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Abstract

Sketch-based 3D shape retrieval, which returns a set of rel-
evant 3D shapes based on users’ input sketch queries, has
been receiving increasing attentions in both graphics com-
munity and vision community. In this work, we address the
sketch-based 3D shape retrieval problem with a novel Cross-
Domain Neural Networks (CDNN) approach, which is fur-
ther extended to Pyramid Cross-Domain Neural Networks
(PCDNN) by cooperating with a hierarchical structure. In or-
der to alleviate the discrepancies between sketch features and
3D shape features, a neural network pair that forces identical
representations at the target layer for instances of the same
class is trained for sketches and 3D shapes respectively. By
constructing cross-domain neural networks at multiple pyra-
mid levels, a many-to-one relationship is established between
a 3D shape feature and sketch features extracted from differ-
ent scales. We evaluate the effectiveness of both CDNN and
PCDNN approach on the extended large-scale SHREC 2014
benchmark and compare with some other well established
methods. Experimental results suggest that both CDNN and
PCDNN can outperform state-of-the-art performance, where
PCDNN can further improve CDNN when employing a hier-
archical structure.

Introduction
The human freehand sketch is a succinct, convenient and
efficient way to visually record and present humans’ ideas.
Along with the recent developments of consumer electronic
devices (e.g., touch-pad mobile phones), freehand sketches
are becoming one of the mainstream human-computer in-
teraction methods, and are expected to become the base of
many more applications. While sketches mainly convey ab-
stract descriptions of objects, 3D shapes, on the other hand,
contain the majority information that are required for indus-
trial productions. In the traditional fashion of design oper-
ation processes, design ideas and intents are progressively
and iteratively explored in the form of sketches at the initial
stage, after which finalized drafts are transformed to dig-
ital 3D shapes, where this process is normally conducted
manually and is very time consuming. As an improvement,
a sketch-based 3D shape retrieval system can significantly
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simplify this process from the following two aspects: 1) sta-
tistical investigation (Gunn 1982) suggests that 80% of de-
sign work can benefit from directly reusing or modifying
an existing design; 2) instead of manually transforming the
draft design into digital forms, a final product prototype can
be obtained by directly reusing or modifying a desired 3D
shape selected from a pool of retrieved 3D shapes based on
the input draft.

In this work, we address a novel and challenging designer-
computer interaction task, sketch-based 3D shape retrieval.
In order to alleviate the domain discrepancy between
sketches and 3D shapes, we construct pyramid cross-domain
neural networks (PCDNN), which map the mismatched
sketch and 3D shape low-level representations to a unified
feature space at multiple pyramid levels. The pyramid struc-
ture is defined by a fixed hierarchy of rectangular windows,
and computes local histogram features within each subdi-
vided image regions. Within each pyramid level, a cross-
domain neural network (CDNN) pair with identical target
layers for objects of the same category is learned. By ex-
tending a CDNN to the pyramid structure, multi-resolution
sketch histograms are mapped to corresponding 3D shapes,
so that the homogeneous information (i.e., shared common-
ness) between sketches and 3D shapes can be captured at
finer levels when compared with a single-level structure
that performs on the concatenation of all pyramid levels of
sketch representations. When sketch queries pass through
the learned neural networks, multi-resolution histogram fea-
tures are computed and fed into corresponding neural net-
works, followed by which hidden layers are extracted from
networks of all levels and concatenated as final represen-
tations. The pipeline of the proposed framework is shown
in Figure 1. We evaluate the performance of CDNN and
its pyramid extension separately on the large-scale extended
SHREC 2014 sketch-based 3D shape retrieval benchmark.
We conclude the main contributions of this work are as fol-
lows:

� We address the challenging sketch-based 3D shape re-
trieval problem with neural network-based approaches,
which can learn discriminative and domain-invariant rep-
resentations for sketches and 3D shapes while does not
require strong restrictions (e.g., the correspondence infor-
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Figure 1: Illustration of the pipeline of our proposed sketch-based 3D shape retrieval framework.

mation1) for the training data.

� We propose a CDNN approach, and extend CDNN to co-
operate with a hierarchical structure (PCDNN), so that
multi-resolution sketch histograms can be mapped to 3D
shapes at increasingly fine resolutions.

� Experimental results suggest both CDNN and PCDNN
can achieve state-of-the-art performance on the large-
scale extended SHREC 2014 benchmark, while PCDNN
can further lead to a dramatic performance improvement
over CDNN.

