
The Meta-Problem for Conservative Mal’tsev Constraints

Clément Carbonnel∗
LAAS-CNRS

University of Toulouse, INP Toulouse, France
carbonnel@laas.fr

Abstract

In the algebraic approach to CSP (Constraint Satisfaction
Problem), the complexity of constraint languages is studied
using closure operations called polymorphisms. Many of
these operations are known to induce tractability of any lan-
guage they preserve. We focus on the meta-problem: given a
language Γ, decide if Γ has a polymorphism with nice proper-
ties. We design an algorithm that decides in polynomial-time
if a constraint language has a conservative Mal’tsev polymor-
phism, and outputs one if one exists. As a corollary we ob-
tain that the class of conservative Mal’tsev constraints is uni-
formly tractable, and we conjecture that this result remains
true in the non-conservative case.

1 Introduction
The complexity of constraint satisfaction problems is a very
active and fruitful research area. In particular, the study of
CSP over fixed constraint languages has attracted consid-
erable interest since it was conjectured that for every finite
constraint language Γ, CSP(Γ) is either in P or NP-hard (the
Feder-Vardi Dichotomy Conjecture) (Feder and Vardi 1998).
The most remarkable achievements to date include a charac-
terization of languages that can be solved by local consis-
tency methods (Barto and Kozik 2014) or Gaussian-like al-
gorithms (Idziak et al. 2007), and a proof of the Dichotomy
Conjecture for conservative languages (languages with all
possible unary relations over the domain) (Bulatov 2003).
These results use the algebraic approach to CSP: every lan-
guage Γ can be associated with a set of closure operations,
called polymorphisms, which have been shown to entirely
determine the complexity of CSP(Γ) (Jeavons, Cohen, and
Gyssens 1997).

Given an operation f : Dk → D, a language Γ over the
domain D admits f as a polymorphism if every constraint
relation R ∈ Γ is closed under componentwise application
of f . For example, the affine relation x+y+z = c is closed
under the polymorphism f(x1, x2, x3) = x1−x2+x3, since
x1 + y1 + z1 = c, x2 + y2 + z2 = c, x3 + y3 + z3 = c
imply that f(x1, x2, x3) + f(y1, y2, y3) + f(x3, y3, z3) =
(x1 − x2 + x3) + (y1 − y2 + y3) + (z1 − z2 + z3) = c.

∗supported by ANR Project ANR-10-BLAN-0210.
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A number of sufficient conditions for tractability have been
identified this way; for instance, CSP(Γ) is solved by enforc-
ing generalized arc-consistency (GAC) if Γ has a semilattice
polymorphism (Jeavons, Cohen, and Gyssens 1997). Each
sufficient condition defines a tractable class, that is, a set T
of languages such that ∀Γ ∈ T, CSP(Γ) is in P.

There are some desirable properties that good tractable
classes can be expected to have. First, we know that there
exists a polynomial-time algorithm for each fixed Γ ∈ T, but
there is no guarantee that there exists one polynomial-time
algorithm that solves every CSP(Γ), Γ ∈ T. This can be for-
malized as a promise problem: if CSP(T) is CSP together
with the promise that the instance is over a language in T, is
it true that CSP(T) ∈ P? If the answer is yes, we say that T is
uniformly tractable (or equivalently that T uniformizes (Ko-
laitis and Vardi 2000)).

We shall illustrate this notion with an example. Consider
the tractable class Tc of all languages Γ such that CSP(Γ)
can be solved by enforcing strong k-consistency, where k
only depends on Γ. Since there is no bound on k in the def-
inition of Tc, it is not clear that Tc is uniformly tractable.
However, a powerful result by Bulatov implies that enforc-
ing a form of consistency called (2, 3)-minimality suffices
to solve CSP(Γ) for each Γ ∈ Tc (Bulatov 2010). Enforc-
ing (2, 3)-minimality is polynomial-time, so Tc is uniformly
tractable.

Even if the class is uniformly tractable, one problem re-
mains: how hard is it to decide if a given language Γ is in
T? This is the meta-problem for T. In its full generality, the
meta-problem has no restriction on the input language. In
particular, the domain size is not assumed to be bounded.
In the worst case the meta-problem is not necessarily decid-
able, but in practice it is often in NP. If the class is defined
by the existence of polymorphisms satisfying a certain set
of identities (which is usually the case), the meta-problem is
a polymorphism detection problem. For instance, the class
of languages that admit a semilattice polymorphism is uni-
formly tractable since it is solved by GAC, but the meta-
problem is NP-complete (Green and Cohen 2008).

