Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

MC-HOG Correlation Tracking with Saliency Proposal

Guibo Zhu', Jingiao Wang', Yi Wu?, Xiaoyu Zhang®, and Hanqing Lu'
"National Laboratory of Pattern Recognition,
Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
IB-DAT & CICAEET, School of Information & Control,

Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, China
$Institute of Information Engineering, Chinese Academy of Sciences, Beijing, 100093, China
{gbzhu, jqwang, luhq} @nlpr.ia.ac.cn
ywu.china@yahoo.com, zhangxiaoyu@iie.ac.cn

Abstract

Designing effective feature and handling the model drift
problem are two important aspects for online visual track-
ing. For feature representation, gradient and color features
are most widely used, but how to effectively combine them
for visual tracking is still an open problem. In this paper, we
propose a rich feature descriptor, MC-HOG, by leveraging
rich gradient information across multiple color channels or
spaces. Then MC-HOG features are embedded into the cor-
relation tracking framework to estimate the state of the target.
For handling the model drift problem caused by occlusion or
distracter, we propose saliency proposals as prior information
to provide candidates and reduce background interference. In
addition to saliency proposals, a ranking strategy is proposed
to determine the importance of these proposals by exploiting
the learnt appearance filter, historical preserved object sam-
ples and the distracting proposals. In this way, the proposed
approach could effectively explore the color-gradient char-
acteristics and alleviate the model drift problem. Extensive
evaluations performed on the benchmark dataset show the su-
periority of the proposed method.

1 Introduction

Visual tracking, which is to estimate object state in an im-
age sequence, is one of the core problems in computer vi-
sion. It has many applications, such as surveillance, action
recognition and autonomous robots/car (Yilmaz, Javed, and
Shah 2006; Wang et al. 2014). One robust visual tracking ap-
proach in real-world scenarios should cope with challenges
as much as possible, such as occlusions, background clutter
and shape deformation.

Feature representation is critical for improving the per-
formance in object detection (Dollar et al. 2009), tracking
(Henriques et al. 2015), age estimation (Li et al. 2012) and
image ranking (Li et al. 2014). Gradient and color features
are the most widely used ones. To be specific, Histogram
of Oriented Gradient (HOG) (Dalal and Triggs 2005) fea-
tures are good at describing abundant gradient information
while color features like color histograms often capture rich
color characteristics. For example, integral channel features
proposed by (Dollar et al. 2009) and its expansions (Dollar
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et al. 2014) have achieved good results in object detection
by concatenating gradient and color features directly. Tang
et al. explored the complementary between color histogram
and HOG features in a co-training framework for tracking
(Tang et al. 2007). Although color and gradient features are
widely used in vision based applications, there is no detailed
analysis on the gradient properties for the same target in dif-
ferent color spaces. Therefore, it is interesting to exploit this
kind of gradient properties for effective feature representa-
tion. Inspired by color naming (CN) which transforms RGB
color space into an 11-D probabilistic space (Van De Wei-
jer et al. 2009), the image pixels are projected into multi-
ple color channels to extract gradient features for construct-
ing a new feature descriptor: HOG extracted across Multi-
ple Color channels (MC-HOG). It is a more natural fusion
strategy than direct concatenation which needs to consider
the feature normalization problem across different feature
spaces.

Associated with object tracking, model drift means that
the object appearance model gradually drifts away from the
object due to its accumulated errors caused by online up-
date (Matthews, Ishikawa, and Baker 2004). There are many
strategies to alleviate the drift problem, e.g. semi-supervised
learning (Grabner, Leistner, and Bischof 2008), ensemble-
based learning (Tang et al. 2007; Kwon and Lee 2010), long-
term detector (Kalal, Mikolajczyk, and Matas 2012) and part
context learning (Zhu et al. 2015). In essence, they either ex-
plored the supervised information of the training samples or
the search strategy. However, the reliability of training sam-
ples collected online is difficult to guarantee. To provide rel-
atively less candidate regions and suppress the background
interference, in this paper we introduce saliency proposals
as prior information from visual saliency, which has been
studied by many researchers (Itti, Koch, and Niebur 1998;
Harel, Koch, and Perona 2006) and owns good character-
istics for automatic target initialization and scale estima-
tion (Seo and Milanfar 2010; Mahadevan and Vasconcelos
2013). The saliency map is taken as the prior information
to obtain candidate proposals which are more efficient than
exhaustive search based on sliding windows. In addition to
saliency proposals, a ranking strategy is proposed to deter-
mine the importance of these proposals and estimate the



