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Abstract

We consider the problem of subspace clustering using
the SSC (Sparse Subspace Clustering) approach, which
has several desirable theoretical properties and has been
shown to be effective in various computer vision appli-
cations. We develop a large scale distributed framework
for the computation of SSC via an alternating direc-
tion method of multiplier (ADMM) algorithm. The pro-
posed framework solves SSC in column blocks and only
involves parallel multivariate Lasso regression subprob-
lems and sample-wise operations. This appealing prop-
erty allows us to allocate multiple cores/machines for
the processing of individual column blocks. We evalu-
ate our algorithm on a shared-memory architecture. Ex-
perimental results on real-world datasets confirm that
the proposed block-wise ADMM framework is substan-
tially more efficient than its matrix counterpart used by
SSC, without sacrificing accuracy. Moreover, our ap-
proach is directly applicable to decentralized neighbor-
hood selection for Gaussian graphical models structure
estimation.

Introduction

In high-dimensional analysis, it is commonly assumed that
data lie in certain more interpretable low-dimensional struc-
tures instead of being randomly distributed across the am-
bient space. Subspace Clustering (SC) is such a tool that
assumes the intrinsic structure of data can be described by
subspace and aims to recover the underlying subspace struc-
tures from the observed high-dimensional ambient data. In
fact, when data are generated from multiple classes, it is rea-
sonable to assume that each class can be well represented
by a subspace. Given X as a collection of samples in a
d-dimension ambient space; these samples may be parti-
tioned as X =

⋃K
k=1 Xk with each Xk being a collection of

samples distributed around (unknown) subspace Sk ⊂ R
d.

The task of SC is to approximately group the points in X
into their respective subspaces. The SC model is gaining
increasing attention in computer vision and machine learn-
ing due to its desirable statistical properties and promis-
ing performance on real-world datasets (Candès et al. 2011;
Elhamifar and Vidal 2013; Feng et al. 2014).
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Figure 1: The framework of the proposed distributed sparse
subspace clustering algorithm. The overall dataset is decom-
posed and assigned to multiple cores or machines. Ci and
Ei is learned through the communication of master core or
machine with others. Finally C and E is derived by aggre-
gating {Ci}mi=1 and {Ei}mi=1.

Sparse subspace clustering

Let X = [x1, ...xn] ∈ R
d×n be the data matrix whose

columns are the samples in X . In real-world problems, due
to the presence of noise, it is usually assumed thatX is gen-
erated from the following superposition model:

X = Z + Y0 +E0 (1)

where Z = [z1, ...zn] is the clean data matrix with columns
sampled exactly from {Sk}Kk=1, Y0 is a dense random ma-
trix modeling noise and E0 is a matrix with certain sparsity
structures modeling sparse outliers. The state-of-the-art ro-
bust subspace clustering algorithms take advantage of the
so-called self-expressiveness property of linear subspaces,
i.e., each noiseless data point from one of the subspaces
can be reconstructed by a combination of the other noise-
less data points from the same subspace. Formally, the self-
expressiveness model is defined over the clean data as:

Z = ZC s.t. diag(C) = 0

where C ∈ R
n×n is the representation coefficient matrix

and diag(C) is the vector of the diagonal elements of C.

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

3539



Ideally, it is expected that the non-zero representation coef-
ficients for each sample zi are from those samples belonging
to the same subspace as zi, and thus the parameter matrixC
has a block diagonal structure with blocks corresponding to
clusters. The self-expressive property of the clean data can
be propagated to the noisy model in (1) as

