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Abstract

Probabilistic inference in many real-world problems requires
graphical models with deterministic algebraic constraints be-
tween random variables (e.g., Newtonian mechanics, Pas-
cal’s law, Ohm’s law) that are known to be problematic for
many inference methods such as Monte Carlo sampling. For-
tunately, when such constraints are invertible, the model can
be collapsed and the constraints eliminated through the well-
known Jacobian-based change of variables. As our first con-
tribution in this work, we show that a much broader class of
algebraic constraints can be collapsed by leveraging the prop-
erties of a Dirac delta model of deterministic constraints. Un-
fortunately, the collapsing process can lead to highly piece-
wise densities that pose challenges for existing probabilis-
tic inference tools. Thus, our second contribution to address
these challenges is to present a variation of Gibbs sampling
that efficiently samples from these piecewise densities. The
key insight to achieve this is to introduce a class of functions
that (1) is sufficiently rich to approximate arbitrary models up
to arbitrary precision, (2) is closed under dimension reduc-
tion (collapsing) for models with (non)linear algebraic con-
straints and (3) always permits one analytical integral suf-
ficient to automatically derive closed-form conditionals for
Gibbs sampling. Experiments demonstrate the proposed sam-
pler converges at least an order of magnitude faster than ex-
isting Monte Carlo samplers.

Introduction

Probabilistic inference in many real-world problems re-
quires graphical models with deterministic algebraic con-
straints between random variables. Consider the following
running example from physics and the associated graphical
model of Figure 1:
Collision model. Masses M1 and M2 with velocities V1

and V2 collide to form a single mass (M1 +M2) with total
momentum Ptot = M1V1 +M2V2 (assuming that there is no
dissipation). Letting U(a, b) denote a uniform density with
support [a, b], the prior density of masses and velocities are:

p(M1) = U(0.1, 2.1), p(M2)=U(0.1, 2.1) (1)
p(V1) = U(−2, 2), p(V2 |V1) = U(−2, V1) (2)

Total momentum is observed to be 3.0 yielding constraints:

P1 = M1V1, P2 = M2V2, Ptot = P1 + P2 = 3.0 (3)

M1 V1

P1

M2V2

P2

Ptot

Figure 1: Bayes net for the collision model. Shaded circles
correspond to random variables that are functions of other
variables.

In such problems, the posterior densities only have sup-
port on (non)linear sub-manifolds of the parameter space
(e.g. the manifold induced by (3) in the collision model).
Efficient inference on such models is challenging (Pen-
nec 2006). To evade these complications, state-of-the-art
MCMC based probabilistic inference tools suggest adding
noise to the deterministic constraints.1 Unfortunately, this
strategy can be problematic: if the added noise is large then
the approximation bounds can be arbitrarily large and if it is
small, the sampling mixing rate can be arbitrarily slow (Li,
Ramsundar, and Russell 2013; Chin and Cooper 1987).

The other potential solution is to reduce the dimension-
ality of the posterior via Jacobian-based variable transfor-
mations. Measure theoretic subtleties aside, such transfor-
mations are only applicable when the deterministic con-
straint is invertible with respect to at least one variable. Us-
ing the properties of the Dirac delta, our first contribution
is to propose a dimension reduction (or collapsing) method
that is more general in the sense that the constraint is not

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1The state-of-the-art probabilistic programming languages, dis-
allow deterministic continuous random variables be observed. For
instance, in BUGS (Lunn et al. 2009), logical nodes cannot be
given data or initial values. In PyMC (Patil, Huard, and Fonnes-
beck 2010) deterministic variables have no observed flag. In Stan
(Stan Development Team 2014) if you try to assign an observa-
tion value to a deterministic variable, you will encounter an error
message: “attempt to assign variable in wrong block” while An-
glican (Wood, van de Meent, and Mansinghka 2014) throws er-
ror “invalid-observe”, etc. Therefore, they cannot handle observed
constraints natively except by adding noise to the observation. E.g.
(in collision model) approximating Ptot = 3 with a normal distribu-
tionN (Ptot − 3, σ2

η) where the variance σ2
η is the noise parameter.
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required to be invertible but should be solvable with one
or several distinct roots. To our knowledge, this is the first
time that Dirac delta constraints for non-invertible functions
have been shown to yield collapsible graphical models w.r.t.
these constraints. Nonetheless, dimension reduction (either
carried out via Jacobian-based or Dirac delta-based mech-
anism) does not fully eliminate inferential difficulties since
as it will be shown shortly, the produced low-dimensional
densities are highly piecewise and multimodal. Inference for
such collapsed models can be extremely challenging.