Beyond pure academic interest, the main reason for inves-
tigating the complexity of meta-problems concerns general-
purpose solvers. It is great to know that languages with a
nice polymorphism can be solved efficiently, but this infor-
mation is virtually useless for practical constraint solvers if

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

3376

they cannot decide quickly if the language of the instance
they are trying to solve has the desired polymorphism. Fur-
thermore, it was observed that constraint solvers may per-
form poorly even on instances that are theoretically very
easy (Petke and Jeavons 2009), which suggests that spend-
ing some time analyzing the instance before starting search
could be beneficial. Beyond preprocessing uses, a very ef-
ficient detection algorithm could be exploited in the frame-
work of backdoors, which aims to provide performance im-
provements even if only a fraction of the constraints have a
nice polymorphism (Williams, Gomes, and Selman 2003).
In this setting, conservative polymorphisms are of special
interest (Bessiere et al. 2013).

Sometimes, the complexity of the meta-problem is
strongly related to the uniform tractability question. This
is true for the tractable class TMal of all languages that ad-
mit a Mal’tsev polymorphism, which include as particular
cases the languages whose relations are linear equations over
a field (Bulatov 2002). The solution algorithm resembles
Gaussian elimination, in that it starts from an instance with-
out any constraint and then adds the constraints one by one
while maintaining at all times a polynomial-sized represen-
tation of the solution set (Bulatov and Dalmau 2006)(Dyer
and Richerby 2013). This algorithm remains polynomial
time even if the domain size or the number of tuples are
not fixed, but it does not entail uniform tractability because
it assumes that the Mal’tsev polymorphism is known. Since
there are roughly dd

3

possible Mal’tsev operations over a
domain of size d and it is possible that only one of them
is a polymorphism of the language, an exhaustive approach
is not satisfying. However, should a polynomial-time algo-
rithm that outputs a Mal’tsev polymorphism if one exists be
engineered, we could interface it with the state-of-the-art
solution algorithm and prove uniform tractability of TMal .
But then, this polymorphism detection algorithm would also
prove that the meta-problem is in P.

This paper builds around the observation that TMal is
likely to have an easy meta-problem and be uniformly
tractable. Although we cannot prove this claim in its full
generality, we present a proof for the restricted case of con-
servative Mal’tsev polymorphisms. This extends previous
results showing that conservative Mal’tsev polymorphisms
can be detected in polynomial time in digraphs (Carvalho
et al. 2011) and binary relational structures (Bessiere et al.
2013). As a byproduct, we obtain a greatly improved al-
gorithm for detecting conservative majority polymorphisms,
which generalise 2SAT and connected row-convex con-
straints.

Besides being a first step towards proving the uniform
tractability of Mal’tsev constraints, our result for the conser-
vative case is interesting in its own right. The tractable class
of languages having a conservative Mal’tsev polymorphism
has seen little pratical use, but is of great theoretical impor-
tance. For instance, conservative Mal’tsev polymorphisms
are one of the main ingredients in Libor Barto’s proof of the
conservative Dichotomy Conjecture (Barto 2011). More-
over, the existence of a conservative Mal’tsev polymorphism
is a necessary condition for the tractability of CCSP(Γ), a
variant of CSP(Γ) in which global cardinality constraints

are allowed in addition to the relations of Γ (Bulatov and
Marx 2010). Examples of conservative Mal’tsev opera-
tions include extreme value functions, which map any triplet
{x, y, z} of natural numbers to α ∈ {x, y, z} such that
|α−median(x, y, z)| is maximum.

2 Preliminaries
CSP. A Constraint Satisfaction Problem (CSP) is a triple
(X ,D,C) where X is a set of variables, D is a finite set of
values, and C is a set of constraints. A constraint C of arity
r is a pair (S(C),R(C)) where S(C) ∈ X r is the scope
of C and R(C) ⊆ Dr is the relation of C. Note that R(.)
and S(.) can be seen as operators that return the relation
and scope of a constraint. A solution of I is an assignment
φ : X → D such that ∀C ∈ C, φ(S(C)) ∈ R(C), and the
goal is to decide if I has a solution. A constraint language
is a set of relations, and the language of a CSP instance I
is the set ΓI = {R(C) | C ∈ C}. Given a fixed constraint
language Γ, CSP(Γ) is the set of all instances I such that
ΓI ⊆ Γ. We assume that all relations are given in extension
(i.e. as lists of tuples).
Polymorphisms. An operation f : D → Dk is a poly-
morphism of a language Γ over D if for all R ∈ Γ of
arity r and t1, . . . , tk ∈ R, < f(t1[1], . . . , tk[1]), . . .,
f(t1[r], . . . , tk[r]) > ∈ R. The set of all polymor-
phisms of Γ is denoted by Pol(Γ) and constitutes an op-
erational clone, that is, a set of operations closed under
composition that contains all projections (Jeavons, Cohen,
and Gyssens 1997). It has been shown that the complex-
ity of CSP(Γ) is entirely determined by Pol(Γ) (Jeavons,
Cohen, and Gyssens 1997). An operation f : D → Dk