object state by exploiting the learnt appearance filter, his-
torical preserved object samples and the distracting propos-
als. Therefore, the integration of saliency proposals and the
ranking strategy helps a tracker to effectively update and al-
leviate the model drift problem.

In this paper, we propose a tracker, called as Mc-hOg Cor-
relation sAliency tracker (MOCA), by jointly taking advan-
tage of MC-HOG based correlation tracking and saliency
proposal to explore the color-gradient characteristics and al-
leviate the model drift problem.

The contributions of this work are summarized as follows:

e A novel feature MC-HOG is proposed to exploit different
gradient properties in various color spaces for describing
the target. Extensive comparisons with other combination
approaches in different color spaces show the effective-
ness of MC-HOG.

e In order to reduce the risk of the model drift, saliency pro-
posal is proposed as prior information with ranking strat-
egy based on the learnt appearance filter, historical pre-
served object samples and the distracting proposals.

e Extensive experiments show that the proposed tracker
achieves the state-of-the-art performance over other com-
petitive trackers.

2 Related Work

Traditional object tracking approaches mostly focus on ap-
pearance modeling, which can be categorized roughly into
generative and discriminative methods (Yilmaz, Javed, and
Shah 2006). Generative methods learn an object reference
model to locate the object by searching for the most sim-
ilar image region, such as template matching (Matthews,
Ishikawa, and Baker 2004), subspace learning (Ross et al.
2008), sparse representation (Mei et al. 2011). Although
generative trackers are robust to the object occlusion and
tend to obtain more accurate performance in a small search-
ing region, they are sensitive to similar distracters in the sur-
rounding area of the object.

In recent years, tracking-by-classification methods (Grab-
ner, Leistner, and Bischof 2008; Babenko, Yang, and Be-
longie 2009; Hare, Saffari, and Torr 2011; Zhang, Ma, and
Sclaroff 2014; Hong et al. 2015) have shown promising
tracking performance. Many of these approaches formu-
late tracking as a binary classification or regression prob-
lem. The classification-based trackers (Grabner, Leistner,
and Bischof 2008; Babenko, Yang, and Belongie 2009) re-
quire a set of binary labeled training instances to deter-
mine the decision boundary for distinguishing the target
object from the background. The ensemble based trackers
(Zhang, Ma, and Sclaroff 2014; Hong et al. 2015) pro-
posed different ensemble strategies (i.e. entropy minimiza-
tion (Zhang, Ma, and Sclaroff 2014) and multiple memory
stores (Hong et al. 2015)) to handle the occlusion prob-
lem and achieves good performance for visual tracking.
While the regression-based trackers (Bolme et al. 2010;
Hare, Saffari, and Torr 2011; Henriques et al. 2012) utilize
the training samples with spatial label distribution as super-
vised information for training better decision boundary by
adopting the structured output prediction or dense sampling.
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Recently, the regression-based trackers have been explored
and achieved good performance (Wu, Lim, and Yang 2013;
Kristan et al. 2014). Especially, the series of the correla-
tion filters-based trackers, DSST (Danelljan et al. 2014a),
SAMF (Li and Zhu 2014), KCF (Henriques et al. 2015), are
shown to be the top-performing trackers in accuracy in the
VOT2014 challenge (Kristan et al. 2014).