To date, applicable exact inference tools for piecewise
distributions are restricted to piecewise polynomial mod-
els where the partitioning boundaries are respectively hy-
perrectangular, hyper-rhombus or linear (Shenoy and West
2011; Shenoy 2012; Sanner and Abbasnejad 2012) and the
(collapsed) observed constraints are restricted to linear equa-
tions. To handle a nonlinear observed constraint, (Cobb and
Shenoy 2005) approximate it by several piecewise linear
constraints by dividing the space into hypercubes. This can-
not be used in high-dimensional approximations since the
number of partitions required to preserve reasonable ac-
curacy is exponential in dimensionality. Furthermore, con-
straints aside, exact inference in models with piecewise dis-
tributions can easily be intractable since the number of pos-
terior partitions may grow exponentially in the number of
marginalizations (required in the forthcoming (5)).

As an alternative to exact inference, asymptotically unbi-
ased approximate inference methods like Monte Carlo sam-
pling can be used. Nonetheless, convergence of most of
these algorithms do not hold for the aforementioned piece-
wise collapsed models, hence resulting in poor convergence
rates as our experiments will show. For instance, the leapfrog
mechanism by which Hamiltonian Monte Carlo (HMC) sim-
ulates the Hamiltonian dynamics relies on the assumption
of smoothness (Neal 2011). This assumption does not hold
in the adjacency of discontinuities (borders of pieces) lead-
ing to low proposal acceptance rates and poor performance.
Slice sampling (Neal 2003) suffers from the multimodal
nature of the distributions that arise in this work. Simi-
larly, near the borders of partitions, the acceptance rate of
Metropolis-Hastings (MH) is typically low since in such ar-
eas the difference (e.g. KL-divergence) between MHs pro-
posal density and the suddenly varying target density is of-
ten significant. The exception is Gibbs sampling. The lat-
ter method can be regarded as a particular variation of MH
where the proposals are directly chosen from the target den-
sity and therefore follow the target changes and multimodal-
ities. Nonetheless, Gibbs samplers can be quite slow since
the per sample computation of conditional CDFs that Gibbs
relies on are costly and in general the required integral can-
not be performed in closed-form.

After presenting collapsing of (nonlinear) algebraic con-
straints in the first part of this paper, in the second part we
address the problem of sampling from the resulting highly
piecewise densities. To do this, we introduce a rich class of
piecewise fractional functions as a building block for piece-
wise graphical models. We show that this class is closed un-
der the operations required for dimension reduction of con-
straints expressed as Dirac deltas. This class is rich enough

to approximate arbitrary density functions up to arbitrary
precision. We further show that the form of the resulting
collapsed model always permits one closed-form integral –
sufficient to analytically derive conditionals for Gibbs sam-
pling prior to the sampling process which saves a tremen-
dous amount of online sampling computation. We evalu-
ate this fully-automated sampler for models motivated by
physics and engineering and show it converges at least an
order of magnitude faster than existing MCMC samplers,
thus enabling probabilistic reasoning in a variety of applica-
tions that, to date, have remained beyond the tractability and
accuracy purview of existing inference methods.

Preliminaries

Graphical models (GM). Let X = {X1, . . . , XN} be
a set of random variables with realizations in the form
x = {x1, . . . , xN}.2 For the sake of notational consistency,
throughout we assume X only contain continuous variables.
To cover both directed and undirected GMs we use factor
graph notation (Kschischang, Frey, and Loeliger 2001) and
represent a joint probability density p(X) in a factorized
form (4) in which Ψk are non-negative potential functions
of subsets Xk of X.

p(X) ∝
∏

Ψk∈Ψ
Ψk(Xk) (4)

Inference. The inference task studied in this paper is to com-
pute the posterior joint density p(Q |E = e) of a subset
Q (query) of X conditioned on (realization e of) variables
E ⊂ X\Q (evidence) by (5) where W := X\(Q ∪ E) are
marginalized out.

p(Q |E = e) ∝
∫ ∞

−∞
· · ·

∫ ∞

−∞
p(Q,W = w,E = e) dw (5)

The integrals required in (5) are often intractable and
hence we must often resort to MCMC methods such as
Gibbs sampling (Geman and Geman 1984) — the focus of
this work.
Gibbs sampling. In this method drawing a sample for X
takes place in N steps. In the i-th step, Xi is sampled condi-
tioned on the last realization of the others: xi ∼ p(Xi | x−i).
To perform this task, the following univariate conditional
cumulative density function (CDF) is computed by (6) and
samples are taken via inverse transform sampling.

