Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

Continual Planning in Golog

Till Hofmann, Tim Niemueller, Jens ClaBen, and Gerhard Lakemeyer
Knowledge-Based Systems Group
RWTH Aachen University, Germany
{hofmann, niemueller, classen, lakemeyer} @kbsg.rwth-aachen.de

Abstract

To solve ever more complex and longer tasks, mobile robots
need to generate more elaborate plans and must handle dy-
namic environments and incomplete knowledge. We ad-
dress this challenge by integrating two seemingly different
approaches — PDDL-based planning for efficient plan gener-
ation and GOLOG for highly expressive behavior specifica-
tion — in a coherent framework that supports continual plan-
ning. The latter allows to interleave plan generation and exe-
cution through assertions, which are placeholder actions that
are dynamically expanded into conditional sub-plans (using
classical planners) once a replanning condition is satisfied.
We formalize and implement continual planning in GOLOG
which was so far only supported in PDDL-based systems.
This enables combining the execution of generated plans with
regular GOLOG programs and execution monitoring. Experi-
ments on autonomous mobile robots show that the approach
supports expressive behavior specification combined with ef-
ficient sub-plan generation to handle dynamic environments
and incomplete knowledge in a unified way.

Introduction

Imagine a domestic service robot with the task to clean
up the dining table by fetching cups, putting clean ones
back on the shelf and dirty ones into the dishwasher. This
task can be solved using a GOLOG (Levesque et al. 1997)
program stating that while cups are left on the table fetch
one, sense whether it is clean, and put it at the appropri-
ate place. A different approach is taken in planning where
a planner such as FASTDOWNWARD (Helmert 2006) deter-
mines a sequence of actions to clean the table. GOLOG sup-
ports incomplete knowledge and sensing (e.g. whether cups
are dirty), but current implementations are very inefficient
when it comes to pure planning, whereas planning is effi-
cient but needs complete knowledge. Real-world execution
furthermore requires a control loop for maintaining a world
model, incorporating sensing results, and monitoring action
execution, which planning-based systems typically imple-
ment in an ad-hoc fashion. To alleviate some of these issues,
GOLOG and PDDL planning have been integrated such that
a GOLOG program could call an embedded PDDL planner

Copyright (© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

3346

for sub-tasks (Clalen et al. 2012). However, this earlier ap-
proach could cope with incomplete knowledge only in a lim-
ited fashion. While sensing could be used in other parts of
the GOLOG program, planning subtasks required the agent
to possess complete information about (the necessary part
of) the world state. This excludes a large class of prob-
lems where it is possible to come up with a major part of
a plan beforehand, but that may contain smaller parts to be
filled later through sensing. In our example, the agent may
generate an overall plan for cleaning the table, but the deci-
sion on where to put an individual cup depends on whether
it is dirty, which is subject to sensing. Continual planning
(Brenner and Nebel 2009) addresses this issue by interleav-
ing planning and plan execution, allowing the agent to han-
dle incomplete knowledge even within a planning problem.

In this paper, we extend GOLOG with continual planning,
which so far is only supported in some PDDL-based sys-
tems. We define a new GOLOG action type assertion, which
is a placeholder for conditional sub-plans that depend on
yet missing information. We define Know-If fluents for re-
presenting incomplete knowledge, where a Know-If fluent
F'grr is true iff the value of the fluent F' is known. The eval-
uation shows competitive and even better performance than
PDDL-based continual planning alone. A particular ben-
efit of our approach is that we can combine GOLOG con-
trol structures with efficient planning to support incomplete
knowledge in both parts. Moreover, we obtain a framework
that integrates all parts of a robot task in GOLOG, includ-
ing the top-most execution loop that queries the planner and
then executes and monitors such plans. Using an extended
GOLOG execution monitoring makes the system more robust
and allows to deal with dynamic environments.

In the following section, we introduce GOLOG, PDDL
and continual planning. Next, we define our approach to
continual planning by means of assertions and describe our
representation of incomplete knowledge. Finally, we evalu-
ate the approach for domestic and logistics service robots.

