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Abstract

We propose a new zero-shot Event Detection method by
Multi-modal Distributional Semantic embedding of videos.
Our model embeds object and action concepts as well as other
available modalities from videos into a distributional seman-
tic space. To our knowledge, this is the first Zero-Shot event
detection model that is built on top of distributional seman-
tics and extends it in the following directions: (a) semantic
embedding of multimodal information in videos (with focus
on the visual modalities), (b) automatically determining rele-
vance of concepts/attributes to a free text query, which could
be useful for other applications, and (c) retrieving videos by
free text event query (e.g., ”changing a vehicle tire”) based on
their content. We embed videos into a distributional seman-
tic space and then measure the similarity between videos and
the event query in a free text form. We validated our method
on the large TRECVID MED (Multimedia Event Detection)
challenge. Using only the event title as a query, our method
outperformed the state-of-the-art that uses big descriptions
from 12.6% to 13.5% with MAP metric and 0.73 to 0.83 with
ROC-AUC metric. It is also an order of magnitude faster.

Introduction
Every minute, hundreds of hours of video are uploaded to
video archival site such as YouTube (Google2014 ). Devel-
oping methods to automatically understand the events cap-
tured in this large volume of videos is necessary and mean-
while challenging. One of the important tasks in this di-
rection is event detection in videos. The main objective of
this task is to determine the relevance of a video to an event
based on the video content (e.g., feeding an animal, birthday
party; see Fig. 1). The cues of an event in a video could in-
clude visual objects, scene, actions, detected speech (by Au-
tomated Speech Recognition(ASR)), detected text (by Opti-
cal Character Recognition (OCR)), and audio concepts (e.g.
music and water concepts).

Search and retrieval of videos for arbitrary events using
only free-style text and unseen text in particular has been a
dream in computational video and multi-media understand-
ing. This is referred as “zero-shot event detection”, because
there is no positive exemplar videos to train a detector. Due
to the proliferation of videos, especially consumer-generated
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(a) Grooming an Animal
(1) “brushing dog”, weight = 0.67

(2) “combing dog”, weight = 0.66

(3) “clipping nails”, weight = 0.52

(b) Birthday Party
(1) “cutting cake”, weight = 0.72

(2) “blowing candles”, weight = 0.65

(3) “opening presents”, weight = 0.59

Figure 1: Top relevant Concepts from a pre-defined multi-
media concept repository and their automatically-assigned
weights as a part of our Event Detection method

videos (e.g., YouTube), zero-shot search and retrieval of
videos has become an increasingly important problem.

Several research works have been proposed to facilitate
performing the zero-shot learning task by establishing an in-
termediate semantic layer between events or generally cate-
gories (i.e., concepts or attributes) and the low-level repre-
sentation of a multimedia content from the visual perspec-
tive. (Lampert, Nickisch, and Harmeling 2009) and (Farhadi
et al. 2009) were the two first to use attribute learning rep-
resentation for the zero-shot setting for object recognition
in still images. Attributes were similarly adopted for recog-
nizing human actions (Liu, Kuipers, and Savarese 2011); at-
tributes are generalized and denoted by concepts in this con-
text. Later, (Liu et al. 2013) proposed Concept Based Event
Retrieval (CBER) for videos InTheWild. Even though these
methods facilitate zero-shot event detection, they only cap-
ture the visual modality and more importantly they assume
that the relevant concepts for a query event are manually de-
fined. This manual definition of concepts, also known as
semantic query editing, is a tedious task and may be biased
due to the limitation of human knowledge. Instead, we aim
at automatically generating relevant concepts by leveraging
information from distributional semantics.

Recently, several systems were proposed for zero-shot
event detection methods (Wu et al. 2014; Jiang et al. 2014b;
2014a; Chen et al. 2014; Habibian, Mensink, and Snoek
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2014). These approaches rely on the whole text description
of an event where relevant concepts are specified; see exam-
ple event descriptions used in these approaches in the Sup-
plementary Materials (SM)1 ( explicitly define the event ex-
plication, scene, objects, activities, and audio). In practice,
however, we think that typical use of event queries under
this setting should be similar to text-search, which is based
on few words instead that we model their connection to the
multimodal content in videos.

The main question addressed in this paper is how to use
an event text query (i.e. just the event title like “birthday
party” or “feeding an animal”) to retrieve a ranked list of
videos based on their content. In contrast to (Lampert, Nick-
isch, and Harmeling 2009; Liu et al. 2013), we do not man-
ually assign relevant concepts for a given event query. In-
stead, we leverage information from a distributional seman-
tic space (Mikolov et al. 2013b) trained on a large text cor-
pus to embed event queries and videos to the same space,
where similarity between both could be directly estimated.
Furthermore, we only assume that query comes in the form
of an “unstructured” few-keyword query (in contrast to (Wu
et al. 2014; Jiang et al. 2014b; 2014a)). We abbreviate
our method as EDiSE (Event-detection by Distributional Se-
mantic Embedding of videos).