X = XC + Y +E s.t. diag(C) = 0 (2)

where Y = Y0 − Y0C and E = E0 − E0C. Since C is
expected to be sparse, the perturbation matricesY andE are
expected to preserve the structures of Y0 and E0. The task
of Sparse Subspace Clustering (SSC) (Elhamifar and Vidal
2013) is then to find a solution (C,Y ,E) for (2) such that
C is sparse, Y is bounded andE has certain desired sparsity
structure, e.g., column-wise sparsity. To do so, the following
optimization problem is considered:

min
C,Y ,E

1

2
‖Y ‖2F + λ1‖C‖1 + λ2‖E‖p,1

s.t. X = XC + Y +E, diag(C) = 0

(3)

where ‖Y ‖F is the Frobenius norm which promotes hav-
ing small entries in Y , ‖C‖1 is the element-wise �1-norm
which promotes sparsity of the entries of C, and ‖E‖p,1 is
�p,1-norm (i.e.,sum of �p-norm of the columns) which pro-
motes structural sparsity of E. For instances, ‖E‖1,1 en-
courages element-wise sparsity while ‖E‖2,1 encourages
column-wise sparsity of E. The two regularization parame-
ters λ1 and λ2 balance the three terms in the objective func-
tion. After the optimal representation matrix C is obtained,
it can be used to construct an affinity matrix for graph based
clustering algorithms such as spectral clustering. Strong
statistical guarantees and promising empirical performance
have been established for SSC (Elhamifar and Vidal 2013;
Candès et al. 2011).

Motivation and contribution

Although being statistically efficient and empirically effec-
tive for robust subspace clustering, a bottleneck of SSC is
its computational complexity with respect to the sample size
n. This can be seen from the fact that SSC in (3) can be
decomposed into n independent Lasso-type regression sub-
problems, each of which is of feature size n− 1. This sepa-
rable structure has motivated the authors of (Elhamifar and
Vidal 2009; 2013) to solve the Lasso-type program column-
by-column using first-order methods such as alternating di-
rection method of multipliers (ADMM) (Boyd et al. 2011).
However, the existing SSC solvers do not scale well to large
scale problems as they are not designed to run on multiple
cores or distributed computing equipments.

In this paper we present DSSC-ADMM as an efficient
variant of ADMM algorithm for Decentralized computation
of SSC. The framework of the proposed method is illustrated
in Fig. 1. The scalability of our method relies on a key in-
novation that we solve (3) in column-blocks of the coeffi-
cient and noise matrices at a time, rather than one column
at a time. At a first glance, since (3) already decomposes
column-wise, solving multiple columns together in blocks
might not seem worthwhile. However, as we will show that

DSSC-ADMM working with column-blocks can be com-
pactly decentralized on multiple cores and make more ef-
ficient use of each core.

We experiment with shared-memory to illustrate the
above points. Empirically, DSSC-ADMM is shown to be
much faster than existing methods for SSC, and scales well
to large scale problems.

Related work

Subspace clustering. Existing subspace clustering methods
(Costeira and Kanade 1998; Bradley and Mangasarian 2000;
Ma et al. 2008; Tipping and Bishop 1999) can be roughly
divided into four categories: the iterative methods, the alge-
braic methods, the statistical methods and the spectral based
methods. The interested readers can refer to (Vidal 2010)
for a comprehensive survey. The SSC method (Elhamifar
and Vidal 2013) addressed in this paper belongs to the cate-
gory of spectral based methods which is built upon the self-
expressive model in (2). It is argued in (Liu et al. 2013) that
C should have a low-rank structure and impose a nuclear-
norm constraint onC in the objective function. In (Luo et al.
2011), sparsity and low rank constraints are combined as a
regularizer. Lu et al. proposed to estimateC via least square
regression (Lu et al. 2012). Feng et al. imposed a Laplacian
constraint on C to enforce diagonal structure (Feng et al.
2014).
Distributed learning and computing. The era of “Big
Data” proposes many new challenges on data scalability.
Our framework can be positioned as a part of the recent
surge of effort in scaling up machine learning algorithms
to big data. Parallel and distributed learning is a promis-
ing method to alleviate the pressure of increasing dataset
size. Extensive research has been conducted on this topic
including platform, communication scheme and algorithm
design. Various practical tools and have been developed to
facilitate using distributed learning, such as MLI (Sparks
et al. 2013) and parameter server (Li et al. 2013). Many
popular machine learning algorithms have been reinvesti-
gated to be applicable in distributed computing environment,
such as spectral clustering (Chen et al. 2011), K-means
clustering (Liang, Balcan, and Kanchanapally 2013), Gaus-
sian graphical models learning (Wang et al. 2013) and ma-
trix factorization (Zhang and Kwok 2014a). Scaling up ma-
chine learning algorithms through parallelization and distri-
bution has been heavily explored on various architectures,
including shared-memory architectures (Niu et al. 2011),
distributed memory architectures (Fu, Wang, and Banerjee
2013) and GPUs (Raina, Madhavan, and Ng 2009).