Related Work
The Situation Calculus and GOLOG

The Situation Calculus (McCarthy 1963; Reiter 2001) is
a first-order logic which allows to represent world states
as first-order terms called situations. Relations (functions)

which may change from situation to situation are called re-
lational (functional) fluents. Situations are results of actions,
the situation after doing action a in situation s is denoted as
do(a, s). The initial situation Sy and the action precondi-
tions and effects are defined in a basic action theory (BAT).
Precondition axioms are of the form Poss (a(Z),s)
11, (%, s) where I, (&, s) is a first-order formula. Succes-
sor state axioms (SSA) for relational fluents F' are of the
form F(z,do(a, s)) = v# (%, a,s) V F(Z,8) A=~ (Z, a, s)
where 7?,5 (Z, a, s) is a first-order formula describing whether
action a causes fluent F' to be true (false). As an ex-
ample, Poss(goto(l),s) = —robot_at(l,s) states that the
action goto(l) is executable in situation s iff the robot is
not currently at I; robot_at(l, do(a,s)) = a = goto(l) V
robot_at(l, s) A—3l" a = goto(l’) states that after executing
action a, the robot is at location ! if a is the action goto(l)
or if the robot is at ! in situation s and is not going anywhere
else. A BAT includes foundational axioms for situations and
defines a relation < on situations, where s; < s means So
results from s; by executing an action sequence.

GoLOG (Levesque et al. 1997) is a high-level program-
ming language based on the Situation Calculus. It offers
imperative programming constructs such as sequences of
actions and iteration as well as nondeterministic branch-
ing. The semantics of GOLOG can be specified in terms of
transitions (De Giacomo et al. 2009), which describe sin-
gle steps of computation between configurations of the pro-
gram. In GOLOG, configurations are of the form (4, s) where
¢ is the remaining program and s is the current situation.
Trans(d, s,0', s') describes the transition between two con-
figurations (4, s) and (&', s'); the predicate Final(d, s) spec-
ifies configurations (d,s) where the computation is com-
pleted. As an example, if the program is a single action
a and the agent is currently in situation s, the transition
to the next configuration is defined as Trans(a, s,d’,s’)
Poss (a[s], s) A&' = nil A s’ = do (a]s], s).!

Multiple dialects of GOLOG exist: CONGOLOG (De Gi-
acomo, Lespérance, and Levesque 2000) adds concurrency
and interrupts to GOLOG. INDIGOLOG (De Giacomo et al.
2009) executes programs on-line with a search operator for
off-line execution, and adds sensing actions, which are ac-
tions that determine the value of a certain fluent. READY-
LoG (Ferrein and Lakemeyer 2008) extends INDIGOLOG
with passive sensing.

With sensing actions, it is desirable to be able to express
the agent’s knowledge, which can be described using the no-
tion of possible worlds (Scherl and Levesque 1993). The
binary relation K (s, s) describes that as far as the agent
knows, it might be in situation s’ when in s. Using K,
one can define the predicate Knows(P, s), which holds iff
P is known to be true in situation s, and the predicate
Kwhether (P, s) which holds iff the value of P is known:

Knows(P, s) =4 Vs'K(s',s) D P[s']
Kuwhether (P, s) =4 Knows(P, s) V Knows(—P, s)

'We write a[s] for the result of restoring the situation argument
to any fluents mentioned by the action term a. Similar for formulas.

3347

As a different approach, Knowledge fluents (Demolombe
and del Pilar Pozos Parra 2000) extend the Situation Calcu-
lus with a modal operator K, defining fluents K P(s) mean-
ing “P is known to be true in situation s”. For each ordinary
relational fluent F', they define knowledge fluents K F' and
K—F by successor knowledge axioms (SKA):

KF(Z, do(a,s)) =
Vi (T, a,8) V KF(Z,8) A v p(T,a,s)
K-F(Z, do(a,s)) =

’y}ﬁF(f, a,s)V K-F(Z,s) N g_p(Z,a,s)

Analogously to SSAs, vfi(F (Z,a,s) (or 'y,iﬁF (Z,a,s)) de-
fines all possibilities to change the knowledge fluent K F'
(or K—F) to true or false. As an example, after cup
has been sensed on table, K at(cup,table) holds. If the
agent moves away, the cup may be removed by another
agent, thus vy, (cup, table, goto(kitchen), s) holds and
K at(cup, table) is false. SSAs can be translated to SKAs
(Petrick and Levesque 2002). The SSA of F' is trans-
lated to the SKA of KF by defining ’yli(F(:aa,s)
(vi)K(Z,a,8) V €5(Z,a,s), where (v£)" is structurally
identical to ”yf with the exception that every fluent literal
P is syntactically replaced by K P and £ (7, a,s) states
whether a is a knowledge producing action for the fluent lit-
eral (—)F. In general, the K fluent is more expressive than
knowledge fluents. However, under certain restrictions, both
approaches are equivalent (Petrick and Levesque 2002).