CDF(Xi | x−i) ∝
∫ Xi

−∞
p(Xi = t, X−i = x−i) dt (6)

Collapsing Observed Constraints

To express an observed constraint f(x1, . . . , xn) = z, we
assume that in the variable set over which the probability
measure is defined, there exists a random variable Z such
that p(Z = z|x1, . . . , xn) = δ[f(x1, . . . , xn)− z].3

2In case there is no ambiguity, we do not distinguish between
random variables and their realizations; e.g., abbreviate p(Xi=xi)
by p(xi).

3This is to prevent the Borel-Kolmogorov paradox (Kol-
mogorov 1950) that arises when conditioning on an event with a
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In the following theorem, we use the calculus of Dirac
deltas and generalize the concept of change of random vari-
ables to (not necessarily) invertible functions f(x1, ·). Since
in formula (7) one variable is collapsed (i.e., marginalized
out), we refer to it as dimension reduction.

Theorem 1 (Dimension reduction). Let,

p(Z=z|x1, . . . , xn) = δ
(
f(x1, . . . , xn)− z

)
where f(x1, . . . , xn) − z = 0 has real and simple
roots for x1 with a non-vanishing continuous derivative
∂f(x1, . . . , xn)/∂x1 at all those roots. Denote the set of all
roots by X1 = {x1 | f(x1, . . . , xn) − z = 0}. (Note that
each element of X1 is a function of the remaining variables
x2, . . . , xn, z.) Then:

p(x2, . . . , xn|Z=z) ∝
∑

xi
1∈X1

p(X1 = xi
1, x2, . . . , xn)∣∣∣(∂f(x1, . . . , xn)/∂x1

)
|x1←xi

1

∣∣∣
(7)

Proof. p(x2, . . . , xn |Z = z) ∝
∫ ∞

−∞
p(x1, . . . , xn)p(Z = z |x1, . . . , xn) dx1

=

∫ ∞

−∞
p(x1, . . . , xn)δ

(
f(x1, . . . , xn)− z

)
dx1 (8)

According to (Gel’fand and Shilov 1964) there is a unique
way to define the composition of Dirac delta with an arbi-
trary function h(x):

δ(h(x)) =
∑
i

δ(x− ri)

|∂h(x)/∂x| (9)

where ri are all (real and simple) roots of h(x) and h(x) is
continuous and differentiable in the root points. By (8), (9)
and Tonelli’s theorem4 p(x2, . . . , xn |Z = z) ∝

∑
xi
1∈X1

∫∞
−∞ p(x1, x2, . . . , xn)δ(x1 − xi

1) dx1∣∣∣(∂f(x1, . . . , xn)/∂x1

)|x1←xi
1

∣∣∣
which implies (7).

To clarify the theorem, it is used to compute the collision
model posterior p(M2, V1, V2 |Ptot = 3) as follows:

In this model the prior joint density p(M1,M2, V1, V2) is
the product of potentials in equations (1) and (2) which is,{

1
16V1+32 if 0.1<M1<2.1, 0.1<M2<2.1,−2<V1<2,−2<V2<V1

0 otherwise

probability that tends to zero without specifying the random vari-
able it is drawn from. δ

(
f(·) − z

)
should be thought of as a limit

of a normal distribution centered at f(·) and a variance that tends
to zero.

4Tonelli’s theorem says that for non-negative functions, sum
and integral are interchangeable.