is conservative if f(x1, . . . , xk) ∈ {x1, . . . , xk} for all
x1, . . . , xk ∈ D, Mal’tsev if it is ternary and ∀x, y ∈ D,
f(x, x, y) = f(y, x, x) = y, and majority if it is ternary and
∀x, y ∈ D, f(x, x, y) = f(x, y, x) = f(y, x, x) = x.
Tools. The most useful tool used to design polymorphism
detection algorithms is the indicator problem. Formally,
given an integer k and a finite constraint language Γ, the
indicator problem of order k of Γ is a CSP instance IP k(Γ)
with one variable xv1,...,vk for every k-tuple (v1, . . . , vk) of
elements from D. Then, for each R ∈ Γ of arity r and
t1, . . . , tk ∈ R, IP k(Γ) contains a constraint CR

t1,...,tk
with

scope (xt1[1],...tk[1], . . . , xt1[r],...,tk[r]) and relation R. Go-
ing back to the definition of a polymorphism, it follows that
an operation f of arity k is a polymorphism of Γ if and only
if xv1,...,vk ← f(v1, . . . , vk) is a solution of IP k(Γ).

If we are only looking for polymorphisms with special
properties, sometimes the solution set of IPk(Γ) can be re-
stricted to exactly those polymorphisms. For instance, if k =
3 adding the unary constraints xv1,v1,v2 ∈ {v1}, xv1,v2,v1 ∈{v1}, xv2,v1,v1

∈ {v1} for every v1, v2 ∈ D will ensure that
every solution of this modified indicator problem IPmaj(Γ)
is a majority polymorphism. This type of restriction is some-
times not possible without increasing exponentially the size
of the indicator problem (e.g. semilattices). It was first
observed in (Feder and Vardi 1998) that the language of
IPmaj(Γ) is Γ plus unary relations with a single tuple, and
thus has a majority polymorphism if and only if IPmaj(Γ)

3377

has a solution. Furthermore, by the properties of majority
polymorphisms it follows that if IPmaj(Γ) has a solution,
then it can be solved backtrack-free by applying singleton
arc-consistency at each node of the search tree (Chen, Dal-
mau, and Grußien 2013). The standard algorithm for detect-
ing majority polymorphisms starts by building IPmaj(Γ)
and then solves it by a standard search, maintaining SAC at
each node. If the algorithm backtracks, we can conclude that
Γ has no majority polymorphism, so the whole procedure is
polynomial-time. This approach has been used for several
other tractable classes (Barto 2015)(Feder and Vardi 1998).
However, this kind of detection algorithm requires the exis-
tence of a uniform algorithm for the tractable class, which is
not known for several polymorphisms including (conserva-
tive) Mal’tsev polymorphisms. In this paper we introduce a
different technique, based on a detailed analysis of the struc-
ture of the indicator problem.

3 First observation
Recall that the existence of a uniform algorithm for Mal’tsev
constraints is equivalent to the tractability of the problem
CSP(TMal), where we only have the promise that the lan-
guage of the instance has a Mal’tsev polymorphism. The
complexity of this problem is open, but is it easy to see that
the following is true.

Observation 1. CSP(TMal) ∈ NP ∩ coNP.

Proof. Membership in NP follows from that of the general
CSP. For membership in coNP, a Mal’tsev polymorphism f
of the constraint language is a certificate: with the knowl-
edge of f , the algorithm from (Dyer and Richerby 2013)
provides a way to check in polynomial time that the instance
has no solution.

Unless NP = coNP, this observation rules out the possi-
bility that this problem is NP-hard (Goldreich 2010). Be-
sides, examples of NP ∩ coNP problems that are not be-
lieved to be in P are quite rare, so we regard this observation
as evidence that Mal’tsev constraints may have a uniform
algorithm. Using the same kind of reasoning as for major-
ity polymorphisms, it would follow that Mal’tsev polymor-
phisms can be detected in polynomial time. The next section
will provide additional evidence by proving that conserva-
tive Mal’tsev constraints are uniformly tractable.

We note that this observation also applies to the larger
tractable class of languages having a k-edge polymorphism
(for a fixed k) by using the algorithm of (Idziak et al. 2007)
for membership in coNP. However, for the sake of simplicity
we shall focus on the case k = 2, which corresponds to
Mal’tsev polymorphisms.

4 Conservative Mal’tsev constraints
In this section, we show that the existence of a conserva-
tive Mal’tsev polymorphism can be decided in polynomial
time. The outline of the proof is as follows. We first reduce
the problem to that of finding a conservative minority poly-
morphism (i.e. a ternary polymorphism m such that ∀x, y,
m(x, x, y) = m(x, y, x) = m(y, x, x) = y). Then, we

show that enforcing arc-consistency on the indicator prob-
lem associated with conservative minority polymorphisms
leaves an extremely well-structured instance, and a simple
reduction rule allows us to eliminate every variable whose
domain contains more than two values. The residual in-
stance is then shown to be equivalent to a system of linear
equations over GF (2), and can be solved by Gaussian elim-
ination.

Lemma 1. Let F be an operational clone. F contains a
conservative Mal’tsev operation if and only if it contains a
conservative minority operation.