Correlation filters have been investigated by many re-
searchers in the context of visual tracking. Bolme et al.
(Bolme et al. 2010) proposed an adaptive correlation filter
with minimizing the output sum of squared error (MOSSE)
for the target appearance in visual tracking. It can use the
convolution theorem for fast learning and detection. Hen-
riques et al. (2012) proposed circulant structure tracker
(CSK) which exploited the circulant structure of adjacent
subwindows for quickly learning a kernelized regularized
least squares classifier of the target appearance with dense
sampling. Kernelized correlation filters (KCF) (Henriques
et al. 2015) is an extended version of CSK by re-interpreting
the correlation filter using kernelized regression with multi-
channel features. Danelljan et al. (2014b) introduced color
attributes to exploit the colorful property in improving the
tracking performance on colorful sequences and then pro-
posed accurate scale estimation with one separate filter in
(Danelljan et al. 2014a). Zhang et al. (2014) utilized the
spatio-temporal context to interpret correlation tracking with
the Bayesian framework. In a word, all of them attempt
to exploit different characteristics of correlation filters for
tracking, e.g., circulant structure (Henriques et al. 2012),
color attributes (Danelljan et al. 2014b), kernel trick (Hen-
riques et al. 2015), HOG conjunction with correlation track-
ing (Danelljan et al. 2014a; Henriques et al. 2015).

In this paper we focus on feature representation and the
model drift problem in visual tracking. The aforementioned
correlation trackers either rely on HOG, intensity or color
features. To explore the mutual complementary between gra-
dient and color information for enhancing the ability of fea-
ture representation, we make an extensive investigation on
combination of HOG and color features in various color
spaces. In addition, to handle the model drift caused by oc-
clusion or distracters, saliency proposals are proposed as
prior information and the ranking strategy for guaranteeing
the correctness of the proposals, which are not considered
by all aforementioned trackers to the best of our knowledge.

3 Proposed Approach

In this section, we first discuss how to extract the proposed
MC-HOG in multiple color channels or color space espe-
cially in the color naming space, and then explain how
to learn MC-HOG tracker with adaptive update for visual
tracking. Finally, we propose to jointly utilize MC-HOG
based correlation tracking and saliency proposal to alleviate
the model drift problem in the tracking process.

MC-HOG Feature

Feature plays an important role in the context domain of
computer vision. For example, much of the impressive
progress in object detection can be attributed to the im-
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Figure 1: MC-HOG feature extraction. The HOG visualiza-
tion is based on HOGgles (Vondrick et al. 2013).

provement in features, and the combination of proper fea-
tures can also significantly boost the detection performance
(Benenson et al. 2014). Gradient and color information are
the most widely used features in object detection and track-
ing. Previous works (Dollér et al. 2009; Tang et al. 2007;
Khan et al. 2012; 2013) have verified that, there exists a
strong complementarity between gradient and color fea-
tures. However, how to jointly utilize the gradient and color
information for visual tracking is still an open problem.

Compared to direct concatenation, we argue that the gra-
dient properties are different in various color spaces for
the target, and therefore the extraction of gradient features
from each color space is a more natural fusion strategy. In-
spired by color names from linguistic view by (Berlin and
Kay 1969), which contain eleven basic color terms: black,
blue, brown, grey, green, orange, pink, purple, red, white
and yellow, we consider the color naming space as an ex-
ample color space of our proposed feature. In computer vi-
sion, color naming is to associate RGB values with color
labels which transforms RGB values into a probabilistic 11
channels color representation (Van De Weijer et al. 2009).
In the paper, by investigating various color spaces, a novel
visual feature, MC-HOG, is presented by calculating HOG
(Felzenszwalb et al. 2010; Dollar et al. 2009) in each chan-
nel of color naming space or other color spaces and concate-
nate the features for all the channels as a feature descriptor.
The similar operations can be easily extended to other color
space as the generalized versions. For example, to balance
the performance and the time complexity, we can employ
MC-HOG from the Lab color space instead of 11-D color
naming space.