To apply Theorem 1, we solve (M1V1 + M2V2 − 3) w.r.t. a
variable (say M1 with the unique solution (3−M2V2)/V1).5
Since, ∣∣∣∣∂(M1V1 +M2V2)

∂M1

∣∣∣∣ = |V1|
by (7), p(M2, V1, V2 |Ptot = 3) is proportional to⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
V1(16V1+32)

if 0<V1, 0.1<
3−M2V2

V1
<2.1,

0.1<M2<2.1,−2<V1<2,−2<V2<V1

−1
V1(16V1+32)

if V1<0, 0.1<
3−M2V2

V1
<2.1,

0.1<M2<2.1,−2<V1<2,−2<V2<V1

0 otherwise

(10)

Using (10), various queries are evaluated and depicted in
Figure 2. These plots clearly illustrate that even in this low-
dimensional example, reducing the dimensionality can lead
to multimodal and piecewise posteriors that do not resemble
the smooth densities often studied in the literature.

In the next section, we introduce a class of piecewise poly-
nomial functions which is closed under dimension reduc-
tion for algebraic constraints (e.g., polynomials) and conse-
quently suitable for use with algebraically constrained mod-
els. The only task that remains then is to provide an auto-
mated sampling method for such models which will be pre-
sented subsequently.

Polynomial Piecewise Fractionals (PPFs)
We introduce an expressive family of functions that is rich
enough to simulate arbitrary density functions up to arbitrary
precision. This family is the class of polynomial piecewise
fractional functions (PPFs). More formally, a PPF is a func-
tion of the form, f =

∑m
i=1 I[φi] · fi where I[·] denotes the

indicator function. Using expanded notation,

f =

⎧⎪⎪⎨
⎪⎪⎩
f1 if φ1

...
fm if φm

=

⎧⎪⎪⎨
⎪⎪⎩

N1
D1

if ϕ1,1 ≶ 0, ϕ1,2 ≶ 0, . . .
...
Nm
Dm

if ϕm,1 ≶ 0, ϕm,2 ≶ 0, . . .
(11)

where each sub-function fi :=
Ni

Di
is a (multivariate) poly-

nomial fraction and conditions φi partition the space of func-
tion variables. Each φi is a conjunction of some inequalities
(≶ stands for > or <)6 where each atomic constraint ϕi,j is
a polynomial.

An important property of the class of PPFs is that it is
closed under operations required in (7). This paves the way
for automated (and potentially multiple) applications of The-
orem 1. To show this, note that by (12), PPFs are closed un-
der elementary operations.

{
f1 if φ1

f2 if φ2
⊗

{
g1 if ψ1

g2 if ψn
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f1 × g1 if φ1, ψ1

f1 × g2 if φ1, ψ2

f2 × g1 if φ2, ψ1

f2 × g2 if φ2, ψ2

(12)

5In this example, the constraint has a single root (therefore in-
vertible) but if it had several roots, the theorem could still be ap-
plied in a straightforward way. As an alternate example, consider
δ(z−f(x1, x2)) with z = 0 and f(x1, x2) = (x1−x2)(x1+x2),
which yields two roots where the Jacobian cannot be applied, but
Theorem 1 can be applied.

6We assume the total measure on the border of partitions is 0.
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(a) (b) (c) (d) (e) (f)

Figure 2: Prior/posterior joint density functions of pairs of random variables in the collision example. (a) p(M1, V1), (b)
p(M1, V1 |Ptot = 3), (c) p(M1, V1 |Ptot = 3, V2 = 0.2), (d) p(V1, V2), (e) p(V1, V2 |Ptot = 3), (f) p(V1, V2 |M1 = 2, Ptot = 3)
using rejection sampling on the model generated dimension reduction algorithm (equation 10).

f |x←F
G

=

⎧⎪⎪⎨
⎪⎪⎩
f1|x←F

G
if φ1|x←F

G

...
fm|x←F

G
if φm|x←F

G

(13)

They are also closed under polynomial fractional substitu-
tion (13). The reason is that firstly, sub-functions fi|x←F

G

are polynomial fractions and secondly, although conditions
φi|x←F

G
are fractional, as (14) shows, they can be restated

as (multiple) case-statements with polynomial conditions.
⎛
⎝
⎧⎨
⎩
f1 if H1

H2
> 0

...

⎞
⎠ =

⎧⎪⎨
⎪⎩
f1 if H1 > 0, H2 > 0

f1 if H1 < 0, H2 < 0

...

(14)

Similarly, PPFs are closed under absolute value.

Analytic integration

Large subsets of PPF have closed-form single integrals. In
the next section, we propose a sampling method that per-
forms significantly well on such subsets. For simplicity we
only focus on the following form:
PPF*. A PPF* is a PPF in which:

1. Atomic constraints ϕi,j are factorized into terms where
the maximum degree of each variable is at most 2.

2. The denominator of each sub-function can be factorized
into polynomials in which the maximum degree of each
variable is at most 2.