Proof. Every minority operation is a Mal’tsev operation,
hence one implication is trivial. Suppose that F contains
a conservative Mal’tsev operation m, and let

f(x, y, z) = m(z,m(y,m(x, z, y), x),m(x, z, y))

This operation belongs to F because F is a clone, and is
conservative since m is conservative. Furthermore, for every
a, b we have

f(a, b, a) = m(a,m(b,m(a, a, b), a),m(a, a, b)) = b

f(b, a, a) = m(a,m(a,m(b, a, a), b),m(b, a, a)) = b

and it is fairly straightforward to see that f(a, a, b) =
m(b,m(a,m(a, b, a), a),m(a, b, a)) is always equal to b,
whether m(a, b, a) = b or m(a, b, a) = a. Hence, f is a
minority operation of F .

Although this lemma may be known to some, it appears to
have never been pointed out in the literature. The closest re-
sults we could find were that digraphs with a conservative
Mal’tsev polymorphisms also have a conservative minor-
ity polymorphism (Carvalho et al. 2011) and constraint lan-
guages with both a conservative majority and a conservative
Mal’tsev polymorphism also have a conservative minority
polymorphism (Bulatov and Marx 2010). In our case, this
lemma is crucial, since the indicator problem correspond-
ing to conservative minority polymorphisms has interesting
(i.e., algorithmically exploitable) properties that its counter-
part for Mal’tsev polymorphisms does not have.

Given a language Γ, we denote by IPcmin(Γ) the indica-
tor problem of order 3 of Γ with the additional constraints
xv1,v1,v2 ∈ {v2}, xv1,v2,v1 ∈ {v2}, xv2,v1,v1 ∈ {v2} for
every v1, v2 ∈ D and xv1,v2,v3 ∈ {v1, v2, v3} for every
v1, v2, v3 ∈ D. By construction, the solutions of IPcmin(Γ)
are exactly the conservative minority polymorphisms of Γ.
Given a constraint C = (S,R) and S′ ⊆ S, we denote by
C[S′] the projection of C onto S′. For our structural analy-
sis we will assume that for every R∗ ∈ Γ, IPcmin(Γ) also
contains a constraint CR′

t′1,t
′
2,t

′
3

for every projection R′ of R∗

and t′1, t
′
2, t

′
3 ∈ R′. These additional constraints are only

needed to facilitate our analysis and will not be required by
the algorithm.

In a generalized arc-consistent instance, the domain D(x)
of a variable x is the set of values for x that have supports in
every constraint whose scope contains x. For the remainder
of the paper, we will assume that GAC has been enforced on

3378

IPcmin(Γ). The following observation describes an imme-
diate but very important property that will be used repeat-
edly in our proofs.

Observation 2. If CR∗
t1,t2,t3 = (R,S) is a constraint in

IPcmin(Γ) and t, t′, t′′ ∈ R, thenR(CR∗
t,t′,t′′) ⊆ R.

Proof. Let CR∗
t,t′,t′′ = (R′, S′), and |S| = |S′| = r. Be-

fore GAC was enforced, both CR∗
t1,t2,t3 and CR∗

t,t′,t′′ had
R∗ as relation. Thus, by definition of generalized arc-
consistency, we have R = R∗ ∩ (πx∈SD(x)) and R′ =
R∗ ∩ (πx∈S′D(x)). However, since t, t′, t′′ ∈ R, the
conservativity constraints ensure that for each i = 1..r,
D(S′[i]) ⊆ D(S[i]). Therefore, R′ ⊆ R.

Throughout the paper we will treat elements of a scope
S as occurences of variables, and not simply variables. For
example, given x ∈ S, the restricted scope S\x removes the
occurence x from S, but not every occurence of the variable
represented by x. A constraint C = (S,R) is functional
in x ∈ S if for every valid assignment t of S\x there is at
most one value d ∈ D such that (S\x ← t, x ← d) is an
assignment to S that satisfies C. Finally, if two relations R
and R′ differ only by a permutation of their columns, we
write R ≈ R′. The proof of the next lemma gives a simple
example of the use we will make of Observation 2.

We remind the reader that if C = CR∗
t1,t2,t3 is a con-

straint of IPcmin(Γ), the kth variable in its scope is
xt1[k],t2[k],t3[k]. Therefore, if t1[k] = t2[k], the unary con-
straints will ensure that xt1[k],t2[k],t3[k] is ground (i.e. has a
singleton domain) with value t3[k].

Lemma 2. Let C = (R,S) be a constraint in IPcmin(Γ),
and let x ∈ S. Either C is functional in x, or R ≈
R(C[S\x])×D(x).