Related Works
A large number of works (Fang et al. 2015; Xie et al. 2015a;
Novotni and Klein 2003; Xie et al. 2015b) have been pro-
posed to address the 3D shape retrieval problem using 3D
shape queries. Compared with these works, the sketch-based
3D shape retrieval (Li et al. 2012; 2013; 2014a) problem
is closer to practical applications and more challenging. Li
et al. (Li et al. 2014a) conduct comprehensive comparisons
between six state-of-the-art sketch-based 3D shape retrieval
methods from four participating groups on the SHREC 2014
benchmark report, where the overlapped pyramid of his-
tograms of oriented gradients (OPHOG) and the similarity
constrained manifold ranking (SCMR) methods proposed
by Tatsuma’s group lead the best performance on the score-
board.

Existing sketch-based 3D shape retrieval techniques can
be categorized in two groups: 1) approaches (Liu et al. 2008;
Liu, Chen, and Tang 2011; Wang et al. 2009; Leclerc and
Fischler 1992) that intend to inflate sketch drawings to 3-
dimensional space according to heuristic rules (e.g., line par-
allelism, polyhedron symmetry, corner orthogonality, etc);
2) approaches (Yoon et al. 2010; Pu and Ramani 2005;

1The correspondence information denotes the one-to one map-
ping between cross-domain instance pairs, and is required by many
transfer learning methods.

Pu, Lou, and Ramani 2005; Li et al. 2014b) that aim to di-
rectly alleviate the divergence between heterogeneous do-
mains by learning domain invariant metrics.

Sketch-based 3D shape retrieval remains a challenging
task in the community due to three reasons: 1) there does
not exist a recognized representation for sketch data; 2) es-
tablishing the matches from the sketch domain to the 3D
shape domain or vice versa is difficult; 3) many previous
approaches that use 2D rendered projection images for rep-
resenting 3D shapes suffer from the view variance and de-
formation problem. As solutions to these difficulties, 1) we,
as the first attempt, apply the Sparse Coding Spatial Pyra-
mid Matching (ScSPM) (Yang et al. 2009) feature, which
has been a powerful handcrafted representation for regular
images, for sketch representation; we propose a novel pyra-
mid cross-domain neural networks architecture, which is
motivated by the pyramid schemes (Lazebnik, Schmid, and
Ponce 2006; Yang et al. 2009), for sketch-based retrieval; 3)
we use the view-invariant Local Depth Scale-Invariant Fea-
ture Transform (LD-SIFT) (Darom and Keller 2012) feature
for representing 3D shapes, and directly input the 3D shape
features instead of 2D rendered images to the cross-domain
neural networks. Wang et al. (Wang, Kang, and Li 2015)
recently also propose a neural network-based method for
sketch-based 3D shape retrieval. While they learn Convolu-
tional Neural Networks (CNN) (Krizhevsky, Sutskever, and
Hinton 2012) on the image level by projecting 3D shapes to
2D images, our approach directly learns the cross-domain
mapping between 2D sketch features and 3D shape fea-
tures. Though our network architecture is much simpler, our
PCDNN approach can achieve state-of-the-art performance
on the SHRECT14 dataset.

Pyramid Cross-Domain Neural Networks
Category-Specific Neural Networks
We consider X = {x1,x2, · · · ,xP } ∈ R

K×P as the in-
put K-dimensional feature, +1 as an intercept term and
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{w1, w2, · · · , wK} and b as neuron parameters. The output
of such a neuron hW,b(x

p) can be computed as:

hW,b(x
p) = f(

K∑
k=1

wkx
p
k + b), (1)

where the function f(·) is chosen as the sigmoid function:

f(z) =
1

1 + exp(−z)
, (2)

which scales the output f(z) to in the range [0, 1]. An acti-
vation function f(·) takes a vector as the input and outputs
a value. For convenience purposes, the common practice is
to extend f(·) to apply to vectors in an element-wise fashion
(i.e., f([z1, z2, z3]) = [f(z1), f(z2), f(z3)]).

