-
mented a multi-dimensional blocking approach to compute
the topological relations. Therefore, we compare RaDON’s
and S1LK’s runtimes in the subsequent experiments

In the first set of experiments, we aimed to quantify the
speedup of Rapon over the other state-of-the-art approaches
when applied to small datasets. To this end, we ran 44 ex-
periments for each of the 7 basic topological relations iden-
tified in the previous section. In each experiment, we com-
pared one of the 44 subsets of the CLC with the full NUTS.
Altogether, we carried out 308 experiments. Note that both
RapoN and Sik were ran on 1 core. RApoN achieves an
average speedup of 221.52, 213.76, 4.94, 4.82, 4.77, 4.76
and 4.75 times faster than Sik for the relations within,
equals, covers, overlaps, intersects, crosses and
touches respectively. Overall, Rapon was able to outper-
form SiLk by being 65.62 times faster on average over all
topological relations. Moreover, RApoN was able to achieve
a linear speedup relative to the dataset sizes. In Figure 2,
we show an overview of a subset of the experimental results
(including a linear fit) achieved on the relations on which
Rapon achieved the best (up to two orders of 450 times
faster) and the poorest (up to 6.5 times faster) relative per-
formance w.r.t. Sik. Figures for other relations are given in
the annex (Sherif et al. 2016). Moreover, Rapon ran signif-
icantly less complete computations of the relations at hand.
For example in Figure 3(a), Rabon carries out only 3 and 4
computations for the "equals" and "within" relations respec-
tively. On average, 449 times less computations per relation.

In the second set of experiments we aimed to evaluate the
scalability of Rapon when applied to big datasets. Thus, we
used the merged dataset CLC,, as both source and target
dataset and ran Rapon and Stk on 1 core. For more com-
plete results, see Table 1 in the annex (Sherif et al. 2016).
RapoN is able to finish all the tasks within 67.44 minutes on

(O N N
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SELECT ?s ?t WHERE {
GRAPH <http://nuts.eu/> {?s geo:asWKT ?s_geometry.}
GRAPH <http://clc.eu/#243> {?t geo:asWKT ?t_geometry.}
FILTER( strdf:intersects(?s_geometry,
}

?t_geometry) )

Listing 1: SPARQL query for retrieving the intersects
topological relation between resources from NUTS and CLC
from STRABON.

average (maximum = 95.10 minutes for the crosses rela-
tion). SiLk was only able to (on average) finalize 0.34% of
each task within the 2 hour timeout limit. We extrapolated
the runtime of Sk linearly to get an approximation of how
long it would need to carry out the tasks at hand. On aver-
age, Si.k would need 24.85 days to complete each task (lin-
ear extrapolation). Consequently, Rapon is at least 715.16
times faster than SiLk on average. These results emphasize
the ability of Rapon to deal with large datasets even when
ran on 1 core.

In the third set of experiments, we wanted to quantify
the speedup gained by using a parallel implementation of
Algorithm 1 over the parallel implementation of Sik. For
load balancing in Rapon, we used the simple round robin
load balancing policy (Shreedhar and Varghese 1996) with
chunks size of 1000. As data, we used CLC,, as both source
and target. The parallel implementations were configured to
run using 2, 4 and 8 threads. The results (For detailed result
see Table 1 in the annex (Sherif et al. 2016).) show that our
parallel implementation for RApoN was able to discover all
the topological relations in 20.83 minutes on average (max-
imum of 49.03 minutes in the case of the intersect rela-
tion). On the other side, SiLk implementation was only able
to (on average) finalize 1.16% of each task within the 2 hours
timeout limit. We extrapolated the performance of Smk’s
parallel implementation and computed that it will need an
average of 4.36 days to finalize each task with 8 threads.
Overall, our parallel implementation of Rapon was up to
1725.77 times (834.69 times on average) faster than SiLk,
which clearly show the scalability of Rapon’s parallel im-
plementation.