Proof. Let C = CR∗
t1,t2,t3 and x = xv1,v2,v3 . Without loss

of generality, we assume that x occurs last in S. First, sup-
pose that there exists t ∈ R(C[S\x]) such that (t, vk) ∈
R(C) for every vk ∈ D(x). We will show that every tuple
must have the same property as t. Let t′ ∈ R(C[S\x]) be
such that (t′, vα) ∈ R(C) but (t′, vβ) /∈ R(C) for some
{vα, vβ} ⊆ D(x). Then, because of the unary constraints,
the constraint CR∗

(t,vα),(t,vβ),(t′,vα) has only ground variables
in its scope, and its only possible support is (t′, vβ). By
Observation 2, R(CR∗

(t,vα),(t,vβ),(t′,vα)) ⊆ R(C) and hence
(t′, vβ) ∈ R(C), a contradiction. Therefore, such a partial
tuple t′ cannot exist and R ≈ R(C[S\x])×D(x).

Now, suppose that D(x) = {v1, v2, v3} and there ex-
ists t ∈ R(C[S\x]) such that (t, vk) ∈ R(C) for exactly
two indices k, say 1 and 2. Since C is arc-consistent, there
exists t′ such that (t′, v3) ∈ R(C). However, the scope
of constraint CR∗

(t,v1),(t,v2),(t′,v3)
contains only ground vari-

ables and x; therefore R(CR∗
(t,v1),(t,v2),(t′,v3)) contains the

tuple (t′, vk) for all k ∈ {1, 2, 3}. By Observation 2 we
have R(CR∗

(t,v1),(t,v2),(t′,v3)) ⊆ R(C), and the partial tuple
t′ brings us back to the first case.

If no tuples satisfy either of the above two conditions, C
is functional in x.

The key observation in our proof will be that variables
with domain size 1 or 2 have very limited interactions with
variables with domain size 3 once arc-consistency has been
enforced. Given a constraint C in IPcmin(Γ), we denote by
S|1,2(C) the restriction of S to variables with domain size
1 or 2, and by S|3(C) the restriction of S to variables with
domain size 3.

Lemma 3. Let C be a constraint in IPcmin(Γ) and x ∈
S|3(C). R(C[S|1,2(C) ∪ x]) ≈ R(C[S|1,2(C)])×D(x).

Proof. Let C1 = C[S|1,2(C)] = (R1, S1), C2 =
C[S|1,2(C) ∪ x] = (R2, S2) and assume that x = xv1,v2,v3

occurs last in the scope of C2. By Lemma 2, either R2 =
R1 × D(x) or C2 is functional in x. If it is functional,
then by GAC there exist t, t′, t′′ ∈ R1 such that R2 con-
tains (t, v1), (t′, v2) and (t′′, v3). Then, the scope of C ′ =
CR∗

(t,v1),(t′,v2),(t′′,v3)
has only ground variables (those corre-

sponding to S|1,2(C)) plus xv1,v2,v3 . Therefore, there exists
t∗ such that R(C ′) contains (t∗, v1), (t∗, v2) and (t∗, v3).
By Observation 2, R(C ′) ⊆ R2 and C2 is not functional in
x, a contradiction.

Lemma 3 only deals with constraints whose scope con-
tains exactly one variable with domain size 3. Unfor-
tunately, for k variables it is not completely true that
R(C[S|1,2(C) ∪ {x1, . . . , xk}]) ≈ R(C[S|1,2(C)]) ×
D(x1) × . . . × D(xk). Let xv1

1 ,v
1
2 ,v

1
3
, . . . , xvk

1 ,v
k
2 ,v

k
3

be k
variables of the indicator problem. The index-equality con-
straint between these variables has three satisfying assign-
ments: (v11 , . . . , v

k
1), (v

1
2 , . . . , v

k
2) and (v13 , . . . , v

k
3). The

next Proposition is the keystone of our proof, and gives the
correct generalization of Lemma 3 to an arbitrary number of
variables with domain size 3.

Proposition 1. Let C be a constraint in IPcmin(Γ). There
exists n ≥ 0 and a set of constraints C∗, C1, . . . , Cn such
that

C = C∗ ∧
(∧

i=1..n

Ci

)

where the scope of C∗ is S(C), the constraints Ci are
(possibly unary) index-equalities whose scope are disjoint
and cover S|3(C), and

R(C∗) ≈ R(C[S|1,2(C)])×Πx∈S|3(C)D(x)

Proof. We proceed by induction on the size of S|3(C). Let
k > 0 and suppose that Proposition 1 is true for all con-
straints C ′ such that |S|3(C ′)| ≤ k. Let C = CR∗

t1,t2,t3 =
(S,R) be a constraint with |S|3(C)| = k + 1, and x ∈
S|3(C). By Lemma 2, either C is functional in x orR(C) =

3379

R(C[S\x]) ×D(x). In the latter case, C satisfies Proposi-
tion 1 by induction. Therefore, we shall assume that C is
functional in x.

By induction, we know that C[S\x] = C∗∧
i=1..n Ci.

Let y ∈ {1..n} and Y = S(Cy). Let vi, i = 1, 2, 3
be the three possible assignments to Y . We assume with-
out loss of generality that x = xu1,u2,u3

(hence, D(x) =
{u1, u2, u3}) and (Y, x) are the last variables in S. Let
t ∈ R(C[S\{Y, x}]), and define φt : D(Y) → D(x) such
that φt(v) = {u ∈ D(x) | (t,v, u) ∈ R(C)}. We distin-
guish three cases.