The extraction process of MC-HOG feature is shown in
Fig. 1. Firstly, the input RGB image is transformed into a
color space, such as color naming space or channels. Sec-
ondly, HOG is extracted from each channel in the color
space respectively. Finally, all the HOG features are con-
catenated in the third dimension to form a three-dimensional
matrix or to a long vector. In this paper, we utilize the three-
dimensional matrix representation which better fits with the
correlation tracking framework.
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MC-HOG Tracker with Adaptive Update

To verify the effectiveness of MC-HOG feature in visual
tracking, we train a discriminative correlation filter with a
training sample X with Fast Fourier Transform: X = F(x)
represented by MC-HOG feature in the current frame. A de-
sired correlation output or probability label distribution Y in
the Fourier domain together with the training sample X is
also used for learning the filter. Then the filter is applied to
estimate the target state in the next frame. Specifically, the
optimal correlation filter H is obtained by minimizing the
following cost function,

min |[H o X = Y3 + Al H][3, M
where o is Hadamard product operator, the first term is the
regression target, the second term is a L2 regularization on
H, and X controls the regularization strength. With ker-
nel trick (Scholkopf and Smola 2002) and circulant struc-
ture (Henriques et al. 2012), kernelized correlation filters
was proposed for visual tracking which allowed more flex-
ible, non-linear regression functions integrating with multi-
channel features (Henriques et al. 2015). Due to the char-
acteristic of the kernel trick, the model optimization is still
linear in the dual space even if a set of variables. Then the
linear kernelized correlation filter H is represented as:

Yo(X)
KX, X)+ X

where ®(X) is a mapping function to compute the kernel
matrix K (.,.) in Fourier space.

In the process of visual tracking, the coefficients A of ker-
nelized regularized Ridge regression and the target appear-
ance X are updated with the following linear interpolation:

H= 2)

Y
A= KX, X)+ X’ ®)
A = (1-B)x A"+ 8% A4, 4)
Xt = 1-8)*X"1+pxX, 5)

where t denotes the ¢-th frame and 3 denotes the learning
rate. Actually, the update strategy works well if there is no
occlusion or the object appearance changes slowly.

However, when the object is occluded, the object appear-
ance will be updated inappropriately which may lead to the
drift problem. To deal with the problem, we introduce two
indicators to evaluate whether the object is occluded and
adaptively adjust the learning rate. If the object is occluded,
we reduce the learning rate; if else, keep the learning rate.
The two indicators are Peak-to-Sidelobe Ratio (PSR) pro-
posed by (Bolme et al. 2010) and appearance similarity. The
PSR is denoted as _—>—, where gmq, is the maximum
value of the correlation ouput and i and § are the mean and
standard deviation of the sidelobe. The sidelobe is the rest of
the pixels excluding an 11 x 11 window around ¢,,,4,. We
compute the appearance similarity d as follows:

d = exp(—n*||x —x"71?), (6)
where 7 is a hyperparameter which is set as 0.05, the func-
tion ||.|| is the Euclidean distance between the object ap-

pearance x and x’~!, and x denotes the object appearance
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Figure 2: Object state estimation with saliency proposals and
re-ranking. Best viewed in high-resolution.

in spatial domain. Compared to Eq. (5), x is the appearance

feature by transforming the MC-HOG feature matrix of ob-

ject to a vector representation. It needs to note that 7 is re-

lated to the appearance representation. With the PSR value

and the similarity d, we adjust the learning rate /3 as follows:

. {y*ﬂmt, if PSR<30 & d<022
otherwise

,Binity (7)
where +y is the relative ratio to reduce the learning rate /.
Binit 18 the initialization value.

For predicting the new object state, a sliding-window-like
manner is necessary. Let z denotes a M x N x D feature
map extracted from an image region with size M x N, D is
the number of feature channels. With the convolution Theo-
rem and circulant structure (Henriques et al. 2015), the con-
fidence scores S(z) at all locations in the image region can
be computed efficiently,

S(z) (®)

where the search region of Fourier domain Z = F(z), F
and F~! are the discrete Fourier transform and the inverse
Fast Fourier transform.