A neural network can be constructed by assembling a
number of neurons. We consider a 3-layer neural network,
which has an input layer, a hidden layer and a target
layer. Let X̂ = {x̂1, x̂2, · · · , x̂P } ∈ R

K×P be the K-
dimensional target values at the target layer, where P is the
number of instances. When the input data X are fed into
the neural network, the weights on each neuron are opti-
mizing towards the minimum discrepancy between X and
X̂ . Once the weights are optimized, the hidden layer values
Y = {y1,y2, · · · ,yP } ∈ R

N×P are extracted as the N -
dimensional feature of the input sample. We aim to obtain a
network that can demonstrate strong extrapolation capabil-
ity for new query instances. Thus, we enforce discriminative
constraints to the target layers by setting identical target vec-
tors2 to instances that come from the same class. An illustra-
tion of the category-specific neural network for 3D shapes is
given in Figure 2. At the target end, all 3D shapes in the “air-
plane” category are mapped to the same vector, while all 3D
shapes in the “cars” category are mapped to a different vec-
tor. The objective function for learning a category-specific
neural network can be formulated as the square-loss func-
tion on the weights:

argmin
W ,b

1

P

P∑
i=1

‖x̂i − hW l,bl(xi)‖22 + λ

L∑
l=1

‖W l‖2F , (3)

where W = {W 1,W 2, · · · ,WL}RK×L is the neuron pa-
rameters of the neural network and L is the number of layers,
λ is the balancing parameter and W l is the weight vector at
layer l.

Cross-Domain Neural Networks
We use the ScSPM (Yang et al. 2009) feature for
representing sketches and the LD-SIFT (Darom and
Keller 2012) feature for representing 3D shapes, and let
Xs =

{
x1
s,x

2
s, · · · ,xPs

s

} ∈ R
Ks×Ps and Xm ={

x1
m,x2

m, · · · ,xPm
m

} ∈ R
Km×Pm be the sketch features

2In our implementation, these vectors are simply defined as ran-
dom vectors. Experimental results suggest that setting the targets
X̂ as random vectors can result in good performance. Our obser-
vations are also consistent with the results reported in (Zhang et al.
2013) and (Bingham and Mannila 2001).

Input layer Hidden layer Target layer

Extracted as features

0.03 0.56 0.01 0.77 0.12

0.99 0.16 0.22 0.01 0.82

Target vector 

Target vector 

Figure 2: Illustration of the category-specific neural network
for 3D shapes. Instances that come from the same class (e.g.,
“airplanes” and “cars”) are allocated with identical vectors
at the target layer.

and 3D shape features respectively. In order to retrieve 3D
shapes based on sketch queries, we aim to obtain low dis-
crepancy between sketch and 3D shape representations. On
the top of intra-domain discriminativity, the domain adap-
tivity can be achieved by further assuming sketches and 3D
shapes that come from the same category possess identical
representations at the target layer (i.e., a pair of category-
specific neural networks for both sketches and 3D shapes
can be connected from the target layer). Let q(xi) be the
class label of an input instance i, the objective function for
jointly learning CDNN for both sketches and 3D shapes can
be formulated as:

argmin
Ws,bs

1

Ps

Ps∑
i=1

‖x̂i
s − hWs,bs(x

i
s)‖22 + λ

L∑
l=1

‖W l
s‖2F ,

argmin
Wm,bm

1

Pm

Pm∑
j=1

‖x̂j
m − hWm,bm(xj

m)‖22 + λ

L∑
l=1

‖W l
m‖2F ,

s.t. x̂i
m = x̂j

m = x̂i
s = x̂j

s

if q(xi
m) = q(xj

m) = q(xi
s) = q(xj

s),
(4)

where Ws, bs, Wm and bm are parameters of the
sketch network and the 3D shape network respec-
tively. As explained in Section , the target vectors
X̂s =

{
x̂1
s, x̂

2
s, · · · , x̂Ps

s

} ∈ R
Ks×Ps and X̂m ={

x̂1
m, x̂2

m, · · · , x̂Pm
m

} ∈ R
Km×Pm are predefined, and do

not change over the optimization of Equation (4). Thus, op-
timizing CDNN can be seen as separately optimizing two
independent neural networks. Once we obtain the optimum
Ŵs, b̂s, Ŵm and b̂m, neuron values in L2 layers are ex-
tracted as the representations when sketch and 3D shape fea-
tures pass through the networks.
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Pyramid Cross-Domain Neural Networks
Due to the fact that sketches often present in noisy, in-
complete and discontinuous natures, and that sketches and
3D shapes normally present in highly variant forms, we
further propose a pyramid structure for learning multiple
CDNN in a parallel fashion, so that the homogeneous in-
formation across both sketch and 3D shape domains can be
mined more aggressively. We follow the ScSPM (Yang et al.
2009) framework to construct hierarchical representations of
sketches. Regular SIFT (Lowe 1999) features are extracted
from 16 × 16 patches of sketch images, and projected to a
1024-dimensional dictionary while constraining on the spar-
sity of projection coefficients. Max-pooling is applied to the
sparse codes at 3 layers, which divide a sketch image into
1× 1, 2× 2 and 4× 4 patches. Instead of directly concate-
nating the pooling results of all patches and feeding a global
(1×1+2×2+4×4)×1024 = 21504-dimensional feature
to the neural networks (i.e., the CDNN approach), we ex-
tract pooling results at each pyramid level and particularly
train a CDNN that describes the connections between 3D
shape features and sketch features at this level. When sketch
and 3D shape features pass through PCDNN, the values at
the hidden layer of each pyramid network are extracted and
concatenated as the final representations for sketches and 3D
shapes respectively (as shown within the red dashed rectan-
gulars).