Here is an example of a PPF* case-statement:

x2y3 + 7xz + 10

(5xy2 + 2)(y + x)3
if (y2 + z2 − 1)(x2 + 2xy) > 0 (15)

Note that by (4), GMs are often designed in factorized
forms, therefore, the verification of PPF* conditions is of-
ten not hard.
Analytic univariate PPF* integration. Now we provide a
procedure for analytic integration on PPF* functions. It can
be shown that if in a PPF* all variables except one are instan-
tiated, the resulting univariate function has a closed-form in-
tegral. This is sufficient for exact Gibbs sampling since in
each step, only one variable is uninstantiated. However, we
want to go a step further and compute univariate integrals
of multivariate piecewise functions without instantiating the
remaining variables to avoid the need for an integration per
sample. This may look impossible since in the latter case,

the integration bounds depend on the values of uninstanti-
ated conditions. But as the following procedure shows, it is
indeed possible for the PPF* class. The following procedure
computes

∫ β

α
f dx where f is a PPF*:

1. (Partitioning). The integral of the piecewise function f is
the summation of its case statement integrals:∫ m∑

i=1

I[φi] · fi dx =
m∑
i=1

∫
I[φi] · fi dx

Therefore we only need to show that a single PPF* case-
statement is integrable.

2. (Canonicalization). A PPF* case statement can be re-
stated in the form of multiple case statements in which
the degree of each variable in each atomic constraint is at
most 2. For instance, (15) can be restated as:{

x2y3+7xz+10
(5xy2+2)(y+x)3 if (y2+z2−1) > 0, (x2 + 2xy) > 0
x2y3+7xz+10

(5xy2+2)(y+x)3 if (y2+z2−1) < 0, (x2 + 2xy) < 0

(16)
3. (Isolation of integrand). For the integration variable x,

a PPF* case statement can be transformed into a piece-
wise structure with atomic constraints in form x > Li

or x < Ui or Ii > 0, where Li, Ui and Ii are algebraic
expressions (not necessarily polynomials) that do not in-
volve x.
For instance, if expressions A, B and C do not involve x,
the case statement (17) is replaced by (18).

f1 if (A · x2 +B · x+ C) > 0 (17)

⎧⎪⎪⎨
⎪⎪⎩
f1 if (A>0), (x>

−B+
√

B2−4AC

2A
)

f1 if (A>0), (x<
−B−

√
B2−4AC

2A
)

f1 if (A<0), (x>
−B−

√
B2−4AC

2A
), (x<

−B+
√

B2−4AC

2A
)

(18)

3. (Bounding). The bounded integral of a case state-
ment associated with {Li}i, {Ui}i and {Ii}i is itself
a case-statement with the same independent constraints,
lower bound LB =max{α,Li} and upper bound UB
=min{β, Ui}. For example:∫ β

α

[
x3+xy if (x > 3), (x > y), (x < y2−7), (y > 0)

]
dx

=
[ ∫ min{β,y2−7}

max{α, 3,y}
x3 + xy dx

]
if (y > 0)

3290



Table 1: Parameters of each experimental model
# Model HMC SMC Evidence

1 collision σ2
Pt

= 0.05 σ2
Pt

= 0.1 Pt = 1.5n
2 wiring σ2

G = 0.02 σ2
G = 0.07 G = n/10.17

4. (Sub-function integration). What is remained is to
compute infinite integral of sub-functions. The restric-
tions imposed on PPF* sub-functions guarantee that they
have closed-form univariate integrals. These integrals are
computed via polynomial division (in case the degree of
x in the sub-function’s numerator is more than its denom-
inator), followed by partial fraction decomposition.

Closed-form Gibbs Sampling

Closed-form Gibbs sampling is based on a simple but signif-
icantly useful insight: If p(X) has analytical integrals w.r.t.
any variables Xi (as is the case with PPF* densities), then
the costly CDF computations can be done prior to the sam-
pling process rather than per sample. It is sufficient to con-
struct a mappingF from variables Xi to their corresponding
(unnormalized) conditional analytical CDFs.