Due to the high flexibility of ADMM to solve various
problems, it has been extensively studied and applied (Boyd
et al. 2011; Suzuki 2013; Sedghi, Anandkumar, and Jon-
ckheere 2014; Mota et al. 2013; Wei and Ozdaglar 2012).
More recently, Distributed ADMM are being extended to
asynchronous conditions. In (Wei and Ozdaglar 2013), a
asynchronous ADMM algorithm is developed by partition-
ing the sub-threads into groups. At each iteration, one group
is randomly updated. (Zhang and Kwok 2014b), in which a
asynchronous distributed ADMM algorithm that solves con-
sensus constraint. However, owing to the different constraint
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form it can not be directly applied to our problem.

Decentralized SSC

Since the SSC model in (3) is sparable in columns, for the
purpose of parallel computing, it is a natural idea to de-
compose the model into a group of mutually interacted sub-
models by dividing the data samples into column blocks.

Column-block decomposition

We assume that the data matrix X = [X1,X2, ...,Xm]
are divided into m blocks in columns (samples) with Xj ∈
Rd×nj ,

∑m
j=1 nj = n. With this column-block partition,

the structural sparsity outliers can be expressed as E =
[E1,E2, ...,Em] and the self-expression coefficient matrix
C can be accordingly decomposed as

C =

⎛
⎜⎜⎜⎝

C11 C12 . . . C1m

C21 C22 . . . C2m

...
...

...
...

Cm1 Cm2

... Cmm

⎞
⎟⎟⎟⎠

where the block Cij ∈ R
ni×nj contains the mutual rep-

resentation coefficients between blocks Xi and Xj . Note
that Ep,1 is separable with respect to the column blocks,
i.e., ‖E‖p,1 =

∑m
i=1 ‖Ei‖p,1; the �1-norm regularization

term ‖C‖1 is separable with respect to the blocks Cij , i.e.,
‖C‖1 =

∑m
i=1

∑m
j=1 ‖Cij‖1. Therefore the SSC model

in (3) can be decomposed intom individual Lasso-type sub-
problems for the column blocks i = 1, ...,m:

min
{Cji},Ei

1

2
‖Xi −

m∑
j=1

XjCji −Ei‖2F + λ1

m∑
j=1

‖Cji‖1

+λ2‖Ei‖p,1 s.t. diag(Cii) = 0
(4)

If only a fraction of the data samples are grossly, then we
can use p = 2 to enforce column-wise sparsity of Ei. If
it is a prior that the all the data samples are contaminated
by element-wise sparse outliers, then we can use p = 1 to
encourage entry-wise sparsity of Ei.

DSSC-ADMM algorithm

We develop a variant of ADMM (Boyd et al. 2011) to
solve each individual subproblem (4). The reason to resort
to ADMM is because it can be naturally decentralized for
parallel optimization. Let XjCji = Aji. Then the subprob-
lem (4) can be equivalently formulated as

min
{Aji,Cji},Ei

1

2
‖Xi −

m∑
j=1

Aji −Ei‖2F + λ1

m∑
j=1

‖Cji‖1

+λ2‖Ei‖p,1 s.t. XjCji −Aji = 0, ∀j, diag(Cii) = 0

Equivalently, we introduce a squared loss penalty term for
each constraint XjCji −Aji = 0 regularized by ρ:

min
{Aji,Cji},Ei

1

2
‖Xi −

m∑
j=1

Aji −Ei‖2F + λ1

m∑
j=1

‖Cji‖1

+λ2‖Ei‖p,1 + ρ

2

m∑
j=1

‖XjCji −Aji‖2F

s.t. XjCji −Aji = 0, ∀j, diag(Cii) = 0
(5)