Optimization
Obtaining optimum parameters a the neural network is a re-
gression problem. Since above neural networks can be opti-
mized in the same manner, we use the notations in Section
without loss of generality. Let R denote the number of nodes
in a layer, we define

J(W , b) =

1

P

P∑
j=1

‖x̂j − hW ,b(x
j)‖22 + λ

L∑
l=1

R∑
j=1

R+1∑
k=1

‖W l
jk‖2.

(5)
Since J(Ws, bs) is a non-convex function, computing a min-
imum J(Ws, bs) using the gradient descent solution suf-
fers the local optima problem. However, practical experience
suggests that gradient descent is still an applicable approach
for solving this problem (Ng 2011). In each iteration of gra-
dient descent, the parameters Ws and bs are updated by the
partial derivatives of J(Ws, bs), which can be described as:

∂

∂W l
jk

J(W , b) =

[
1

P

P∑
j=1

∂

∂W l
jk

J(W , b, xj
k, x̂

j
k)

]
+ λW l

jk

∂

∂blj
J(W , b) =

1

P

P∑
j=1

∂

∂blj
J(W , b, xj

k, x̂
j
k)

(6)

The backpropagation algorithm (Werbos 1990), (Bengio
2009) can be applied for computing the partial deriva-
tives efficiently. We first compute the “forward” activations
through the neural network based on the descriptions in

Section , and store the output of the sigmoid function as
al = hW l,bl(X) at a neuron in layer l. Then, the error of
each node j in layer l can be computed based on the node
error in layer l + 1:

δlj =

(
R+1∑
k=1

W l
jkδ

l+1
k

)
f ′(

R∑
k=1

wl
kxk + blk), (7)

such that the partial derivatives can be computed as:

∂

∂W l
jk

J(W , b) = alkδ
l
j

∂

∂blj
J(W , b) = δlj .

(8)

Since the sigmoid function is chosen, the derivative function
f ′(z) = f(z)(1−f(z)). At the target layer, the error δLj can
be directly measured from the value at the output neuron j
and its corresponding regression value using:

δLj =
∂

∂zLj

1

2
‖x̂j − hW ,b(x)‖2

= −(x̂j − aLj )f
′(

R∑
k=1

wL
k xk + bLk ).

(9)

When the gradient decent algorithm converges or a maxi-
mum iteration number M is reached, the approximately op-
timal parameters W ∗ and b∗ can be obtained.

Retrieval
We denote Ŷq as encoded query features and Ŷs as encoded
3D shape features. In order to rank 3D shapes according
to query sketches, we compute the dissimilarity matrix D′

based on Ŷq and Ŷs based using the Euclidean distance.

D′
ij(Ŷq, Ŷs) =

√
(Ŷ i

q − Ŷ j
s )2, (10)

Then, ranking can be carried out based on the ascend order
of each row of the dissimilarity matrix, i.e., the lower the
entry value D′

ij is, the more relevant the 3D shape Ŷ j
s and

the query sketch Ŷ i
q are.

Experiments
Dataset and Settings
The proposed methods are evaluated on the large-scale ex-
tended SHREC 2014 sketch-based 3D shape retrieval bench-
mark (Li et al. 2014a). The benchmark contains 13, 680
sketches and 8, 987 3D shapes from 171 classes. The num-
ber of sketches in each class equals to 80, and the num-
ber of 3D shapes in each class varies from 1 to 632. The
sketches are further split into the training part and the testing
part, which contain 8550 and 5130 sketches respectively. We
strictly follow the experimental settings in (Li et al. 2014a)
and report the performance of our proposed methods by us-
ing the training dataset, the testing dataset and the complete
benchmark as queries respectively. The sketch data used for
training does not overlap with the data used for testing, and
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(a) Testing dataset (b) Training dataset (c) Complete dataset

Figure 3: Precision-Recall plot performance comparisons on the extended large-scale SHREC’14 benchmark.

the 3D shape data are always the same in all runs. The re-
sults reported on the complete benchmark are obtained by
10-fold cross-validation, that the sketch data are split into 10
partitions (i.e., 8 out of 80 sketches are selected from each
category in each partition), and one partition is used as test-
ing while the remaining are used as training in each of ten
rounds.