1. φt has range {ui, uj} for some i
= j. One of these two
values, say ui, has a preimage of size 2. Let {vp,vs} =
φ−1
t ({ui}), vl /∈ {vp,vs}, and ty1 , t

y
2 , t

y
3 be the per-

mutation of (t,vp, ui), (t,vs, ui), (t,vl, uj) such that
tyh[Y] = vh. The constraint CR∗

ty1 ,t
y
2 ,t

y
3

has only the vari-
ables in Y as active variables, and by arc consistency its
relation must contain (t,vp, uj), (t,vs, uj), (t,vl, uj).
By Observation 2, R must contain these tuples, a con-
tradiction.

2. φt is bijective. Suppose that there exist i, j such that i
= j
and φt(vi) = uj . Let us /∈ {uj , ui}, t′ = (t,vi, uj) and
t′′ = (t, φ−1

t (us), us). Let tx1, t
x
2, t

x
3 be the permuta-

tion of the tuples ti, t
′, t′′ such that txh[x] = uh. Recall

that ti is one of the three tuples associated with the con-
straint C = CR∗

t1,t2,t3 , and hence ti ∈ R∗, ti[Y] = vi

and ti[x] = ui. Then, the constraint CR∗
tx1,t

x
2,t

x
3

has x

as the only active variable in its scope, and for every
u ∈ D(x) its relation must contain the tuple tu such
that tu[l] = ti[l] if l /∈ Y ∪ {x}, tu[Y] = φ−1(us),
and tu[x] = u. Note that at this point, Observation 2
cannot be applied because ti may not belong to R(C).
Let ta1, t

a
2, t

a
3 be the permutation of ti, t

s, t′ such that
tah[x] = uh. The constraint CR∗

ta1,t
a
2,t

a
3

has only ground
variables in its scope except x, and its relation R′ must
contain the tuple tf such that tf [x] = uj and tf [l] = t′′[l]
otherwise. However, since R′ ⊆ R we have tf ∈ R, a
contradiction. Therefore, if φt is bijective then it must
map every vi to ui.
Now, suppose that there exists a partial tuple t′ such that
φt′ is not equal to φt. By Case 1 and the reasoning
above, φt′ must map every vi to the same value up. Let
{vi,vj} = D(Y)\vp. If we denote by tb1 , t

b
2 , t

b
3 the per-

mutation of (t′,vj, up), (t′,vp, up) and (t,vi, ui) such
that tbh[Y] = vh, the constraint CR∗

tb1 ,t
b
2 ,t

b
3

has only the
variables in Y as active variables in its scope, and by arc
consistency its relation must contain the tuple (t,vp, ui).
By Observation 2, this tuple must belong to R, a contra-
diction.
Finally, in this case every tuple must induce an index-
equality between Y and x. Therefore, we can add x to
the scope of Cy and continue the induction.

3. φt has range {u}. By Cases 1 and 2, we know that
the only situation where the induction may not hold is
when φt′ is in this case for every partial tuple t′ and
every choice of Y . For each t′ ∈ R(C[S\x]) and

index-equality constrained set of variables Y ′, we define
JY ′(t′) to be t′ plus the set of all tuples that differ from
t′ only on the assignment to Y ′. By functionality, for
each t′ ∈ R(C[S\x]) we can define ψ(t′) to be the sole
value u ∈ D(x) such that (t′, u) ∈ R. It is immediate
that ψ(tα) = ψ(tβ) for each tα, tβ ∈ JY ′(t′), for any
fixed Y ′, t′. Furthermore, for any two tuples tα, tβ ∈
R(C[S\x]) such that tα[S|1,2(C)] = tβ [S|1,2(C)], there
exists tY1 , . . . , tYn such that tY1 ∈ JY1(t

α), tβ ∈
JYh

(tYn) and for each i, tYi+1
∈ JYi(tYi

). Unfor-
mally, starting from tα one can obtain tβ by changing
the assignments to each Yi one by one. By transitivity of
the equality, this means that ψ(tα) = ψ(tβ). Since this
is true for any pair tα, tβ that share the same values for
S|1,2(C), it follows that C[S|1,2(C) ∪ x] is functional in
x, a contradiction with Lemma 3.

Theorem 1. There exists an algorithm that decides in poly-
nomial time if a constraint language Γ admits a conservative
Mal’tsev polymorphism, and outputs one if one exists.

Proof. By Lemma 1, we can look for a conservative minor-
ity polymorphism instead. The algorithm builds IPcmin(Γ)
in time O(rlt3), where l is the number of relations and
t, r are respectively the maximum number of tuples and the
maximum arity of a relation. IPcmin(Γ) has O(lt3 + d3)
constraints and O(d3) variables. Then, we enforce GAC in
time O(rlt4). By Proposition 1, assigning every variable
xv1,v2,v3 with domain size 3 to v1 does not violate any con-
straint (since it respects index-equalities) and is consistent
with every satisfying assignment to the remaining variables.
Therefore, we can eliminate every variable with domain size
3.