Then we introduce a matrix Δji as Lagrangian multiplier
for each individual equality constraint XjiCji − Aji = 0
and arrive at the following Lagrangian for (5):

min
{Aji,Cji},Ei

1

2
‖Xi −

m∑
j=1

Aji −Ei‖2F + λ1

m∑
j=1

‖Cji‖1

+λ2‖E‖p,1 + ρ

2

m∑
j=1

‖XjCji −Aji‖2F

+

m∑
j=1

Tr(Δ�
ji(XjCji −Aji)) s.t. diag(Cii) = 0

The scaled form of the above is

min
{Aji,Cji},Ei

1

2
‖Xi −

m∑
j=1

Aji −Ei‖2F + λ1

m∑
j=1

‖Cji‖1

+λ2‖Ei‖p,1 + ρ

2

m∑
j=1

‖XjCji −Aji +Uji‖2F

s.t. diag(Cii) = 0
(6)

where Uji = Δji/ρ is the scaled dual variable. This above
optimization problem is jointly convex in Cji, Aji and Ei,
and thus can be solved in a alternating minimization proce-
dure. The algorithmic procedure contains two levels of iter-
ations. The outer loop visits all the column-blocks while the
inner loop optimizes the parameters in the subproblem (6)
associate with the current block.

A high level description of DSSC-ADMM is summarized
in Algorithm 1. We denote the clock value as ti which is
initialized to be 0. Everytime the master thread finishes up-
dating Ai, Ei and Ui, the clock value ti is increased by 1.

The inner loop iteration continues until the following con-
vergence criterion is met or a desired number of iterations
are reached:

‖(Ai
(ti) −Ai

(ti−1))T ‖∞ < ε1, ‖(E(ti)
i −E

(ti−1)
i

)T ‖∞ < ε2
(7)

where ε1 and ε2 denote the residual error tolerance. We as-
semble the obtained blocksCji as the output coefficient ma-
trixC. The inner loop iteration will be described in details in
the subsections to come. The following quantities are needed
to simplify and decentralize our algorithm:

XCi
(ti)

=
1

m

m∑
j=1

XjC
(ti)
ji , Ai

(ti)
=

1

m

m∑
j=1

A
(ti)
ji
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Algorithm 1: The processing of ADMM-DSSC when
calculating Ci and Ei.
Input: X , {Xi}mi=1, λ1, λ2 and ρ

Initialize Set ti to be 0. Ai
(0)

, {C(0)
ji }mj=1, U

(0)
i and

E
(0)
i to be zero matrices.

repeat

(S1) C-Update: ∀j, update C(tji)
ji given Ai

(ti−1)
,

E
(ti−1)
i and U

(ti−1)
i fixed.

(S2) A-Update: Update Ai given {C(ti)
ji }mj=1,

{U (ti−1)
i } and and {E(ti−1)

i } fixed.

(S3) E-Update: Update E(ti)
i given A

(ti)

i ,
{C(ti)

ji }mj=1 and U
(ti−1)
i fixed.

(S4) U -Update: Update U (ti)
i given A

(ti)

i and
{C(ti)

ji }mj=1 fixed.
ti ← ti + 1

until halting condition holds;
Output: Weight coefficient matrix C.

C-Update In this step, we fix Ai
(ti−1)

, U
(ti−1)
i and

E
(ti−1)
i and update the blocks Cji.

• For j �= i, we update C(ti)
ji by optimizing

C
(ti)
ji = argmin

Cji

ρ

2
‖XjCji −B

(ti−1)
ji ‖2F + λ1‖Cji‖1

where
B

(ti−1)
ji = XjC

(ti−1)
ji −U

(ti−1)
ji

This is a standard multivariate Lasso regression problem
which can be efficiently solved via first-order solvers such
as proximal gradient method and ADMM.