In our fourth set of experiments, we aimed to compare
RapoN against STRABON on small datasets. The semantic
spatio-temporal RDF store STraBoN is not a LD framework
but since it supports the GeoSPARQL and stSPARQL query
languages, it can be employed for discovering topological
relations via corresponding queries. To compare with STRA-
BON, we used the same setting we used in the first set of
experiments. Figure 3(b) shows the average runtimes result
of both Rapon and STraBON in seconds. In average, Rabon
was 11.99 times faster than StraBon. Interestingly, STRABON
performed better than Rapon on the intersects relation.
The reason behind this behaviour is that STRABoN uses an
R-tree-over-GiST spatial index over the stored geometries
in the underlying PostGIS database (Kyzirakos, Karpathio-
takis, and Koubarakis 2012). This data structure is highly
optimized for the retrieval of spatially connected objects.
Hence, STRABON requires solely a data retrieval to compute
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the intersects relation. However, this index is clearly out-
performed by our sparse index in all the other relations.

In our fifth and last set of experiments, we evaluated the
scalability of Rapon vs. STRABoN when tackling big datasets.
To this end, we applied the experimental setting we used in
the second set of experiments (S = T = CLC,,). STRABON
was not able to finish any of the experiments within the 2-
hour time limit while Rapon required approx. 95.10 minutes
in the worst case. Given that STRABON provides no feedback
pertaining to the progress of its tasks, we could not extrapo-
late its runtime. Thus, we attempted a smaller deduplication
experiment with only one subset of CLC, CLC-243, which
is about 10 times smaller than the merged CLC,, dataset.
Even these experiments did not finish within the 2-hour
limit. Therefore, we approximated STRABON’s runtime con-
servatively as follows: Assume that the CLC-243 deduplica-
tion experiments would have finished just one minute after
the 2-hour timeout. Assuming that STRABON’S runtime scales
linear with the input dataset size, the merged CLC,, exper-
iments would take roughly 20.17 hours. Having this overly
optimistic estimate of STRABON’s runtime, RApoN achieves
an average speedup of 24. When we move from the assump-
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tion that STRABON scales linearly to the more realistic assess-
ment that it scales in O(n?), then we get an average speedup
of 241. Overall, our results show clearly that Rapon outper-
forms the state of the art by up to 3 orders of magnitude.

5 Related Work

Based on the original works of Egenhofer et al. (Egenhofer
and Franzosa 1991), Clementini et al. (Clementini, Sharma,
and Egenhofer 1994) propose the The DE-9IM model to
capture the topological relations in the R2. In addition, the
Simple Features Model proposed by OGC'? contain dif-
ferent subsets of the topological relations that derive from
the DE-9IM. GeoSPARQL (OGC 2010) is a recent OGC
standard that proposes a query language that enable the
discovery of topological relations. GeoSPARQL is imple-
mented in the spatiotemporal RDF store StrRaBON (Kyzi-
rakos, Karpathiotakis, and Koubarakis 2012). Other frame-
works such as Virtuoso'? and newly BlazeGraph'* support
geo-spatial extensions of SPARQL. The discovery of topo-
logical relations has been paid little attention to in previ-
ous research related to Link Discovery (Auer et al. 2013).
Up to now, the state-of-the-art LD frameworks were able
to discover only spatial similarities (Salas and Harth 2011;
Sehgal, Getoor, and Viechnicki 2006; Vilches-Blazquez,
Saquicela, and Corcho 2012). For example, (Ngonga Ngomo
2013) uses the Hausdorff distance to compute the point-set
distance between geo-spatial entities. In recent work, (Geor-
gala, Sherif, and Ngonga Ngomo 2016) implements an effi-
cient approach for Allen Relations extraction.To the best of
our knowledge, the only LD framework that support discov-
ery of topological relations is SiLk (Smeros and Koubarakis
2016). Based on MultiBlocking technique, SiLk computes
the topological relations according to the DE-9IM standard
between geo-spatial resources. A review of the current state
of LD frameworks is in (Nentwig et al. 2015).

6 Conclusions and Future Work

We presented Rapon, an approach for rapid discovery of
topological relations among geo-spatial resources. RApoN
combines space tiling, minimum bounding box approxima-
tion and a sparse index to achieve a high scalability. We eval-
uated Rapon with real datasets of various sizes and showed
that in addition to being complete and correct, it also outper-
forms the state of the art by up to three orders of magnitude
(e.g., equals relation against SiLk). In future work, we aim
to apply more sophisticated load balancing approaches, such
as the particle-swarm-optimization based approaches (Sherif
and Ngomo 2015). In addition, we will consider the usage of
other topology approximation methods.
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