Contributions. The contributions of this paper can be
listed as follows: (1) Studying how to use few-keyword
unstructured-text query to detect/retrieve videos based on
their multimedia content, which is novel in this setting. We
show how relevant concepts to that event query could be au-
tomatically retrieved through a distributional semantic space
and got assigned a weight associated with the relevance;
see Fig. 1 “Birthday” and “Grooming an Animal” example
events. (2) To the best of our knowledge, our work is the
first attempt to model the connection between few keywords
and multimodal information in videos by distributional se-
mantics . We study and propose different similarity metrics
in the distributional semantic space to enable event retrieval
based on (a) concepts, (b) ASR, and (c) OCR in videos. Our
unified framework is capable of embedding all of them into
the same space; see Fig. 2. (3) Our method is also very fast,
which makes it applicable to both large number of videos
and concepts (i.e. 26.67 times faster than the state of the
art (Jiang et al. 2014a)).

Related Work
Attribute methods for zero-shot learning are based on man-
ually specifying the attributes for each category (e.g., (Lam-
pert, Nickisch, and Harmeling 2009; Parikh and Grau-
man 2011)). Other methods focused on attribute dis-
covery (Rohrbach, Stark, and Schiele 2011; Rohrbach,
Ebert, and Schiele 2013) and then apply the same mech-
anism. Recently, several methods were proposed to per-
form zero shot recognition by representing unstructured text
in document terms (e.g. (Elhoseiny, Saleh, and Elgam-
mal 2013; Mensink, Gavves, and Snoek 2014)) One draw-
back of the TFIDF (Salton and Buckley 1988) in (Elho-

1Supplementary Materials (SM) could be found here https://sites.
google.com/site/mhelhoseiny/EDiSE supp.zip

seiny, Saleh, and Elgammal 2013) and hardly matching tag
terms in (Mensink, Gavves, and Snoek 2014; Rohrbach et al.
2010) is that they do not capture semantically related terms
that our model can relate in noisy videos instead of still im-
ages. Also, WordNet (Miller 1995), adopted in (Rohrbach
et al. 2010), does not connect objects with actions (e.g., per-
son blowing candle), making it hard to apply in our setting
and heavily depending on predefined information like Word-
Net.

There has been a recent interest especially in the computa-
tional linguistics’ community in word-vector representation
( e.g., (Bengio et al. 2006)), which captures word seman-
tics based on context. While word-vector representation is
not new, recent algorithms (e.g. (Mikolov et al. 2013b;
2013a)) enabled learning these vectors from billions of
words, which makes them much more semantically ac-
curate. As a result, these models got recently adopted
in several tasks including translation (Mikolov, Le, and
Sutskever 2013) and web search (Shen et al. 2014). Sev-
eral computer vision researchers explored using these word-
vector representation to perform Zero-Shot learning in the
object recognition (e.g. (Frome et al. 2013; Socher et al.
2013; Norouzi et al. 2014)). They embed the object class
name into the word-vector semantic space learnt by mod-
els like (Mikolov et al. 2013b). It is worth mentioning
that these zero-shot learning approaches (Frome et al. 2013;
Socher et al. 2013) and also the aforementioned work (Elho-
seiny, Saleh, and Elgammal 2013) assume that during train-
ing, there is a set of training classes and test classes. Hence,
they learn a transformation to correlate the information be-
tween both domains (textual and visual). In contrast, zero-
shot setting of event retrieval rely mainly on the event in-
formation without seeing any training events, as assumed in
recent zero-shot event retrieval methods (e.g., (Dalton, Al-
lan, and Mirajkar 2013; Jiang et al. 2014b; Wu et al. 2014;
Liu et al. 2013)). Hence, there does not exist seen events to
learn such transformation from. Differently, we also model
multimodal connection from free text query to video infor-
mation.

In the context of videos, (Wu et al. 2014) proposed a
method for zero-shot event detection by using the salient
words in the whole structured event description, where rele-
vant concept are already defined in the event structured text
description; also see Eq. 1 in (Wu et al. 2014). Simi-
larly, (Dalton, Allan, and Mirajkar 2013) adopted a Markov-
Random-Field language model proposed by (Metzler and
Croft 2005). One drawback of this model is that it performs
an intensive processing for each new concept. This is since
it determines the relevance of the concept to a query event
by creating a text document to represent each concept. This
document is created by web-querying the concept name and
some of its keywords and merging the top retrieved pages.
In contrast, our model does not require this step to determine
relevance of an event to a query. Once the language model
is trained, any concept can be instantly added and captured
in our multimodal semantic embedding of videos.

In contrast to both (Wu et al. 2014) and (Dalton, Allan,
and Mirajkar 2013), we focus on retrieving videos only with
the event title (i.e., few-words query) and without semantic
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editing. The key difference is in modeling and embedding
concepts to allow zero-shot event retrieval. In (Wu et al.
2014) and (Dalton, Allan, and Mirajkar 2013), the seman-
tic space is a vector whose dimensionality is the number of
the concepts. Our idea is to embed concepts, video informa-
tion, and the event query into a distributional semantic space
whose dimensionality is independent of the number of con-
cepts. This property, together with the semantic properties
captured by distributional semantics, feature our approach
with two advantages (a) scalability to any concept size. Hav-
ing new concepts does not affect the representation dimen-
sionality (i.e., in all our experiments concepts, videos, event
queries are embedded to M dimensional space; M is few
hundreds in our experiments). (b) facilitating automatic de-
termination of relevant concepts given an unstructured short
event query: For example, being able to automatically deter-
mine that “blowing a candle” concept is a relevant concept to
“birthday party” event. (Wu et al. 2014) and (Dalton, Allan,
and Mirajkar 2013) used the complete text description of an
event for retrieval that explicitly specifies relevant concepts.