• For j = i, we update C(ti)
ii as

C
(ti)
ii = argmin

Cii

ρ

2
‖XiCii −B

(ti−1)
ii ‖2F + λ1‖Cii‖1

s.t diag(Cii) = 0

This is a constrained multivariate Lasso regression prob-
lem which can be efficiently solved by applying a similar
variant of ADMM as used in (Elhamifar and Vidal 2013).

This C-update step is the most expensive one in our frame-
work as it needs to solve m Lasso sub-problems. Fortu-
nately, these sub-problems are independent to each other,
thus can be solved in parallel on m different cores. By dis-
tributing the computation task, each subproblem is computa-
tionally more stable and efficient than the large scale Lasso
estimator as used in the original SSC. Empirically we find
that solving the above subproblem by using warm start, i.e.,
at the ti-th iteration, initializing Cji to be C

(ti−1)
ji can sig-

nificantly boost the overall optimization efficiency.

A-Update In this step, we fix C
(tji)
ji and U

(tji−1)
ji , j =

1, ...,m and update A
(ti)

i as

Ai
(ti)

=
1

m+ ρ
(Xi −E

(ti−1)
i + ρXCi

(ti)
+ ρU

(ti−1)
i )

where

U
(ti−1)
i =

1

m

M∑
m=1

U
(ti−1)
ji

Given Ai
(ti), A(tji)

ji can be formulated as:

A
(ti)
ji = XiC

(ti)
ji +U

(ti−1)
ji +A

(ti)

i −XCi
(ti) −U

(ti−1)
i

(8)

E-Update In this step, we fix C
(ti)
ji , A

(ti)

i and U
(ti−1)
ji ,

j = 1, ...,m and update E(ti)
i by solving

E
(ti)
i = argmin

Ei

1

2
‖Xi −mAi

(ti) −Ei‖2F + λ2‖Ei‖p,1
Particularly, when p = 1, the entries of Ei can be updated
using the following soft-thresholding operation

E
(ti)
i (l, k) =

{
α(l, k)M

(ti)
i (l, k) if |M (ti)

i (l, k)| > λ2

0 otherwise

l = 1, ..., d, k = 1, 2, ..., ni

where α(l, k) =
|M(ti)

i (l,k)|−λ2

|M(ti)

i (l,k)| , E(ti)
i (l, k) is the value of

E
(ti)
i at entry (l, k) and M

(ti)
i = Xi − mAi

(ti). When
p = 2, E(t)

i has the following closed form (Liu et al. 2013):

E
(ti)
i (k) =

{
β(k)M

(ti)
i (k) if ‖M (ti)

i (k)‖2 > λ2

0 otherwise
k = 1, 2, ..., ni

where β(k) = ‖M(ti)

i (k)‖2−λ2

‖M(ti)(k)‖2
, E(ti)

i (k) is the k-th column

of E(ti)
i . This step update can be conducted on the main

thread and it only involves elementary vector operation.

U -Update In this step, we firstly fix C
(ti)
ji and Ai

(ti) and

update U (ti)
i as follows:

U
(ti)
i = U

(ti−1)
i +XCi

(ti) −Ai
(ti)

After that U (ti)
i was sent back to all of the sub-treads. U (ti)

ji
is updated through

U
(ti)
ji = U

(ti−1)
ji +XjC

(ti)
ji −A

(ti)
ji

according to (8) it equals to U
(ti)
i .