Planning

Planning describes the problem of finding a sequence of ac-
tions to reach a certain world state, called the goal state,
from an initial state. Actions are described by their pre-
conditions and effects. Depending on the formalism, there
are restrictions on how the world state, the preconditions,
and the effects can be represented. PDDL (McDermott et
al. 1998) is a family of planning formalisms which pro-
vides a standard language for planning problems. It al-
lows STRIPS-like actions (Fikes and Nilsson 1972), but
also allows features such as conditional effects and existen-
tial and universal quantification. ADL (Pednault 1989) ex-
tends STRIPS by typed objects, disjunctive preconditions,
an equality predicate, quantified preconditions, and condi-
tional effects. It can be described as a subset of PDDL.
PDDL2 (Fox and Long 2003) extends PDDL with numeric
fluents and expressions, durative actions, and plan metrics.

FF (Hoffmann and Nebel 2001) is a heuristic planner
which uses forward state space search and a heuristic which
ignores delete effects. FF was originally designed for
the STRIPS subset of PDDL but has been extended to
ADL. FASTDOWNWARD (Helmert 2006) is a PDDL plan-
ner which supports the ADL fragment among others. It uses
the causal graph heuristic, which splits up the problem into
independent sub-problems. TFD (Eyerich, Mattmiiller, and
Roger 2012) extends FASTDOWNWARD to PDDL2.

While planning is possible in GOLOG, it is generally not
feasible (ClaBen et al. 2008). Instead, the BAT and the goal
can be translated to ADL, the planning problem solved with

a PDDL planner, and the solution translated back to the Sit-
uation Calculus (ClaBen et al. 2007). For this purpose, an
operator Plan is defined, where Trans(Plan(G, A),s,d',s)
holds iff ¢’ is the solution for the planning problem with goal
G, possible actions A, and initial situation s.

Continual Planning

Typical agent environments are dynamic and only partially
observable. During planning, the agent’s knowledge is in-
complete and missing knowledge has to be obtained by
means of sensing. Sensing results are only available after
the sensing action has been executed. To overcome this, the
agent could create a plan which is independent of the sensing
results, which is the approach of conformant planning (Hoff-
mann and Brafman 2006), or it could plan for every possible
sensing outcome, which is the approach of contingent plan-
ning (Hoffmann and Brafman 2005). PKS (Petrick and Bac-
chus 2002) is a contingent planner which represents knowl-
edge in databases: K; contains known facts, K, contains
formulas every instance of which the agent either knows or
knows the negation, K, contains functions whose values are
known, and K, contains strictly disjunctive knowledge of
literals. PKS implements a forward-chaining planner that
constructs conditional plans, which can then be linearized to
allow postdiction (Petrick and Bacchus 2004).

In continual planning, instead of creating a complete plan
before execution, planning and plan execution are inter-
leaved: An agent may create a (partial) plan, execute parts
of the plan, sense, and replan, using the sensing results.

MAPL (Brenner and Nebel 2009) is a planning language
similar to PDDL which supports continual planning. It cor-
responds to the ADL fragment without conditional effects.
It supports sensing actions and Know-If (KIF) fluents, where
Frrr holds iff the agent knows the value of . MAPL
allows the definition of assertions, which are placeholder
actions for conditional sub-plans which depend on yet un-
known fluent values. An assertion is never executed but in-
stead it guarantees that its effects are achievable if its pre-
condition holds. An assertion is defined as normal action
extended by a replanning condition. If the replanning con-
dition holds, the assertion is expandable. 1t is permanently
expandable if it is expandable for all actions before the as-
sertion. If an assertion is permanently expandable, it is re-
placed by a plan which has the assertion’s effect as goal.