F : {X1, . . . XN} → (RN → R
+ ∪ {0})

Xi �→
∫ Xi

−∞
p(Xi = t,X−i) dt (19)

Note that the difference between (6) and (19) is that in
the former, all variables except Xi are already instantiated
therefore CDF(Xi | x−i) is a univariate function but F is
N -variate since variables X−i are kept uninstantiated and
symbolic. Provided with such a map, in the actual sampling
process, to sample xi ∼ p(Xi | x−i), it is sufficient to instan-
tiate the analytical CDF associated to Xi with x−i to obtain
the appropriate univariate conditional CDF. This reduces the
number of CDF computations from N · T to N where T is
the number of taken samples.

If CDF inversion (required for inverse transform sam-
pling) is also computed analytically, then Gibbs sampling
may be done fully analytically. However, analytical inver-
sion of PPF*s can be very complicated and instead in
the current implementation, we approximate the CDF−1

computation via binary search. This requires several func-
tion evaluations per sample. Nonetheless, unlike integration,
function evaluation is not costly. This suffices for highly effi-
cient Gibbs sampling as we show experimentally in the next
section.

Experimental Results

In this section, we are interested in (a) comparing the ef-
ficiency and accuracy of our proposed closed-form Gibbs
against other MCMC methods on models with observed
constraints as well as (b) studying the performance of the
proposed collapsing mechanism (dimension reduction) vs.
the practice of relaxing such constraints with noise (as often
suggested in probabilistic programming toolkits).

Algorithms compared

To address item (a), we compare the proposed closed-
form Gibbs sampler (SymGibbs) to baseline Gibbs
(BaseGibbs) (Pearl 1987), rejection sampling (Rej), tuned
Metropolis-Hastings (MH)7 and Hamiltonian Monte Carlo
(HMC) (Neal 2011) on the collapsed models using the
Stan probabilistic programming language (Stan Develop-
ment Team 2014) and the Anglican implementation of Se-
quential Monte Carlo (SMC) using the Anglican probabilis-
tic programming language (Wood, van de Meent, and Mans-
inghka 2014). SymGibbs and BaseGibbs require no tuning.
MH is automatically tuned after (Roberts et al. 1997) by
testing 200 equidistant proposal variances in interval (0, 0.1]
and accepting a variance for which the acceptance rate closer
to 0.24. HMC on collapsed models produces results similar
to MH (in high dimensional piecewise models, both meth-
ods reject almost every proposal). Therefore, the results of
the former algorithm are not depicted for the readability of
the plots.

To answer item (b), HMC and SMC on the models where
noise is added to the observations are plotted. To soften the
determinism, the observation of a deterministic variable Z
is approximated by observation of a newly introduced vari-
able with a Gaussian prior centered at Z and with noise
variance (parameter) σ2

Z . Anglican’s syntax requires adding
noise to all observed variables. Therefore, in the case of
SMC, stochastic observations are also associated with noise
parameters. The used parameters are summarized in Table 1.

We also tested Particle-Gibbs (PGibbs) (a variation of
Particle-MCMC (Andrieu, Doucet, and Holenstein 2010))
and random database (RDB) (an MH-based algorithm in-
troduced in (Wingate, Stuhlmueller, and Goodman 2011)).
In our experimental models, the performance of these algo-
rithms is very similar to (SMC). Therefore, for readability
of the plots, they are not depicted. All algorithms run on a 4
core, 3.40GHz PC.

Measurements

To have an intuitive sense of the performance of different
MCMCs, Figure 3 depicts 10000 samples that are taken
from the posterior of Figure 2-c using the introduced sam-
pling algorithms.

For quantitative comparison, in each experiment, all non-
observed stochastic random variables of the model form a
query vector Q = [Q1, . . . , Qζ ]. The number of samples
taken by a Markov chain Γ up to a time t is denoted by
nt
Γ and the samples are denoted by q

(1)
Γ , . . . ,q

(nt
Γ)

Γ where
q
(i)
Γ := [q

(i)
1,Γ, . . . , q

(i)
ζ,Γ]. We measure mean absolute er-

ror (MAE) of equation (20) vs (wall-clock) time t where
q∗ := [q∗1 , . . . q

∗
ζ ] is the ground truth mean query vector (that

is computed manually due to the symmetry of the models).