There is a class of models that improve zero-shot Event
Detection performance by reranking. Jiang et al. proposed
multimodal pseudo relevance feedback (Jiang et al. 2014b)
and self-paced reranking (Jiang et al. 2014a) algorithms.
The main assumption behind these models is that all unla-
beled test examples are available and the top few examples
by a given initial ranking have high top K precision (K ∼
10). This means that reranking algorithms can not update
confidence of a video for an event without knowing the con-
fidences of the remaining videos to perform reranking. In
contrast, our goal is different which is to directly model the
probability of a few-keyword event-query given an arbitrary
video. Hence, our work does not require an initial ranking
and can compute the conditional probability of a video with-
out any information about other videos. Our method is also
26.67 times faster, as detailed in our experiments.

Method
Problem Definition
Given an arbitrary event query e and a video v (e.g. just
”birthday party”), our objective is to model p(e|v). We start
by defining the representation of event query e, the concept
set c, the video v in our setting.

Event-Query representation e: We use the unstructured
event title to represent an event query for concept based re-
trieval. Our framework also allows additional terms specif-
ically for ASR or OCR based retrieval. While we show re-
trieval on different modalities, concept based retrieval is our
main focus in this work. The few-keyword event query for
concept based retrieval is denoted by ec, while query key-
words for OCR and ASR are denoted by eo and ea, respec-
tively. Hence, under our setting e = {ec, eo, ea}.

Concept Set c: We denote the whole concept set in our
setting as c, which include visual concepts cv and audio con-
cepts cd, i.e., c = {cv, cd}. The visual concepts include
object, scene and action concepts. The audio concepts in-
clude acoustic related concepts like water sound. We per-
formed an experiment on a set of audio concepts trained

on MFCC audio features (Davis and Mermelstein 1980;
Logan and others 2000). However, we found their perfor-
mance ≈ 1% MAP, and hence we excluded them from our fi-
nal experiments. Accordingly, our final performance mainly
relies on the visual concepts for concept based retrieval; i.e.,
cd = ∅. We denote each member ci ∈ c as the definition
of the ith concept in c. ci is defined by the ith concept’s
name and optionally some related keywords; see examples
in SM. Hence, c = {c1, · · · , cN} is the the set of concept
definitions, where N is the number concepts.

Video Representation: For our zero-shot purpose, a
video v is defined by three pieces of information, which are
video OCR denoted by vo, video ASR denoted by va, and
video concept representation denoted by vc. vo and va are
the detected text in OCR and ASR, respectively. We used
(Myers et al. 2005) to extract vo and (van Hout et al. 2013)
to extract va. In this paper, we mainly focus on the visual
video content, which is the most challenging. The video
concept based representation vc is defined as

vc = [p(c1|v), p(c2|v), · · · , p(cN |v)] (1)

where p(ci|v) is a conditional probability of concept ci given
video v, detailed later. We denote p(ci|v) by vic.

In zero-shot event detection setting, we aim at recogniz-
ing events in videos without training examples based on its
multimedia content including still-image concepts like ob-
jects and scenes, action concepts, OCR, and ASR2. Given
a video v = {vc, vo, va}, our goal is to compute p(e|v) by
embedding both the event query e and information of video
v of different modalities (vc, vo, and vo) into a distributional
semantic space, where relevance of v to e could be directly
computed; see Fig. 2. Specifically, our approach is to model
p(e|v) as a function F of θ(e), ψ(vc), θ(vo), and θ(va),
which are the distributional semantic embedding of e, vc,
vo, and va, respectively

p(e|v) ∝F(
θ(e), ψ(vc), θ(vo), θ(va)

)
(2)

We remove the stop words from e, vo, va before applying the
embedding θ(·). The rest of this section is organized as fol-
lows. First, we present the distributional semantic manifold
and the embedding function θ(·) which is applied to e, va,
vo, and the concept definitions c in our framework. Then,
we show how to determine automatically relevant concepts
to an event title query and assign a relevance weight to them,
as illustrated in Fig. 1. We present this concept relevance
weighting in a separate section since it might be generally
useful for other applications. Finally, we present the details
of p(e|v) where we derive vc embedding (i.e. ψ(vc)), which
is based on the proposed concept relevance weighting.