The PDDL-based GKI continual planner (CP) (Dornhege
and Hertle 2013) runs in a loop consisting of three stages:
first, it estimates the world state by observation. Then, in
the monitoring stage, it checks the current plan for applica-
bility. If the current plan is still applicable, the next action is
executed. Otherwise, it replans and continues with the new
plan. After executing an action, it continues with the next it-
eration. The GKI CP uses TFD with modules for both plan-
ning and execution monitoring and thus supports temporal
domains. The GKI CP does not support MAPL and there-
fore neither Know-If fluents, assertions, nor sensing actions.

Continual Planning in GOLOG

In this section, we describe our approach to continual plan-
ning. We explain how we adapted the planner interface to

3348

use ensemble planning, we define Know-If fluents in the Sit-
uation Calculus, and we provide a definition of assertions as
extension to GOLOG’s transition semantics.

Planning in GOLOG

We adapted the PDDL-GOLOG interface introduced above:
Instead of using FF as the only planner, we use an ensemble
planner based on FF and FASTDOWNWARD. The adapted
interface works as follows: The planning problem is trans-
lated to PDDL and both planners are started in parallel. If
either of the planner finds a plan, we use that plan and stop
the other planner. If a planner proves the problem to be un-
solvable, we stop both planners and cancel the execution of
the GOLOG program. The reason for this adaption is a prac-
tical one: While FASTDOWNWARD usually finds solutions
faster than FF, we observed that it performs worse when the
goal formula contains many disjunctions. Additionally, FF
is faster in proving that a problem is unsolvable. Thus, using
ensemble planning improves planning performance signifi-
cantly. As neither planner uses multi-threading and FF has
low memory requirements, this approach does not incur no-
ticeable performance drawbacks on a multi-core system.

Representation of Incomplete Knowledge

We use the idea of Know-If fluents and provide a definition
in the Situation Calculus. For a relational fluent F', we add
a fluent Fxrr which holds iff the value of F' is known. We
assume if an action causes a fluent to change, the agent is
aware of the change and knows the fluent value in the result-
ing situation. For each Fxr, we add a SKA:

Fyir (%, do(a, 8)) = v (Z,a,8) V5 (T, a, 8)

\4 §F(f7 a, S) \ FKIF(fv S) A ﬁ’YI;KIF(fa a, S)
where W;(ﬁ a,s) (Yp(Z,a, s)) are the same as in the SSA
for F, £r(Z, a, s) holds iff a is a knowledge producing ac-
tion for F' and v, (7, a, s) holds iff a causes the fluent I’
to be unknown. Note that this is different from knowledge
fluents: While K F'(Z, s) holds if and only if F’ is known to
be true in situation s, F'xrr holds if the value of F'is known

in situation s, independent of the value. However, we can
express knowledge fluents using Know-If fluents:
KF(Z s) = Fiir(%,8) AN F(Z,)
K-F(Z,s) = Fgr(T,s) AN —F(Z,s)

Know-If fluents have several advantages compared to
knowledge fluents: First, we only need to add one Know-
If fluent for each ordinary fluent instead of two knowledge
fluents, thus reducing the total number of fluents. Sec-
ond, we avoid disjunctive preconditions such as K F'(Z, s) V
K—F(Z,s), which generally impair planner performance.
This is especially useful when defining assertions, where we
typically have replanning conditions which only require a
fluent to be known but which are independent of the fluent’s
value. Third, we can directly express that an action senses
a fluent: an action which senses the fluent I has as its ef-
fect F'xrr; with knowledge fluents, this effect cannot be ex-
pressed as it is unclear whether K F' or K —F holds after the
action. Similar to knowledge fluents, Know-If fluents are
not as expressive as the K fluent.

Assertions

In order to deal with incomplete knowledge during planning,
we add a new action type assertion to GOLOG. It is concep-
tually similar to assertions in MAPL and is a placeholder for
an unspecified sub-plan, which guarantees that its effects are
achievable when its precondition holds without specifying
how the effect is achieved. An assertion is never executed
but instead replanned once its replanning condition holds.