LD-SIFT (Darom and Keller 2012) features are extracted
from 3D shapes based on the Difference of Gaussians
(DoG)-based detector (Darom and Keller 2012). In order to
obtain global representations of the 3D shapes, the Bag-of-
Words (BoW) paradigm is applied to the local LD-SIFT fea-
tures by projecting these features onto a 1024-dimensional
dictionary. Sketches are represented by the ScSPM (Yang et
al. 2009) model, where the feature dimensions for the bot-
tom level, the middle level and top level are 16384, 4096
and 1024, respectively. In order to fix the same feature di-
mension for inputs of all levels, Principal Component Anal-
ysis (Moore 1981) is applied to features at the bottom and
middle level. We also fix the feature dimensions for the
hidden layer and target layer as 1024. For the single-level
CDNN approach, PCA is applied to the concatenated 21504-
dimensional features to 1024 dimensions.

The restricted Boltzmann machine (RBM) (Hinton and
Salakhutdinov 2006) is used for pre-training. The numbers
of iterations for RBM and backpropagation are set as 50 and
500, respectively, and the balancing parameter λ is set as
0.001.

Experimental Results and Discussions
The 7 commonly used evaluation metrics, Nearest Neigh-
bor (NN), First Tier (FT), Second Tier (ST), E-Measure (E),
Discounted Cumulated Gain (DCG) and Average Precision
(AP) (Shilane et al. 2004), are used for evaluating the per-
formance of the proposed methods. Considering the unbal-
anced number of 3D shapes within different classes, we fol-
low (Li et al. 2014a) and adopt the reciprocally weighted
evaluation metric for performance comparisons in our ex-
periment, where lower weights are assigned to categories
that contain less available 3D shapes. We compare with the-
state-of-the-arts methods, Bag-of-Features of Dense SIFT

Elephant

Airplane

Elephant

Crab

Potted plant

Apple

Figure 4: Illustration of the top-5 3D shape retrieval results
for some sketch queries in different categories. The scores
on the top of retrieved 3D shapes denote confidence levels of
retrieval according to query sketches. Each red rectangular
denotes a false positive retrieval.

(BF-DSIFT), Cross-Domain Manifold Ranking (CDMR),
Shape Context Matching (SBR-VC), Overlapped Pyramid
of Histograms of Oriented Gradients (OPHOG), Similarity
Constrained Manifold Ranking-Overlapped Pyramid of His-
tograms of Oriented Gradients (SCMR-OPHOG) and Bag-
of-Features Junction-based Extended Shape Context (BOF-
JESC) (Li et al. 2014a). The performance comparisons of the
training dataset, the testing dataset and the complete bench-
mark under the weighted evaluation metric are given in Ta-
ble 1. Due to the space limit, we only show the best results
of methods summarized in (Li et al. 2014a). Complete com-
parisons with different parameter settings of these methods
are given by the Precision-Recall (PR)-curves in Figure 3.

In order to demonstrate the effectiveness of these trans-
fer learning techniques, we also show the retrieval results
when transfer learning techniques are not applied to low-
level sketch and 3D shape features (NT). Experimental re-
sults suggest both CDNN and PCDNN can achieve the-state-
of-the-arts performance, and PCDNN can further achieve
significant improvements over CDNN when multiple neu-
ral networks are trained. Since the PR-curves for both the
common and weighted evaluation metrics are the same, only
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Table 1: Reciprocally weighted performance metrics comparison on different datasets of the extended large-scale SHREC’14
benchmark for the Query-by-Sketch retrieval.