Subspace segmentation via spectral clustering

Given the output coefficient matrix C, we normalize its
columns as ci = ci

‖ci‖∞
. A graphG = (V,E) is constructed,

where V is the set of N nodes corresponding to N samples,
E is the edge of the graph connecting those samples. The
weight of the graph is a nonnegative sample similarity ma-
trix W obtained by W = |C| + |C|T where each value
in |C| is absolute value of corresponding element in C. We
then feed W into the spectral clustering algorithm to divide
the data points into different groups.
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(d)(c)(a) (b)

Figure 2: The convergence curves evaluated by ‖(Xi−mAi)
T ‖∞ given different parameter settings. (a) The convergence curve

of parameter m = 2, 3, 4, 5, 6, ρ = 5. (b) The convergence curve of parameter m = 2, 3, 4, 5, 6, ρ = 10. (c) The convergence
curve of parameter m = 3, ρ = 4, 5, 6, 7. (c) The convergence curve of parameter m = 6, ρ = 4, 5, 6, 7.

Experiments

We conduct data clustering and graph based semi-supervised
learning experiments on real-world data to evaluate the ef-
fectiveness and efficiency of our algorithm. In each experi-
ment we will use the term DSSC-m to abbreviate the DSSC-
ADMM algorithm with data matrix being randomly divided
into m column blocks.

The algorithm is implemented in Matlab and tested on a
cluster with 2.7GHz CPUs and 128GB RAM. The decentral-
ized computing is conducted on a shared-memory architec-
ture (Niu et al. 2011). To be specific, all samples are loaded
to the memory and partitioned into column blocks.

Experiments on subspace segmentation and outlier
detection

We use the clustering error CE = Nmis/N as a metric to
measure data clustering performance. HereNmis is the num-
ber of misclustered samples and N is the total number of
samples.

In outlier detection experiment we use the areas under
the receiver operator characteristic (ROC) curve, known
as AUC, for evaluation (Liu et al. 2013). To evaluate the
speedup performance of DSSC-ADMM, we report the com-
putation time of each considered DSSC-ADMM-i and cal-
culate the speedup (SP )1 as SP = TSSC

TDSSC−ADMM−i
where

TSSC is the execution time of the traditional SSC (Elhami-
far and Vidal 2013)2 and TDSSC−ADMM−i is the execution
time of our method on i cores.

In this expeiment, we test DSSC-ADMM on the hand
written digits image dataset MINIST (LeCun et al. 1998).
The size of the original images are uniformly 28 × 28. The
digit numbers are centered by translation according to the
center of mass of pixels.

Subspace segmentation with clean data We randomly
select 500 images from the dataset for each of the numbers

1Please refer to http://en.wikipedia.org/wiki/Speedup.
2In our implementation the parameters of SSC are learned

by solving (3) through ADMM. The optimization termination
criterion is set as ‖(C(t) − C(t−1)

)T ‖∞ ≤ 0.01, ‖(E(t) −
E(t−1)

)T ‖∞ ≤ 0.01 or 200 iterations is reached.

from 0 to 9 hence there are 5000 images in total. All the
images are resized to 14 × 14 using bilinear interpolation
so that each image is represented by a 196-dimension gray
value vector. We empirically set λ1 = 0.67. m is chosen to
be 2,3,4,5 and 6, respectively.

We analyze the relationship between model parameter
value and objective function convergence. There are two
important parameters in our model, which are the num-
ber of block m and the value of ρ, respectively. We illus-
trate the model convergence through the value of ‖(Xi −
mAi

(ti)
)T ‖∞. We first fix ρ to be 5 and 10, then test the con-

vergence under different value of m. The results are shown
in Fig. 2(a) and Fig. 2(b). After that we fix the value of m to
be 3 and 6, then test the convergence under different value
of ρ. Fig. 2(c) and Fig. 2(d) illustrate the results. The anal-
ysis indicates that by properly choosing the parameters, the
proposed method can converge fast after several iterations.

The CE of SSC and DSSC-ADMM is shown in Fig. 3(a).
The time cost and SP are shown in Fig. 3(b) and Fig. 3(c).
It can be observed that DSSC-ADMM method is able to re-
duce around 55% − 85% time cost if the computation are
distributed on 2− 6 cores, with comparable accuracy.