In Figure 1, the goal is to clean up the cup: if it is dirty, it
belongs into the dishwasher, otherwise on the shelf. Initially,
the agent does not know whether the cup is clean. The asser-
tion clean_up_cup represents a conditional sub-plan. After
sensing the cup state, the assertion is replaced with a plan
where the goal is the assertion’s conditional effect.

To determine when an assertion is replaced by a plan, we
require the domain expert to devise an axiom defining the
predicate Expandable for each assertion a, typically using
conjunctions of Know-If fluents. To guarantee eventual ex-
pansion, it should furthermore be entailed that

Poss(a[s], s) D Ezpandable(a[s], s).

Example axioms for clean_up_cup are depicted in Figure 2.
The assertion is expandable if the agent knows whether the
cup is clean or dirty. Here possibility also implies expand-
ability. Finally, the SSA of ar depends on the cup state: If the
cup is clean, it is put on the shelf, else into the dishwasher.

Next, we define the notion of permanent expandability of
an assertion a between situations s; and s, as follows:

PermFEzpandable(a, 1, 82) =
Vs'. 51 < 8’ < 8o D Expandable(a,s’)

Intuitively, we want the agent to avoid replanning when an
assertion is only temporarily expandable and may still be
rendered non-expandable by subsequent actions. Instead,
we want it to wait until the assertion becomes permanently
expandable from the current situation. For that purpose we

(Original Plan) (Expanded Plan)

is_cup clean(cupl)

| Expansion

clean up cup(cupl) =

(. J/

look up(dining table)

goto(shelf)

put_down(cupl)

Figure 1: Example for an assertion expansion: the assertion
clean_up_cup is expanded and replaced with a new sub-plan.
e(clean(cupl), true) denotes the sensing result.

3349

introduce the special situation constant now to denote the
history of actions {ay, . . ., @) executed so far by the agent.
This is achieved by adding the axiom?

9 O[k>, SO)

to the BAT and updating it accordingly after the execution
of further actions.

For replanning, we have an operation Replan similar to
Plan which translates the effects of assertion a to a goal
and calls the planner to create a plan ¢’. Given a BAT D,
a ground action «, and a ground situation term o, let

Adds(a,0) = { F(@|D 5@ a,0)}
Dels(a, @) = {~F(&) | D = 77(@ a,0) }
Then Replan(«, o) invokes the planner with goal

G = /\ Adds(a, o) A /\ Dels(a, o)

now = do({aq,...

Theorem 1. If Replan(a, o) yields (a1, ..., ay,) as solu-
tion plan for G, then
D k= Gldo(a,0)] iff D E Gldo({oa,-..,an),0)].

Note that only G is ensured to hold after executing the plan,
i.e. apart from the assertion’s effects, the plan may have ad-
ditional side effects. To cope with problems arising from
this, we use execution monitoring in order to trigger replan-
ning in situations where a previous plan is rendered invalid
through expanding an assertion. It lies in the programmer’s
responsibility to devise actions and assertions in a fashion
that ensures the possibility of such recovery measures.

Finally, we can define the semantics of assertions in terms
of Trans and Final:

Trans(a,s,d’,s") = now < s A
(—PermEzpandable(a, now, s)
A Poss(a[s],s) A& = nil A s' = do(als], s)
V PermExpandable(a, now, s)
A& = Replan(a,s)\s' =s)
Final(a, s) = False

That is, for assertions we only consider future and present
situations of now. As long as the assertion is not perma-
nently expandable, it is treated as a primitive action. Once it
becomes permanently expandable, replanning is initiated.

We use do({a1,...,as),So0) as shorthand for situation
do(ay, do(ak—1,do(. .., do(a1,S0)))...).

Ezpandable(clean_up_cup(c), s) = cleankrr(c,s)

Poss(clean_up_cup(c), s) =
holding(c, s) A cleangr(c, s)

at(c,l, do(a, s)) = a = clean_up_cup(c) A
(clecm(c7 s) Al = shelf

V —clean(c, s) Al = dishwasher)

Figure 2: Example axioms for clean_up_cup

An assertion must never be used as a possible action. On
the other hand, we generally want to allow the use of asser-
tions during expansion. Therefore, we require the domain
to include a (strict) finite partial order <4 on assertions,
where a can be used to expand b iff a <4 b holds (read:
“b is more abstract than a””). As an example, when expand-
ing clean_table to clean up all cups on a table, the planner
should be able to use the clean_up_cup assertion, hence we
set clean_up_cup <4 clean_table.