Distributional Semantic Model & θ(·) Embedding
We start by the distributional semantic model by (Mikolov
et al. 2013b; 2013a) to train our semantic manifold. We de-
note the trained semantic manifold by Ms, and the vector-
ization function that maps a word to Ms space as vec(·). We
denote the dimensionality of the real vector returned from

2Note that OCR and ASR are not concepts. They are rather
detected text in video frames and speech
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Figure 2: EDiSE Approach

Figure 3: PCA visualization in 3D of the ”Grooming an
Animal” event (in green) and its most 20 relevant concepts
in Ms space using sp(·, ·). The exact sp(θ(“Grooming An
Animal”), θ(ci)) is shown between parenthesis

vec(·) by M . These models learn a vector for each word
wn, such that p(wn|(wi−L, wi−L+1, · · · , wi+L−1, wi+L) is
maximized over the training corpus; 2×L is the context win-
dow size. Hence similarity between vec(wi) and vec(wj) is
high if they co-occurred a lot in context of size 2× L in the
training text-corpus (i.e., semantically similar words share
similar context). Based on the trained Ms space, we de-
fine how to embed the event query e, and c. Each of ec, ea,
and eo is set of one or more words. Each of these words
can be directly embedded into Ms manifold by vec(·) func-
tion. Accordingly, we represent these sets of word vectors
for each of ec, ea, and eo as θ(ec), θ(ea), and θ(eo). We
denote {θ(ec), θ(ea), θ(eo)} by θ(e). Regarding embedding
of c, each concept c∗ ∈ c is defined by its name and option-
ally some related keywords. Hence, the corresponding word
vectors are then used to define θ(c∗) in Ms space.

Relevance of Concepts to Event Query

Let us define a similarity function between θ(c∗) and θ(ec)
as s(θ(ec), θ(c∗)). We propose two functions to measure
the similarity between θ(ec) and θ(c∗). The first one is in-
spired by an example by (Mikolov et al. 2013b) to show the
quality of their language model, where they indicated that
vec(“king”) + vec(“woman”) − vec(“man”) is closest to
vec(“queen”). Accordingly, we define a version of s(X,Y ),
where the sets X and Y are firstly pooled by the sum oper-
ation; we denote the sum pooling operation on a set by an
overline. For instance, X =

∑
i xi and Y =

∑
i yj , where

xi and yj are the word vectors of the ith element in X and
the jth element in Y , respectively. Then, cosine similarity
between X and Y is computed. We denote this version as
sp(·, ·); see Eq. 3. Fig. 3 shows how sp(·, ·) could be used
to retrieve the top 20 concepts relevant to θ(“Grooming An
Animal”) in Ms space. The figure also shows embedding
of the query and the relevant concept sets in 3D PCA visu-
alization. θ(ec =“Grooming An Animal”) and each of θ(ci)
for the most relevant 20 concepts are represented by their

corresponding pooled vectors (θ(ec) and θ(ci))∀i), normal-
ized to unit length under L2 norm. Another idea is to de-
fine s(X,Y ) as a similarity function between the X and Y
sets. For robustness (Torki and Elgammal 2010), we used
percentile-based Hausdorff point set metric, where similar-
ity between each pair of points is computed by the cosine
similarity. We denote this version by st(X,Y ); see Eq. 3.
We used l = 50% (i.e., median).

sp(X,Y ) =
(
∑

i xi)
T(
∑

j yj)

‖∑i xi‖‖
∑

j yj‖
=

X
T
Y

‖X‖‖Y ‖ (3)

st(X,Y ) = min{ l%

min
j
m
i
ax

xTi yj
‖xi‖‖‖yj‖ ,

l%

min
i
m
j
ax

xTi yj
‖xi‖‖yj‖}

Event Detection p(e|v)
In practice, we decomposed p(e|v) into p(ec|v), p(eo|v),
p(ea|v), which makes the problem reduces to deriving
p(ec|v) (concept based retrieval), p(eo|v) (OCR based re-
trieval), and p(ea|v) (ASR based retrieval) under Ms. We
start by p(ec|v) then we will how later in this section how
p(eo|v), and p(ea|v) could be estimated.

Estimating p(ec|v) : In our work, concepts are linguistic
meanings that have corresponding detection functions given
the video v. From Fig. 3, Ms space could be viewed as a
space of meanings captured by a training text-corpus, where
only sparse points in that space has a corresponding visual
detection functions given v, which are the concepts c (e.g.,
“blowing a candle”). For zero shot event detection, we aim
at exploiting these sparse points by the information captured
by s(θ(ec), θ(ci ∈ c)) in Ms space. We derive p(ec|v) from
probabilistic perspective starting from marginalizing p(ec|v)
over the concept set c

p(ec|v) ∝
∑
ci

p(ec|ci)p(ci|v) ∝
∑
ci

s(θ(ec), θ(ci))v
i
c (4)

where p(e|ci)∀i are assumed to be proportional to
s(θ(ec), θ(ci)) in our framework. From semantic embed-
ding perspective, each video v is embedded into Ms by the
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set ψ(vc) = {θv(ci) = vicθ(ci), ∀ci ∈ c}, where vicθ(ci) is
a set of the same points in θ(ci) scaled with vic; ψ(vc) could
be then directly compared with θ(ec); see Eq. 5

p(ec|v) ∝
∑
ci

s(θ(ec), θ(ci))v
i
c

∝ s′(θ(ec), ψ(vc) = {θv(ci), ∀ci ∈ c})
(5)

where s′(θ(ec), ψ(p(c|v)) =
∑

i s(θ(ec), θv(ci)) and s(·, ·)
could be replaced by sp(·, ·), st(·, ·), or any other measure in
Ms space. An interesting observation is that when sp(·, ·)
is chosen, p(ec|v) ∝ θ(ec)

T

‖θec‖
(∑

i
θ(ci)
‖θci‖v

i
c

)
which is a direct

similarity between θ(ec) representing the query and the em-

bedding of ψ(vc) as
∑

i
θ(ci)
‖θci‖v

i
c; see proof in Appendix A.

sp(·, ·) performs consistently better than st(·, ·) in our ex-
periments. In practice, we only include θv(ci) in ψ(vc) such
that ci is among the top R concepts with highest p(ec|ci).
This is assuming that the remaining concepts are assigned
p(ec|ci) = 0 which makes those items vanish; we used R=5.
Hence, only a few concept detectors needs to be computed
for on v which is a computational advantage.