= F HAoK(X,2)},

Saliency Proposal

For correlation filter-based trackers (Bolme et al. 2010;
Henriques et al. 2012; 2015), there exist two main chal-
lenges: scale variation and the model drift caused by occlu-
sion or distracter. In (Danelljan et al. 2014a), an indepen-
dent scale prediction filter was presented to deal with the
scale changes. A common approach to handle the model
drift problem is to integrate a short-term tracker and on-
line long-term detector, e.g. TLD (Kalal, Mikolajczyk, and
Matas 2012). However, learning an online long-term de-
tector relies heavily on lots of well labeled training sam-
ples which are difficult to collect. Meanwhile, the exhaus-
tive search in whole image with sliding windows is time-
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consuming, especially for complex but discriminative fea-
tures.

To provide relatively less proposals and suppress the
background interference, in this paper we not only utilize an
adaptive update strategy to learn the appearance model, but
also exploit a few reliable proposals from the biologically
inspired saliency map. The saliency proposals provide lots
of prior information from visual saliency, which has been
studied by many researchers (Itti, Koch, and Niebur 1998;
Harel, Koch, and Perona 2006) and owns good character-
istics for automatic target initialization and scale estima-
tion (Seo and Milanfar 2010; Mahadevan and Vasconcelos
2013). We argue the prior information could alleviate the
model drift problem caused by occlusion or distracters by
providing the confident candidates and restraining the back-
ground disturbing regions.

Based on the studies for visual attention of the primate vi-
sual system (Itti, Koch, and Niebur 1998; Harel, Koch, and
Perona 2006), we primarily achieve a visual saliency map
and then iteratively obtain a series of candidate windows
or proposals. To be specific, we first compute the visual
saliency using the code from (Harel, Koch, and Perona 2006)
and take the region of the last object state as the first saliency
proposal; then we set the corresponding saliency value to
zero and select the region with maximum saliency value as
the second saliency proposal. Subsequently we further set
the corresponding saliency value of the second proposal to
zero, and iteratively select the saliency proposals again un-
til the saliency value is smaller than a given threshold 6
(6 = 0.5). After we obtain N saliency proposals at most, we
calculate the correlation output values s = {s1, S2, ..., SN }
with the inference process according to Eq. (8), the corre-
sponding object centers C' = {c1, ca, ..., cx } and the candi-
date object appearances A = {aj, ag, ..., ay } in the feature
space of spatial domain.

Object State Estimation with Re-ranking

As illustrated in Fig. 2, in addition to the saliency propos-
als in current frame, we also preserve the historical posi-
tive object samples or experts P = {p1,p2,...,pa} and
identify some hard negative samples or distracting propos-
als U = {uy,uy, ..., ug } which are supposed as distracters.
M and K are the preserving sample number of positive ob-
jects and possible proposal distracters, respectively. In this
paper, M = 4 and K = 4. The positive object samples are
preserved every 50 frames and the distracting proposals are
stored every ten frames. The second highest confident pro-
posal in the final decision scores is identified as a distracting
proposal while the highest is considered as the object state.

With the obtained proposals from historical and saliency
information, we re-rank them with correlation similarity,
spatial weight and ranking weight. The spatial weight is de-
fined as a Gaussian distribution around the object position.
For the ¢-th proposal in the ¢-th frame, the weight w; is,

et — ct—12
wi — ea:p(—” 1 20—2 || )7 (9)
where the function ||.|| is the Euclidean distance, ¢!~ de-

notes the predicted object center in the (¢ — 1)-th frame, and
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Figure 3: Precision and success plots of overall performance comparison for the 50 videos with 51 target objects in the bench-
mark (Wu, Lim, and Yang 2013) (best-viewed in high-resolution). The mean precision scores for each tracker are reported in

the legends. Our methods are shown in red and
favorably better than the state-of-the-art tracking methods.

0 = v w * h. w and h are the width and height of the search
region or the cosine window in (Henriques et al. 2015).