Joint subspace segmentation and outlier detection We
next test the performance of jointly clustering the digit im-
ages and detecting the outliers. The pixels of outlier images
are randomly generated as uniform noise from [0, 255]. 1000
outlier images are produced and merged with 5000 digit im-
ages as dataset. The parameters λ1 and λ2 are set to be 0.67
and 1.5, respectively. We evaluate CE of digit images and
AUC of outlier detection result. The performance is also
shown in Fig. 3(a). According to the above results, the CE
result is almost unchanged and outliers can be perfectly de-
tected by both of DSSC-ADMM and SSC. The time cost and
SP are shown in Fig. 3(b) and Fig. 3(c), respectively. The
proposed method can reduce around 68% − 90% time cost
by using 2 to 6 cores.

Experiments on semi-supervised learning

In this part we consider applying the proposed method to
graph based semi-supervised learning. Recent works that
formulate the graph construction into a sparse data recon-
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Figure 3: Performance and time cost comparison of subspace segmentation and outlier detection between SSC and DSSC-
ADMM on 5000 MNIST digit image dataset. (a) Performance comparison. CE-SS is the CE value of subspace segmentation
experiment; CE-SS-OD and AUC are the CE and AUC value of joint data clustering and outlier detection experiment. (b)
Time cost comparison (in seconds). (c) SP values.

Figure 4: Performance and time cost comparison onMNIST-15k and CIFAR10-10k datasets. (a) Classification error comparison
on both of the two datasets. (b) Logarithm of time cost comparison (in seconds). (c) SP values.

struction problem have achieved great success (Yan and
Wang 2009; Cheng et al. 2010; Wang, Liu, and Wu 2015).
The datasets we test include:

• MINIST-15k dataset. 1500 images per digit are selected
to form the dataset. To evaluate the classification error, 10
labeled samples are randomly selected from each digit.
We set λ1 = 1 to build the sparse graph.

• CIFAR10-10k dataset. CIFAR10 is composed of 60000
images from 10 categories (Krizhevsky and Hinton 2009).
Each image has 32 × 32 pixels. We collect 1000 images
from each category. 512-dimension gist feature (Oliva and
Torralba 2001) is extracted as feature representation for
each image. 100 labelled samples are randomly selected
from each category. The parameter λ1 is set to be 0.1.

We repeat the semi-supervised classification testing 10 times
to calculate the average classification error. The average
classification errors of two datasets are shown in Fig. 4(a).
We can conclude that the proposed DSSC-ADMM intro-
duces no loss to the semi-supervised classification accuracy.
According to the time cost and SP value shown in Fig.4(b)
and Fig. 4(c), only less than 6% time cost is needed for
MNIST-15k dataset and less than 17% time cost is needed
for CIFAR10-10k if DSSC-ADMM is run on 5 to 9 cores.

Conclusion and Discussion

In this paper, we proposed DSSC-ADMM as a large scale
decentralized framework for computing SSC via an alternat-
ing direction method of multiplier (ADMM) algorithm. The
key innovation of DSSC-ADMM is to solve SSC in column
blocks which can be compactly distributed on multiple cores

for estimating the parameters associated with these blocks.
This leads to substantially more efficient optimization than
the traditional column-wise estimation based SSC methods.
We evaluate our algorithm on a shared-memory architec-
ture with multiple cores. Extensive experiments on both syn-
thetic and read-world datasets confirm that the proposed
method can significantly accelerate SSC, at almost no cost
of clustering accuracy. It is interesting to note that DSSC-
ADMM can be directly applied to implement a distributed
variant of the Neighborhood Selection Lasso (NS-Lasso)
method for Gaussian graphical models estimation (Mein-
shausen and Bühlmann 2006). The NS-Lasso method di-
rectly estimates the support of the sparse precision matrix
using separate neighborhood estimations for each variable
followed by a proper aggregation rule. In formulation, NS-
Lasso is equivalent to SSC in (3) without considering the
noise term E. Therefore, DSSC-ADMM method can be di-
rectly applied to decentralized neighborhood selection.
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