Estimating p(eo|v) and p(ea|v) : Both vo and va can be
directly embedded into Ms since they are sets of words.
Hence, we can model p(eo|v) and p(ea|v) as follows
p(eo|v) ∝ sd(θ(eo), θ(vo)), p(ea|v) ∝ sd(θ(ea) , θ(va)) (6)

where sd(X,Y ) =
∑

ij x
T
i yj . We found this similarity

function more appropriate for ASR/OCR text since they nor-
mally contains more text compared to concept definition.
We also exploited an interesting property in Ms that near-
est words to an arbitrary point can be retrieved. Hence, we
automatically augment ea and eo with the nearest words to
the event title in Ms using cosine similarity before retrieval.
We found this trick effective in practice since it automati-
cally retrieve relevant words that might appear in vo or va.

Fusion: We fuse p(ec|v), p(eo|v), and p(ea|v) by
weighted geometric mean with focus on visual concepts, i.e.
p(e|v) =

w+1
√
p(ec|v)w

√
p(eo|v)p(ea|v)); w = 6. p(ec|v),

p(ec|v), and p(ec|v) involves the similarity between θ(e)
and each of ψ(vc), θ(vo), and θ(va), leading to Eq. 2 view.

Visual Concept Detection functions (p(c|v))
We leverage the information from three types of visual con-
cepts in cv: object concepts co, action concepts ca, and
scene concepts cs. Hence, c = cv = {co ∪ ca ∪ cs}; the
list of concepts are attached in SM. We define object and
scene concept probabilities per video frame, and action con-
cepts per video chunks. The rest of this section summarizes
the concept detection for objects and scenes per frame f , and
action concepts per video chunk u. Then, we show how they
can be reduced to video level probabilities. Fig. 4 shows ex-
ample high confidence concepts in a “Birthday Party” video.
Object Concepts p(oi|f), oi ∈ co: We involve 1000 Over-
feat (Sermanet et al. 2014) object concept detectors which
maps to 1000-ImageNet categories. We also adopt the con-
cept detectors of face, car and person from a publicity avail-
able detector (i.e., (Felzenszwalb, McAllester, and Ra-
manan 2008))

Scene Concepts p(si|f), si ∈ cs: We represented scene
concepts (p(si|f)) as bag of word representation on static
features (i.e., SIFT (Lowe 2004) and HOG (Dalal and Triggs
2005)) with 10000 codebooks. We used TRECVID 500 SIN
concepts concepts, including scene categories like “city”
and “hall” way; these concepts are provided by provided by
TRECVID2011 SIN track.
Action Concepts p(ai|u), ai ∈ ca: We use both manually
annotated (i.e. strongly supervised) and automatically anno-
tated (i.e. weekly supervised) concepts; detailed in SM. We
have ∼500 action concepts; please refer to (Liu et al. 2013)
for the action concept detection method that we adopt.

Video level concept probabilities p(c|v) We represent
probabilities of the cv set given a video v by a pooling
operation over the the chunks or the frames of the videos
similar to (Liu et al. 2013). In our experiments, we evalu-
ated both max and average pooling. Specifically, p(oi|v) =
ρ({p(oi|fk), fk ∈ v}), p(sl|v) = ρ({p(si|fk), fk ∈ v}),
p(ak|v) = ρ({p(ai|uk), uk ∈ v}, where p(oi|v) and p(sl|v)
are the video level probabilities of for the ith object and the
lth scene concepts respectively, pooled over frames fk ∈ v.
{fk ∈ v} are selected every M frames in v (M= 250).
p(ak|v) is the video level probability of the kth action con-
cept, pooled over a set of video chunks {uk ∈ v}. The chunk
size is set to the mean chunk length of all concept training
chunks. Finally, ρ is the pooling function. We denote aver-
age and max pooling as ρa(·) and ρm(·), respectively.

EDiSE Computational Performance Benefits
Here we discuss the computational complexity of concept
based EDISE, and ASR/OCR based EDiSE. The fusion part
is negligible since it is constant time.

Concept based EDiSE
The computational complexity for computing p(ec|v) is
mainly linear in the number of videos, denoted by |V |. We
here detail why computational complexity of p(ec|v) is al-
most constant and hence video retrieval is almost O(|V |).

From Eq. 5, p(ec|v) has a computational complexity of
O(N ·Q) for on e video, whereQ is the computational com-
plexity of computing s(·, ·) andN is the number of concepts.
We detail next the computational complexity of sp(·, ·) and
st(·, ·) for the whole set of videos |V |.