We are left with an instance whose active variables have
domain size 2, and if it has a solution its language must have
a conservative minority polymorphism (conservative poly-
morphisms are preserved by GAC). Note that all minority
operations coincide on 2-elements domains; therefore, we
can rename each domain by {0, 1} (arbitrarily) and obtain
a CSP instance whose language has the unique Boolean mi-
nority polymorphism m(x, y, z) = x − y + z mod 2. This
instance is equivalent to a system of linear equations over
GF(2), and any such instance with n variables and m con-
straints can be solved in time O(n2m) by Gaussian elim-
ination. In our case, the running time is O(rlt3d6), and
hence the complexity of the whole algorithm is O(rlt3d6 +
rlt4).

If we interface our detection algorithm with the algorithm
of (Dyer and Richerby 2013), we obtain the following corol-
lary.

Corollary. The class of constraint languages with a conser-
vative Mal’tsev polymorphism is uniformly tractable.

3380

5 Conservative majority constraints
Unlike conservative Mal’tsev polymorphisms, it is already
known that conservative majority polymorphisms can be de-
tected in polynomial time (Feder and Vardi 1998). The state-
of-the-art algorithm, described in Section 2, has O(rd6lt4)
time complexity (Bessiere et al. 2013). In the section, we
will show that this algorithm can be greatly improved using
the approach we described for conservative Mal’tsev poly-
morphisms.

As seen in Section 4, analyzing the structure of the indi-
cator problem for languages of large arities can be tedious.
Fortunately we need not do this twice, as languages with ma-
jority polymorphisms are 2-decomposable: each constraint
can be replaced by its binary projections without altering
the solution set of the instance (Jeavons, Cohen, and Cooper
1998).

It is fairly straightforward to see that if a language Γ has
a majority polymorphism, then the indicator problem of its
2-decomposition Γ2 is equivalent to the 2-decomposition of
the indicator problem of Γ. We denote by IPcmaj(Γ2) the
indicator problem of order 3 of Γ2 with the additional con-
straints xv1,v1,v2 ∈ {v1}, xv1,v2,v1 ∈ {v1}, xv2,v1,v1 ∈ {v1}
for every v1, v2 ∈ D and xv1,v2,v3

∈ {v1, v2, v3} for every
v1, v2, v3 ∈ D. The solutions of IPcmaj(Γ2) are exactly the
conservative majority polymorphisms of Γ2.

Note that Observation 2 can be applied to IPcmaj(Γ2)
since its proof only uses conservativity.

Lemma 4. If IPcmaj(Γ2) is GAC, the assignment

xu1,u2,u3
← (ui ∈ D(xu1,u2,u3

) | i is minimum)

is a solution.

Proof. We start by considering IPcmaj(Γ2) before GAC
is applied. Let CR∗

t1,t2,t3 = (S,R∗) be a constraint
of IPcmaj(Γ2) with scope (xu1,u2,u3 , xv1,v2,v3) such that
both variables are active (i.e. |{u1, u2, u3}| = 3 and
|{v1, v2, v3}| = 3, as otherwise the unary majority con-
straints would force the variable to be ground). Suppose
that there exists a pair i
= j such that t = (ui, vj) ∈ R.
Let k be the index such that k /∈ {i, j} and (t′1, t

′
2, t

′
3) be

the permutation of the tuples t, ti, tk such that t′1[2] = v1,
t′2[2] = v2 and t′3[2] = v3. Consider the constraint
CR∗

t′1,t
′
2,t

′
3
= (S′, R∗). The second variable in S′ is xv1,v2,v3

and after arc-consistency the first variable will be fixed to the
value ui. Therefore, by Observation 2, after arc-consistency
the constraint CR∗

t1,t2,t3 = (S,R) will contain the tuple
(ui, v) for every v ∈ D(xv1,v2,v3). From this we can de-
duce that, after arc-consistency, for every i we have either
(ui, vi) ∈ R or (ui, v) ∈ R for every v in the domain of
xv1,v2,v3 . In particular, if i and j are the minimum indices
such that both ui and vi are in the domains, (ui, vj) always
belongs to R.

Theorem 2. Conservative majority polymorphisms can be
detected in time O(rlt4) in constraint languages with l dis-
tinct relations of arity at most r and containing at most t
tuples.

Proof. The algorithm starts by assuming that a conservative
majority polymorphism exists. We build IPcmaj(Γ) and en-
force GAC in time O(rlt4). Since IPcmaj(Γ) is equivalent
to IPcmaj(Γ2), we can use Lemma 4 to find a solution of
the resulting instance. If this solution is a majority polymor-
phism of Γ (which can be verified in time O(rlt4)) the algo-
rithm returns YES; otherwise it returns NO. The complexity
of the whole procedure is O(rlt4).