Theorem 2. Let Trans™ denote the reflexive and transitive
closure of Trans as defined in (De Giacomo, Lespérance,
and Levesque 2000). If « is an assertion such that D =
Trans™(a, now, &', do(B, now)), then B is not an assertion.

Therefore, an assertion will never be selected for execution,
but rather expansion. After at most finitely many expan-
sions, the next action will always be a non-assertion 3.

As a final remark, note that other definitions than ours for
when to expand an assertion are conceivable, e.g. as soon
as it is expandable (without the permanency constraint), or
only if it is the next action to be executed. Both approaches
would simplify the definition, but could lead to more diffi-
cult monitoring or even dead ends.

Evaluation

In this section, we evaluate our approach to continual plan-
ning in GOLOG with two applications. We present an in-
depth evaluation of our approach in the household domain
and compare it to the GKI CP. Additionally, we sketch how
we use continual planning in the RoboCup Logistics League.

Household Domain

We evaluate our approach using the clean-up task from the
household domain and compare it to the GKI CP. A compar-
ison to MAPL was not possible because our domain relies
on conditional effects, which are not supported by MAPL.
To compare both continual planners, we run both systems
on the same problem. To cope with discrepancies between

Figure 3: Household robot Caesar in our robot lab

3350

the actual world and the agent’s representation of the world,
both planners use execution monitoring, which detects such
discrepancies and adapts the plan accordingly. The GOLOG
CP uses a monitor similar to an existing GOLOG moni-
tor (De Giacomo, Reiter, and Soutchanski 1998), the GKI
CP has a built-in monitor. In order to analyze planner
performance quantitatively, we measured the elapsed real
time between the invocation of the planner and its termi-
nation, excluding monitoring time. All benchmarks were
done on an Intel Core 17-3770 at 3.40 GHz with 4 cores and
hyper-threading, resulting in 8 parallel threads. Quantitative
benchmarks were done by simulating sensing results and as-
suming that all actions succeeded. We ran all tasks twenty
times and computed the average total time. Both systems
have also run successfully on our mobile robot Caesar (Fer-
rein et al. 2013), which is shown in Figure 3.

Evaluation Task Our evaluation task is a clean-up task
from the household domain and modifies the setting of the
TidyUp-Robot project (Dornhege and Hertle 2013): The
robot is supposed to clean up all cups located on a table by
putting dirty cups into the dish washer and clean cups on the
shelf. There are five relevant locations: dining_table, shelf,
kitchen_entrance, dishwasher _side, and dishwasher_front to
reach the dishwasher. The dishwasher contains two spots to
place cups reachable from the front, and one reachable from
the side, where the robot must align before placing any cup.
Initially, the robot knows all locations, how to align to all
locations and all the spots in the dishwasher. The robot is
able to sense the state of a cup if it is holding the cup with
the explicit is_cup_clean sensing action. It also relies on pas-
sive sensing, e.g. when aligned to and looking onto the ta-
ble, it can determine whether a cup is located there, which is
done implicitly by reading cup positions directly from sen-
sors. The goal is always the same: The robot is supposed to
clean up all cups from the dining table. All dirty cups belong
into the dishwasher, all clean cups belong on the shelf:

—3c (cup(c) A holding(c)) A looking_at(dining_table)
AVe. [cup(c) D atkir(c, dining_table)
A 3. (location(l) A at(c,l) D (cleankrr(c)
A (=clean(c) D at(c, dishwasher))
A (clean(c) D at(c, shelf))))]

The two tasks only differ in the initial knowledge:

Task 1 The robot initially knows neither the cup positions
nor whether a cup is clean. We vary the number of cups
between 1 and 10; we add clean and dirty cups alternately.

Task 2 The robot does not know the cup positions, but it
knows cup states initially and thus does not need to sense
them. As before, every second cup is clean, the number of
cups varies between 1 and 10 (simplification of Task 1).