Complexity of p(ec|v) for sp(·, ·) Let’s assume that
there θ(ec) set has |ec| terms and θ(ci) has |ci| terms.
Then, the computational complexity of sp(θ(ec), θ(ci)) is

Figure 4: Concept probabilities from videos (p(c|v))
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O(M(|ec| + |ci|). |ci| and and |ec| are usually few terms
in our case (< 10). Hence the computational complexity of
sp(θ(ec), θ(ci)) is O(M), where M is the dimensionality of
the word vectors. In our experiments M = 300. Given the
complexity of sp(θ(ec), θ(ci)), the computational complex-
ity of p(ec|v) will be O(N ·M), where N is the number of
concepts. Hence, the computational complexity for comput-
ing p(ec|v) for |V | videos is O(|V | ·N ·M). However, for a
given event, only few concepts are relevant, which are com-
puted based on sp(θ(ec), θ(ci)) and only few concepts 5 in
our case are sufficient for event zero shot retrieval, retrieved
by Nearest Neighbor search of ci ∈ c that is close the ec.
Hence the computational complexity reduced toO(|V | ·M),
M = 300 for the GoogleNews word2vec model that we
used. Hence, the complexity for |V | videos is basically lin-
ear O(|V |), given M is a constant and M << |V |.
Complexity of p(ec|v) for st(·, ·) The previous argument
applies here in all elements except the complexity of the sim-
ilarity function st(θ(ec), θ(ci)), which is O(M(|ec| · |ci|).
Assuming that |ec| · |ci| is bounded by a constant, then the
complexity of |V | videos is also O(|V | ·M), but with a big-
ger constant compared to sp(·, ·) (linear in |V | for constant
M << |V |).
ASR/OCR based EDiSE
The computational complexity of sd(θ(eo), θ(vo)) and
sd(θ(ea), θ(va)) are O(|eo| · |vo| ·M) and O(|ea| · |va| ·M),
respectively. There is no concepts for ASR/OCR based re-
trieval. Hence, the computational complexity of p(eo, v) and
p(ea|v) areO(|V | · |eo| · |vo| ·M) andO(|V | · |ea| · |va| ·M),
respectively. Since |eo| 	 |V |, |vo| 	 |V |, |ea| 	 |V |,
|va| 	 |V |, and M 	 |V |, the dominating factor in the
complexity for both p(eo, v) and p(ea|v) will be |V |.

Experiments
We evaluated our method on the large TRECVID MED
(Felzenszwalb, McAllester, and Ramanan 2013). We show
the MAP (Mean Average Precision) and ROC AUC per-
formance of the designated MEDTest set (Felzenszwalb,
McAllester, and Ramanan 2013), containing more than
25,000 videos. Unless otherwise mentioned, our results are
on TRECVID MED2013. There are two distributional se-
mantic models in our experiments, trained on Wikipedia and
GoogleNews using (Mikolov et al. 2013b). The Wikipedia
model got trained on 1 billion words resulting in a vocab-
ulary of size of≈120,000 words and word vectors of 250
dimensions. The GoogleNews model got trained on 100 bil-
lion words resulting in a vocabulary of size 3 million words

and word vectors of 300 dimensions. The objective of hav-
ing two models is to compare how well our EDiSE method
performs depending on the size of the training corpus, used
to train the language model. In the rest of this section, we
present Concepts, OCR, ASR, and fusion results.

Concept based Retrieval
All the results in this section were generated by automati-
cally retrieved concepts using only the event title. We start
by comparing different settings of our method against (Dal-
ton, Allan, and Mirajkar 2013). We used the language model
in (Dalton, Allan, and Mirajkar 2013) for concept based
retrieval to rank the concepts. This indicates that p(e|ci)
in Eq. 4 is computed by the language model in (Metzler
and Croft 2005) as adopted in (Dalton, Allan, and Mira-
jkar 2013), that we compare with under exactly the same
setting. For our model, we evaluated the two pooling oper-
ations ρm(·) and ρp(·) and also the two different similarity
measures on Ms space sp(·, ·) and st(·, ·). Furthermore, we
evaluated the methods on both Wikipedia and GNews lan-
guage models. In order to have conclusive experiments on
these eight settings of our model compared to (Dalton, Al-
lan, and Mirajkar 2013), we performed all of them on the
four different sets of concepts (i.e. each has the same con-
cept detectors; completely consistent comparison); see Ta-
ble 1. Details about these concept sets are attached in SM.

There are a number of observations. (1) using GNews
(the bigger text corpus) language model is consistently bet-
ter than using the Wikipedia language model. This indicates
when the word embedding model is trained with a bigger
text corpus, it captures more semantics and hence more ac-
curate in our setting. (2) max pooling ρm(·) behaves con-
sistently better than average pooling ρa(·). (3) sp(·, ·) sim-
ilarity measure is consistently better than st(·, ·), which we
see very interesting since this indicates that our hypothesis
of using the vector operations on Ms manifold better repre-
sent p(e|ci). Hence, we recommend finally to use the model
trained on the larger corpus, ρm(·) for concept pooling, and
use sp(·, ·) to measure the performance on Ms manifold. (4)
our model’s final setting is consistently better than (Dalton,
Allan, and Mirajkar 2013). The final MED13 ROC AUC
performance is 0.834. MAP for MED13 Events 31 to 40
(E31:40) is 5.97%. Detailed figures are attached in SM.