Contributor Method NN FT ST E DCG AP

Training dataset 1.0e − 05∗
Furuya BF-fGALIF 0.435 0.274 0.414 0.175 2.038 0.344

CDMR (σSM = 0.05, α = 0.3) 0.442 0.301 0.454 0.201 2.055 0.369
Li BSBR-VC (α = 1) 0.259 0.145 0.267 0.164 1.868 0.198
Tatsuma SCMR-OPHOG 0.526 0.399 0.615 0.318 2.173 0.490
Zou BOF-JESC (Words800VQ) 0.334 0.149 0.260 0.137 1.884 0.221
Ours NT 0.003 0.003 0.005 3.754 0.003 0.006

CDNN 0.876 0.582 0.905 0.529 5.257 0.762
PCDNN 2.026 1.261 1.704 0.783 4.638 1.493

Testing dataset 1.0e − 05∗
Furuya BF-fGALIF 0.802 0.520 0.735 0.289 3.408 0.596

CDMR (σSM = 0.05, α = 0.3) 0.789 0.526 0.773 0.330 3.430 0.626
Li BSBR-VC (α = 1) 0.449 0.264 0.425 0.264 3.051 0.291
Tatsuma SCMR-OPHOG 0.993 0.743 1.035 0.541 3.676 0.886
Zou BOF-JESC (Words800VQ) 0.462 0.271 0.467 0.236 3.149 0.370
Ours NT 0.195 0.049 0.009 6.077 0.004 0.009

CDNN 2.515 1.658 2.411 1.318 9.882 2.075
PCDNN 5.175 3.285 4.406 2.056 12.39 3.960

Complete benchmark 1.0e − 05∗
Furuya BF-fGALIF 0.283 0.180 0.265 0.109 1.275 0.218

CDMR (σSM = 0.05, α = 0.3) 0.284 0.192 0.286 0.125 1.285 0.232
Li BSBR-VC (α = 1) 0.164 0.094 0.164 0.101 1.159 0.118
Tatsuma SCMR-OPHOG 0.345 0.260 0.386 0.200 1.366 0.316
Zou BOF-JESC (Words800VQ) 0.196 0.097 0.167 0.087 1.179 0.138
Ours NT 0.007 0.203 0.273 0.123 3.249 0.471

CDNN 0.954 0.600 0.918 0.501 3.706 0.734
PCDNN 1.457 0.911 1.229 0.567 3.375 1.084

one group of PR-curves for the training dataset, the testing
dataset and the complete benchmark are plotted. We can ob-
serve that the PR-curve of PCDNN leads a large margin over
the PR-curve of SCMR-OPHOG approach at lower recall
rates (approximately less than 0.4), while the former drops
below the latter at higher recall rates. This nature shows
the superiority of CDNN and PCDNN for highly ranked
documents. On the other hand, the larger performance im-
provements of CDNN and PCDNN in terms of NN, FT,
ST, E and DCG scores, which measure the precisions of top
ranked results instead of the whole ranking list, can also val-
idate this. Compared to the unweighted performance metric,
CDNN and PCDNN achieve more remarkable performance
improvements under the reciprocally weighted metric. The
higher precession values of SCMR-OPHOG at higher re-
call levels denote better performance when including some
less highly ranked documents, however, users are more in-
terested in highly ranked documents for retrieval tasks. Most
importantly, our methods achieve higher overall scores un-
der all criterion. The retrieval results of 5 categories in the
complete benchmark are also given in Figure 4, where the
score on the top of each retrieved 3D shape denotes the rel-
ative confidence according to the sketch query and each red
rectangular denotes a false positive instance.

Conclusion and Future Work
In this work, we addressed the challenging sketched-based
3D shape retrieval problem with neural network-based ap-
proaches. By jointly learning a pair of category-specific neu-
ral networks while allocating identical target vectors at the
target layers of both networks, sketches and 3D shapes can
present in a unified feature space with reduced magnitudes
of cross-domain discrepancies when their original low-level
features pass through the neural network pair. We further de-

veloped a hierarchical learning paradigm, PCDNN, which
maps sketch images to 3D shapes using multiple CDNN at
different levels, so that the homogeneous information across
both domain can be mined in a more aggressive fashion.
Since both CDNN and PCDNN do not require any cor-
respondence information during the learning process, they
are superior to many other transfer learning methods, and
can be easily generalized. We evaluated the effectiveness
of both CDNN and PCDNN on the extended large-scale
SHREC 2014 benchmark. Sufficient experimental results
suggest both methods can achieve the state-of-the-art per-
formance, and PCDNN can further improve CDNN when
cooperating with the pyramid learning structure.

In the future work, we plan to investigate if the perfor-
mance can be improved by cooperating with deep learn-
ing architectures (e.g., increasing the number of neural net-
work layers), or when increasing the number of pyramid lev-
els. Also, we plan to investigate the possibility of employ-
ing an existing three-dimensional CNN that operates on 3D
shapes while shares an identical softmax layer with a two-
dimensional CNN that operates on sketches.
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