The template similarity v; of the ¢-th proposal in the cur-
rent frame is computed as follows.

v; = maz(sim(a;, P)) — max(sim(a;,U)), (10)

where sim(a;, P||U) is the similarity values between the
appearance feature of candidate a; and the positive sample
pool P or negative sample pool U. Based on the template
similarity v, the ranking weights r = {ry,ro,...,7N} are
computed by r = exp(—w(Idx — 1)), where the parameter
w is hyper-parameter, and Idx is the ranking order of the
proposals by sorting the template similarity v. We set w =
0.2. At last, we multiplies the correlation similarity, spatial
weights and ranking weights to re-rank the proposals,

s =max(sowor),

(1n
where the corresponding position of the maximum value s is
predicted as the object state in the current frame. To reduce
the computational complexity, we consider the saliency pro-
posals for re-ranking every ten frames.

4 Experiments

We evaluate our MOCA tracker on the challenging
CVPR2013 Visual Tracker Benchmark (Wu, Lim, and Yang
2013), by following rigorously their evaluation protocols.
There are totally 50 sequences used to evaluate the proposed
approach. The experiments are performed in Matlab on an
Intel Xeon 2 core 2.50 GHz CPU with 256G RAM.

In all the experiments, we use the same parameter val-
ues for all sequences (i.e. A = 0.0001, v = 0.1 and
Binit = 0.02). We first evaluate the characteristics of MC-
HOG feature in different color spaces. Then we test our pro-
posed tracker MOCA on the benchmark dataset comparing
with many competitive tracking approaches.
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. In both cases our two approaches (MOCA and MC-HOG) perform

Experiment 1: Evaluation of MC-HOG in different
color spaces

To evaluate the effectiveness of capturing the color and gra-
dient property in different color spaces, we perform an ex-
tensive evaluation of MC-HOG in different color spaces. Al-
though the motivation of these color features vary from pho-
tometric invariance and discriminative power to biologically
inspired color representation (Danelljan et al. 2014b), we
believe that the gradient properties are different in various
color spaces for the target.

Table 1 shows the results of HOG extracted in differ-
ent color spaces. All color representations are appropriately
normalized. The conventional KCF tracker with Gray-HOG
provides a mean distance precision at a threshold of 20 pix-
els of 74.3%. The second best results are achieved by us-
ing HOG extracted from the Luv color space with a gain of
2.5% over the Gray-HOG while MC-HOG in color naming
space achieves the best performance. As shown in Table 1,
we can find different color spaces show different color and
gradient properties, such as Luv and Lab are better than oth-
ers except color naming, XYZ performs worst with HOG
and a rich representation in 11 color channels of color nam-
ing space show a strong discriminative ability.

Experiment 2: CYPR2013 Visual Tracker
Benchmark

We evaluate our methods with 10 different state-of-the-
art trackers. The trackers used for comparison are: VID
(Kwon and Lee 2010), VTS (Kwon and Lee 2011), TLD
(Kalal, Mikolajczyk, and Matas 2012), CXT (Dinh, Vo, and
Medioni 2011), Struck (Hare, Saffari, and Torr 2011), ASLA
(Jia, Lu, and Yang 2012), SCM (Zhong, Lu, and Yang 2012),
CN (Danelljan et al. 2014b), KCF (Henriques et al. 2015),
TPGR (Gao et al. 2014), and our trackers (MOCA and MC-



[ Color [ Gray RGB Lab Luv YCbCr YPbPr YDbDr HSV HSI XYZ LMS CN ]
DP1 743% 72.1% 153% 76.8% 120% 684% 11.1% 742% 113% 60.0% 61.2% 77.8%
DP2 91.1% 88.7% 91.1%  94% 87.7% 84.7% 81.7% 92.1% 874% 675% 61.7% 97.4%
M-FPS | 35.9 20.8 18.4 19.3 22.8 20.5 22.8 20.5 20.0 20.8 18.8 16.5

Table 1: Comparison of HOG in different color spaces for tracking. The best two results are shown in red and blue. The results
are presented using both mean distance precision (DP1) and median distance precision (DP2) over all 50 sequences (Wu, Lim,
and Yang 2013). While the sequence is gray, we only adopt the conventional intensity channel for HOG extraction. In both
cases, the best results are obtained by using the MC-HOG feature. M-FPS: mean frames per second.