MAEΓ(t) :=
1

ζ · nt
Γ

ζ∑
j=1

nt
Γ∑

i=1

∣∣∣q(i)j,Γ − q∗j
∣∣∣ (20)

7MH is automatically tuned after (Roberts et al. 1997) by test-
ing 200 equidistant proposal variances in interval (0, 0.1] and ac-
cepting a variance for which the acceptance rate closer to 0.24.
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SymGibbs MH HMC (high noise) HMC (low noise) SMC (high noise) SMC (low noise)

(a) (b) (c) (d) (e) (f)

Figure 3: 10000 samples taken from the density of Figure (2-c) using (a) closed-form Gibbs sampler and (b) MH with proposal
variance 0.8 on the reduced-dimension model as well as HMC with (c) measurement error variance 0.2 and (d) 0.01 as well as
SMC with parameters (e) σ2

V2
= 0.01, σ2

Ptot
= 0.2 and (f) σ2

V2
= 0.01, σ2

Ptot
= 0.1.

In each experiment and for each algorithm, γ = 15
Markov chains are run, and for each time point t, average
and standard error of MAE1(t) to MAEγ(t) are plotted.

Experimental models

Although PPF*s are rich enough to approximate arbitrary
models, the approximation mechanism is beyond the scope
of the present work. As a result we choose experimental
models that are already in such algebraic forms.
Multi-object collision model. Consider a variation of the
collision model in which n objects collide. Let all Vi and Mi

share a same uniform prior U(0.2, 2.2) and the constraint be∑n
i=1 MiVi = Ptot. The symmetry enables us to compute

the posterior ground truth means values manually:

M∗ = V ∗ =
√

Ptot/n (21)

Conditioned on Ptot = 1.5n, all masses Mi and velocities Vi

are queried. By (21), all elements of the ground truth vector
q∗ are

√
1.5.

Building wiring model. An electrical circuit composed
of n, 10Ω ± 5% parallel resistor elements Ri (with priors
p(Ri) = U(9.5, 10.5)). The resistors are inaccessible, i.e.,
the voltage drop and the current associated with them cannot
be measured directly. Given the source voltage V and the to-
tal input current I , the posterior distribution of the element
resistances are required. Here the deterministic constraint is

1

R1
+ . . .+

1

Rn
= c (22)

where c = I
V . Equations if the form (22) are generally re-

ferred to as reduced mass relationships and have applica-
tions in the electrical, thermal, hydraulic and mechanical en-
gineering domains.

Let the observation be c = 3n/(2 ∗ 10.5 + 9.5). Due to
the symmetry of the problem, the posterior ground truth
mean is known:

R∗
i =

n

c
= 10.166667 for i = 1, . . . , n

Figure 4 depicts MAE vs. time plots associated with the in-
troduced models of different sizes.

Experimental evaluations

Plots of Figure 3 shows that MH and SMC suffer from
low effective sample size. Note that the apparent sparsity of

plots 3-b, 3-e and 3-f is due to repeated samples (rejected
proposals). The carried out quantitative measurements (Fig-
ure 4) indicate that in all experimental settings, closed-form
Gibbs consistently performs the best while its superiority in
high dimensions is significant.

Particularly in the Building wiring model (which is more
complicated and highly piecewise), the quantitative mea-
surements indicate that hard to soft constraint conversion
(via introducing noise for measurement error) ends in poor
results (Figures 4-c and 4-d). Interestingly, in this model,
even in a dimensionality as low as 10, the Metropolis-
Hasting based algorithms (i.e., MH, HMC and SMC) may
not converge to the (manually computed) ground truth or
their convergence rate is extremely low. This happens re-
gardless of the way determinism is handled.

Conclusion

In this paper we presented a mechanism to carry out prob-
abilistic inference conditioned on observed algebraic con-
straints, i.e., algebraic functions of continuous random vari-
ables, via a collapsing mechanism to reduce the dimension-
ality of the variable space. The proposed method is based
on the properties of the Dirac delta and is more general than
Jacobian-based change of variables in the sense that it does
not require the observed functions to be invertible w.r.t. any
variable.

Nonetheless, dimension reduction often leads to highly
piecewise and multimodal posteriors. This is a bridge to
the second part of the paper where we show that on an ex-
pressive family of models, the costly operations required for
Gibbs sampling can be performed analytically and prior to
the sampling process. This leads to an automated and closed-
form sampler that is significantly faster than the baseline.
The studied family of models is rich enough to express alge-
braic constraints as well as being able to approximate arbi-
trary density functions up to arbitrary precisions. Our ex-
perimental results show that (1) the alternative to dimen-
sion reduction, i.e., adding noise to the observations leads
to unsatisfactory results; and (2) on the piecewise posteriors
generated via the collapsing mechanism, the performance of
the proposed closed-form Gibbs sampler can be overwhelm-
ingly superior to the other samplers executed on the same
model.