Our next experiment shows the final MAP performance
using the recommended setting for our framework on the
whole set of concepts, detailed earlier and in SM. Table 2
shows our final performance compared with (Dalton, Allan,
and Mirajkar 2013) on the same concept detectors. It is not
hard to see that our method performs more than double the

Table 1: MED2013 MAP performance on four concept sets (event title query)

Ours-Gnews Ours-Wiki (Dalton etal, 2013)
TRECVID MED 2013 ρm(·) ρa(·) ρm(·) ρa(·)

sp(·, ·) st(·, ·) sp(·, ·) st(·, ·) sp(·, ·) st(·, ·) sp(·, ·) st(·, ·)
Concepts G1 (152 concepts) 4.29 3.94% 2.39% 2.38% 3.14% 2.13% 1.85% 1.70% 2.57%
Concepts G2 (101 concepts) 1.74 1.20 1.56% 1.20% 1.09% 0.96% 0.66% 0.60% 1.17%
Concepts G3 (60 concepts) 1.72 1.33% 1.28% 1.16% 1.21% 0.88% 0.88% 0.74% 1.54%
Concepts G4 (56 concepts) 1.22 0.95 0.84% 0.69% 0.87% 0.76% 0.67% 0.56% 0.83%
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Table 2: MED2013 full concept set MAP Performance
(auto-weighted versus manually-weighted concepts)

Ours (auto) Dalton etal,13(auto) Dalton etal,13(manual) Overfeat
8.36% 3.40% 7.4% 2.43%

SUN Object Rank Classeme CDDT WSCD−SIFT
Y ouTube

0.48% 0.77% 0.84% 2.28% 3.48%

MAP performance of (Dalton, Allan, and Mirajkar 2013)
under the same concept set. Even when manual semantic
editing is applied to (Dalton, Allan, and Mirajkar 2013), our
performance is still better without semantic editing. We also
show the performance on the same events of different con-
cepts (i.e. SUN (Patterson and Hays 2012), Object Rank (Li
et al. 2010), Classeme (Torresani, Szummer, and Fitzgib-
bon 2010)), and the best performing concepts in (Wu et al.
2014) (i.e., CDDT , WSCD−SIFT

Y ouTube ). These numbers are as
reported in (Wu et al. 2014). The results indicate the value of
our concepts and approach compared to (Wu et al. 2014) and
their concepts. We also report our performance using Over-
feat concepts only to retrieve videos for the same events.
This shows the value of involving action and scene concepts
compared to only still image concepts like Overfeat for zero-
shot event detection. We highlight that the results in (Wu et
al. 2014) uses the whole event description which explicitly
includes names of relevant concepts.

ASR and OCR based Retrieval
First, we compared our OCR and ASR retrieval trained on
both Wikipedia and GoogleNews language model. Table 3

shows that the GoogleNews model MED13 MAP is better
than the Wikipedia Model MAP in both ASR and OCR,
which is consistent with our concept retrieval results. Fig. 5
shows the GoogleNews MED13 AP per event for both OCR
and ASR. We further show our AP performance on MED14
events 31 to 40 in Fig. 5.

In order to show the value our semantic modeling, we
computed the performance of string matching method as a
baseline, which basically increment the score for every ex-
act match in the the detected text to words in the query.
While, both our model and the matching model use the
same query words and ASR/OCR detection, semantic prop-
erties captured by Ms boosts the performance compared to
string matching; see table 3. This is since semantically rele-
vant terms to the query have a high cosine similarity in Ms

(i.e., high vec(wi)
Tvec(wj) if wi is semantically related to

Table 3: ASR & OCR Retrieval MAP on Ms using GNews,
Wikipedia, and using word matching

GNews MED2013 Wiki MED2013 matching MED2013
OCR 4.81% 3.85% 1.8%
ASR 4.23% 1.50% 3.77%

Table 4: ASR & OCR MAP performance using GNews cor-
pus compared to (Wu et al. 2014)(prefix E indicates Event)

MED13 MED13 (Wu et al. 2014) MED14(E31:40)
OCR 4.81% 4.30% 2.5%

MED13 MED13 (Wu et al. 2014) MED14 (E31:40)
ASR 4.23% 3.66% 5.97%

(a) MED2013 (b) MED2014 (E31:40)

Figure 5: ASR & OCR AP Performance (Google News)

Figure 6: ASR & OCR AUCs on MED2013: Ours (GoogleNews) vs keyword Matching (the same query)
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wj). On the other hand, hard matching basically assumes
that vec(wi)

Tvec(wj) = 1 ifwi = wj , 0 otherwise. We
also computed the ROC AUC metric for our method and the
hard matching method on ASR and OCR; see Fig. 6. For
ASR, average AUC is 0.623 for ours and 0.567 for Match-
ing (9.9% gain). For OCR, average AUC is 0.621 for ours
and 0.53 for Matching (17.1% gain). We report our GNews
model results compared with (Wu et al. 2014) to indicate
that, we achieve state-of-the-art MED13 MAP performance
or even better for ASR/OCR; see table 4. The table also
shows our ASR&OCR MED14 (E31:40) MAP.