HOG), etc. The overall performance is shown in Fig. 3. The
public codes of the comparative trackers are provided by the
authors and the parameters are fine tuned. All algorithms are
compared in terms of the initial positions in the first frame
from (Wu, Lim, and Yang 2013). Their results are also pro-
vided with the benchmark evaluation (Wu, Lim, and Yang
2013) except KCF, CN, and TGPR. Here, KCF used HOG
feature and the gaussian kernel which achieved the best per-
formance in (Henriques et al. 2015). CN’s source code was
originated from (Danelljan et al. 2014b). It was modified to
adopt the raw pixel features as (Henriques et al. 2015) while
handling the grey-scale images.

Fig. 3 shows precision and success plots which contains
the mean distance and overlap precision over all the 50 se-
quences. The values in the legend are the mean precision
score and AUC, respectively. Only the top 10 trackers are
displayed for clarity. Our approaches MOCA and MC-HOG
both improve the baseline HOG-based KCF tracker with
a relative reduction in accuracy. Moreover, our MC-HOG
tracker improves the precision rate of the baseline method
KCF from 74.3% to 77.8%, and then MOCA boosts the
MC-HOG tracker with a relative gain of 4.6%. Moreover,
our MC-HOG and MOCA trackers improve the success rate
of their baseline methods from 51.7% to 55.0%, and from
55.0% to 56.9%. In (Henriques et al. 2015), the perfor-
mance of KCF is better than Struck in precision of predict-
ing the object state. Overall, our trackers are better than the
other trackers and achieves a significant gain. Although our
method does not estimate scale variations, it still provides
encouraging results compared other competitive trackers in
mean overlapping precision.

Attribute-based Evaluation: We perform a comparison
with other methods on the 50 sequences respect to the 11 an-
notated attributes (Wu, Lim, and Yang 2013). Fig. 4 shows
some example precision plots of four attributes. For occlu-
sion, out of view or background clutter sequences, MOCA
is much better than MC-HOG because of saliency proposals
and the ranking strategy. Saliency proposals provide proper
candidates and suppress the background interference for the
subsequent re-ranking process as illustrated in Fig. 2. Be-
cause the ranking strategy explores and exploits the learnt
appearance filter, motion penalization, the historical object
experts, and the distracting proposals. The learnt appearance
filter and motion penalization can handle the object appear-
ance changes. The historical object experts can verify the
correctness of the object candidates while reserving the dis-
tracting proposals suppresses the distracting regions. Both
of them can alleviate the drift problem caused by occlusion
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Figure 4: Precision plot for sequences with attributes: oc-
clusion, non-rigid deformation, out-of-view and background
clutter. The proposed MOCA tracker is the most resilient to
all of nuisances. Best viewed in high-resolution.

or distracters. For deformation sequences, MOCA and MC-
HOG also provide superior results compared to other exist-
ing methods. This is due to the fact that color attributes pos-
sess a certain degree of photometric invariance while pre-
serving discriminative power.

5 Conclusion

In this paper, we have developed MC-HOG correlation
tracking with saliency proposals and a ranking strategy. Our
experimental results demonstrate the complementary of dif-
ferent color spaces and gradient features, and show that ex-
ploiting different gradient properties in various color spaces
for the target is helpful for the tracking performance. More-
over, we have showed that the MOCA tracker by jointly uti-
lizing MC-HOG based correlation tracking and saliency pro-
posals with the ranking strategy can also alleviate the model
drift problem caused by occlusion or distracters. Finally, ex-
tensive experiments show that our tracker outperforms the
state-of-the-art methods on the benchmark dataset.
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