The combination of these novel contributions makes prob-
abilistic reasoning applicable to variety of new applications
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Figure 4: Mean absolute error versus time in Multi-object collision model with (a) 10 and (b) 30 objects as well as Building
wiring model with (c) 10 and (d) 30 paralleled resistors.

that, to date, have remained beyond the tractability and ac-
curacy purview of existing inference methods.

References
Andrieu, C.; Doucet, A.; and Holenstein, R. 2010. Particle
Markov chain Monte Carlo methods. Journal of the Royal Statis-
tical Society: Series B (Statistical Methodology) 72(3):269–342.
Chin, H. L., and Cooper, G. F. 1987. Bayesian belief network
inference using simulation. In UAI, 129–148.
Cobb, B. R., and Shenoy, P. P. 2005. Nonlinear deterministic
relationships in Bayesian networks. In Symbolic and Quantitative
Approaches to Reasoning with Uncertainty. Springer. 27–38.
Gel’fand, I., and Shilov, G. 1964. Generalized functions. vol.
1: Properties and operations, fizmatgiz, moscow, 1958. English
transl., Academic Press, New York.
Geman, S., and Geman, D. 1984. Stochastic relaxation, Gibbs
distributions, and the Bayesian restoration of images. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on
(6):721–741.
Kolmogorov, A. N. 1950. Foundations of the theory of probabil-
ity.
Kschischang, F. R.; Frey, B. J.; and Loeliger, H.-A. 2001. Factor
graphs and the sum-product algorithm. Information Theory, IEEE
Transactions on 47(2):498–519.
Li, L.; Ramsundar, B.; and Russell, S. 2013. Dynamic scaled
sampling for deterministic constraints. In Proceedings of the 16th
International Conference on Artificial Intelligence and Statistics.
Lunn, D.; Spiegelhalter, D.; Thomas, A.; and Best, N. 2009. The
BUGS project: Evolution, critique and future directions. Statistics
in medicine 28(25):3049–3067.
Neal, R. M. 2003. Slice sampling. Ann. Statist. 31(3):705–767.

Neal, R. M. 2011. MCMC using Hamiltonian dynamics. Hand-
book of Markov Chain Monte Carlo 2.
Patil, A.; Huard, D.; and Fonnesbeck, C. J. 2010. PyMC:
Bayesian stochastic modelling in Python. Journal of statistical
software 35(4):1.
Pearl, J. 1987. Evidential reasoning using stochastic simulation
of causal models. Artificial Intelligence 32(2):245–257.
Pennec, X. 2006. Intrinsic statistics on riemannian manifolds:
Basic tools for geometric measurements. Journal of Mathemati-
cal Imaging and Vision 25(1):127–154.
Roberts, G. O.; Gelman, A.; Gilks, W. R.; et al. 1997. Weak
convergence and optimal scaling of random walk Metropolis al-
gorithms. The annals of applied probability 7(1):110–120.
Sanner, S., and Abbasnejad, E. 2012. Symbolic variable elimina-
tion for discrete and continuous graphical models. In AAAI.
Shenoy, P. P., and West, J. C. 2011. Inference in hybrid Bayesian
networks using mixtures of polynomials. International Journal
of Approximate Reasoning 52(5):641–657.
Shenoy, P. P. 2012. Two issues in using mixtures of polynomials
for inference in hybrid Bayesian networks. International Journal
of Approximate Reasoning 53(5):847–866.
Stan Development Team. 2014. Stan Modeling Language Users
Guide and Reference Manual, Version 2.5.0.
Wingate, D.; Stuhlmueller, A.; and Goodman, N. D. 2011.
Lightweight implementations of probabilistic programming lan-
guages via transformational compilation. In International Con-
ference on Artificial Intelligence and Statistics, 770–778.
Wood, F.; van de Meent, J. W.; and Mansinghka, V. 2014. A new
approach to probabilistic programming inference. In Proceedings
of the 17th International conference on Artificial Intelligence and
Statistics.

3293