This time bound improves on that of (Bessiere et al. 2013)
by a factor of d6. Besides, the time complexity of our al-
gorithm is roughly that of checking if a given conservative
majority operation is a polymorphism of Γ, so there is little
room for improvement.

6 Conclusion
Using a detailed analysis of the indicator problem for
conservative minority polymorphisms, we have designed
a polynomial-time algorithm for detecting conservative
Mal’tsev polymorphisms in arbitrary constraint languages,
and obtained as a side result a greatly improved algorithm
for detecting conservative majority polymorphisms.

As noted in the introduction, our results imply a uni-
form algorithm for constraint languages with a conservative
Mal’tsev polymorphism. Motivated by Observation 1, we
make the following conjecture.

Conjecture 1. There exists a uniform algorithm for con-
straint languages with a Mal’tsev polymorphism, and the
meta-problem is decidable in polynomial-time.

The techniques we have developed in this paper make es-
sential use of the fact that we are looking for conservative
polymorphisms, and are unlikely to be sufficient to prove
Conjecture 1 in its full generality. New ideas are needed,
and it may be interesting to see if the algorithm from (Dyer
and Richerby 2013) can be uniformized by using a different
notion of compact representation of solution sets that only
requires the promise that a Mal’tsev polymorphism exists.

References
Barto, L., and Kozik, M. 2014. Constraint satisfaction prob-
lems solvable by local consistency methods. J. ACM 61(1):3.
Barto, L. 2011. The dichotomy for conservative constraint
satisfaction problems revisited. In LICS, 301–310. IEEE
Computer Society.
Barto, L. 2015. The collapse of the bounded width hierar-
chy. Journal of Logic and Computation.
Bessiere, C.; Carbonnel, C.; Hebrard, E.; Katsirelos, G.;
and Walsh, T. 2013. Detecting and exploiting subprob-
lem tractability. In Proceedings of the Twenty-Third inter-
national joint conference on Artificial Intelligence, 468–474.
AAAI Press.
Bulatov, A. A., and Dalmau, V. 2006. A simple algorithm
for Mal’tsev constraints. SIAM J. Comput. 36(1):16–27.
Bulatov, A. A., and Marx, D. 2010. The complexity of
global cardinality constraints. Logical Methods in Computer
Science 6:1–27.

3381

Bulatov, A. 2002. Mal’tsev constraints are tractable. Tech-
nical report, Computing Laboratory, University of Oxford,
Oxford, UK.
Bulatov, A. 2003. Tractable conservative constraint satis-
faction problems. In Proceedings 18th IEEE Symposium on
Logic in Computer Science, LICS’03, 321–330.
Bulatov, A. A. 2010. Bounded relational width. Technical
report, School of Computer Science, Simon Fraser Univer-
sity.
Carvalho, C.; Egri, L.; Jackson, M.; and Niven, T. 2011. On
Maltsev digraphs. In Computer Science–Theory and Appli-
cations. Springer. 181–194.
Chen, H.; Dalmau, V.; and Grußien, B. 2013. Arc consis-
tency and friends. J. Log. Comput. 23(1):87–108.
Dyer, M., and Richerby, D. 2013. An effective dichotomy
for the counting constraint satisfaction problem. SIAM Jour-
nal on Computing 42(3):1245–1274.
Feder, T., and Vardi, M. Y. 1998. The computational struc-
ture of monotone monadic SNP and constraint satisfaction:
A study through Datalog and group theory. SIAM Journal of
Computing 28(1):57–104.
Goldreich, O. 2010. P, NP, and NP-Completeness: The
basics of computational complexity. Cambridge University
Press.
Green, M. J., and Cohen, D. A. 2008. Domain permutation
reduction for constraint satisfaction problems. Artif. Intell.
172(8-9):1094–1118.
Idziak, P. M.; Markovic, P.; McKenzie, R.; Valeriote, M.;
and Willard, R. 2007. Tractability and learnability arising
from algebras with few subpowers. In LICS, 213–224. IEEE
Computer Society.
Jeavons, P. G.; Cohen, D. A.; and Cooper, M. C. 1998.
Constraints, consistency and closure. Artif. Intell. 101(1–
2):251–265.
Jeavons, P.; Cohen, D. A.; and Gyssens, M. 1997. Closure
properties of constraints. J. ACM 44(4):527–548.
Kolaitis, P., and Vardi, M. 2000. Conjunctive-query contain-
ment and constraint satisfaction. Journal of Computer and
System Sciences 61:302–332.
Petke, J., and Jeavons, P. 2009. Tractable benchmarks for
constraint programming. Technical report, Technical Report
RR-09-07, Computing Laboratory, University of Oxford.
Williams, R.; Gomes, C. P.; and Selman, B. 2003. Back-
doors to typical case complexity. In Gottlob, G., and Walsh,
T., eds., IJCAI, 1173–1178. Morgan Kaufmann.

3382