Fusion Experiments and Related Systems
In table 5, we start by presenting a summary of our earlier
ASR/OCR results on MED13 Test. Comparing OCR and
ASR performances to Concepts performance, it is not hard
to see that OCR/ASR have much lower average AUC zero-
shot performance compared to concepts which are visual in
our work. This indicates that OCR/ASR produces much
higher false negatives compared to visual concepts. When
we fused our all OCR and ASR confidences, we achieved
10.7% MAP performance, however, the average AUC per-
formance is as low as 0.67. We achieved lower MAP for
our concepts 8.36% MAP but the average AUC performance
is as high as 0.834. This indicates that measuring retrieval
performance on MAP performance only is not informative,
so one approach might achieve a high MAP but lower av-
erage AUC and vice versa. We further achieved the best
performance of our system by fusing all Concepts, OCR,
and ASR to achieve 13.1% MAP and 0.830 average AUC.
We found our system achieves better than the state of the
art system (Wu et al. 2014) 4.0% gain in MAP, but signifi-
cantly in average AUC; see 13.6% gain to (Wu et al. 2014)
in table 5.

We also discuss CPRF (Yang and Hanjalic 2010), MM-
PRF (Jiang et al. 2014b), and SPaR (Jiang et al. 2014a)
reranking systems in contrast to our system that does not
involve reranking. The initial retrieval performance is 3.9%
MAP without reranking. Interestingly, we achieved a perfor-
mance of 13.1% MAP also without reranking. The rerank-
ing methods assumes high top 5-10 precision of the initial
ranking and that all test videos are available. Without any of
these assumptions, our system without reranking performs
6.7%, 3.0%, and 0.2% better than CPRF (Yang and Hanjalic
2010), MMPRF (Jiang et al. 2014b), and SPaR (Jiang et al.
2014a) re-ranking systems; see table 5. Unfortunately, ROC
AUC performances are not available for these method to
compare with. Regarding efficiency, given vc representation
of videos, our concept retrieval experiment on our whole
concept set it takes ≈270 seconds on a 16 cores Intel Xeon
processor (64GB RAM) to the retrieval task on 20 events al-
together. This is more than the time that SPaR (Jiang et al.
2014a) takes to rerank one event on an Intel Xeon proces-
sor(16GB RAM); see (Jiang et al. 2014a). Since, we detect
the MED13 events in ≈270 given vc representation of videos
and as reported in (Jiang et al. 2014a), their average detec-
tion time per event for MED13 is ≈ 5 minutes assuming fea-
ture representation of videos (i.e., 360 seconds per event =
7200 seconds per 20 events). This indicates that our system

Table 5: Fusion Experiments and Comparison to State of the
Art Systems

Method MAP AUC
Our Concept retrieval (event title query) 8.36% 0.834

Concept retrieval (Dalton etal, 2013) (event title query) 3.4 % -
Concept retrieval (Dalton etal, 2013) (manual concepts) 7.4% -

Our ASR GNews 4.81% 0.623
Our OCR GNews 4.23% 0.621

Our ASR Matching 2.77% 0.567
Our OCR Matching 1.8% 0.536

Our ASR and OCR all fused 10.6 0.670
Our Full (Concepts+ASR+OCR) (No reranking) 13.1% 0.830
Our Full + SPaR reranking (Jiang et al. 2014a) 13.5% 0.790

Full system (Wu et al. 2014) 12.6 0.730
Reranking Systems

Without Reranking (Jiang et al. 2014b) 3.9% -
CPRF (Yang and Hanjalic 2010) 6.4% -

Full Reranking system MMPRF(Jiang et al. 2014b) 10.1% -
Full Reranking system SPaR(Jiang et al. 2014a) 12.9% -

is 26.67X faster than (Jiang et al. 2014a) in MED13 detec-
tion. Finally, when we applied SPaR on our output as an
initial ranking, we found that it improves MAP (from 13.1%
to 13.5%) but hurts ROC AUC (from 0.83 to 0.79). This
indicates that reranking has a limited/harmful effect on the
performance of our method. We think is since our method
already achieve a high performance without re-ranking; see
SM for details about the features in this experiment.

Conclusion
We proposed a method for zero shot event detection by
distributional semantic embedding of video modalities and
with only event title query. By fusing all modalities, our
method outperformed the state of the art on the challenging
TRECVID MED benchmark. Based on this notion, we also
showed how to automatically determine relevance of con-
cepts to an event based on the distributional semantic space.
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Appendix A: Proof p(ec|v) for s(·, ·) = sp(·, ·)
We start by Eq. 5 while replacing s(·, ·) as sp(·, ·).

p(ec|v) ∝
∑
i

sp(θ(ec), θ(ci))p(ci|v)

∝
∑
i

θ(ec)
T
θ(ci)

‖θec‖‖θci‖ v
i
c ∝

θ(ec)
T

‖θec‖
(∑

i

θ(ci)

‖θci‖v
i
c

) (7)

which is the dot product between θ(ec)
T

‖θec‖ representing the

event embedding, and
∑

i
θ(ci)
‖θci‖v

i
c representing the video

embedding, which is a function of ψ(vic) = {θv(ci) =
θ(ci)v

i
c}. This equation clarifies our notion of distributional

semantic embedding of videos and relating it to event title
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