Continual Planning in GOLOG To evaluate the perfor-
mance of our approach, we compare it to the GKI CP by
running Task 2 with both planners. In Figure 4, the total
planning times are shown. We can see that the GOLOG CP
plans much faster when using the ensemble planner. For the

problem with five cups, the GKI CP needed a total planning
time of (278.1 £+ 19.9) s, while the GOLOG CP only needed
(0.95 £ 0.02) s. When we limit the GOLOG CP to FAST-
DOWNWARD, it is still faster with (183.7+1.9) s. When run-
ning Task 1, the GOLOG CP could cope with the incomplete
initial knowledge, but the GKI CP did not succeed even for
small problems as shown in Figure 5. For the problem with
two cups, the GKI CP took (1190.6 + 141.8) s, the GOLOG
CP with ensemble planning took only (2.23 £ 0.02) s, but
(634.5 + 4.1) s when limited to FASTDOWNWARD. Thus,
ensemble planning clearly performs better for this problem.

To analyze plan quality, we investigate the number of ac-
tions planned by both planners when running Task 2. Both
planners produced plans of similar quality; e.g. for the prob-
lem with five cups, the GKI CP needed 65.0 = 3.4 actions,
while the GOLOG CP needed 62.0 4 0.0 actions. Thus, there
is no significant difference in plan quality. However, the
GKI CP could not solve problems with more than five cups,
while the GOLOG CP could handle problems with ten cups.

Assertions Our continual planner relies on the use of as-
sertions, which guarantee that certain sub-goals are reached
while not having all necessary information to create an ac-
tual plan. However, continual planning is also possible with-
out assertions: The planner creates a plan for one possi-
ble world state and revises the plan when it sensed fluents
which differ from its assumptions. As we make the closed-
world assumption, the planner simply assumes all fluents not
known to be true to be false and plans accordingly.

To measure the performance of assertions, we ran
our agent on Task 1 without assertions and with the
clean_up_cup assertion using the ensemble planner. In Fig-
ure 5, total planning times for both cases are shown. For
small problems, we can see that planning without assertions
is in advantage. This seems reasonable as assertions cause
an additional overhead which may surmount their advan-
tage. However, for larger problems, the use of assertions
is clearly advantageous. While the planner with assertions
could solve problems with 10 cups in (10.0 £ 0.06) s, plan-
ning without assertions took (326.5 & 4.9)s for six cups.
Problems with more than six cups could not be solved with-

1000

—— GKI CP (TFD)
- = = GoLoG CP (only FD)
------ GoLoG CP (FF and FD)

100

—_
(=1

Total planning time in sec

0.1 | | | | | |

Number of cups

Figure 4: Planning times for continual planning with the
GKI CP and the GOLOG CP running Task 2 (log. scale)

out assertions. When investigating the intermittent planning
results, the reason becomes clear: The plan without asser-
tions contains actions which depend on the sensing result.
If the sensing result differs from the expected results, the
remaining plan becomes invalid and the agent must replan.
Both approaches with and without assertions produce
plans of similar length. As an example, for the problem with
six cups, the final plan consisted of 93.0 £ 0.0 actions when
not using assertions and 90.0 % 0.0 actions when using as-
sertions. Thus, assertions do not deteriorate plan length.

RoboCup Logistics League (RCLL)

The RCLL is an industry-inspired competition under the
RoboCup umbrella. The goal is to maintain and optimize
the material flow in a smart factory by a group of three au-
tonomous mobile robots. Before the production can start,
the robots must explore the environment and identify the
available machines. These machines are distributed in six
out of twelve zones (per team). The robots travel to the
zones, check whether it is occupied by a machine, and start
identification if it is. For details, we refer to (Niemueller,
Lakemeyer, and Ferrein 2015). For brevity, we limit our fur-
ther description to the exploration phase.

In this scenario, we use planning to minimize plan dura-
tion. Our agents use local planning, i.e., each agent plans on
its own. Full planning for all zones and actions is inefficient.
Therefore, a GOLOG procedure as shown below is used to
pick some unexplored zone and plan the necessary actions.
In order to avoid resource conflicts, the robots coordinate
using mutual exclusion locks for zones. Continual planning
allows to recover from rejected logs (concurrently operating
robots may choose the same zone at the same time).

while some(z, zone, explorable(z)) do
plan(some(z,zone,and(explorable(z),explored(z))))
endWhile

Within the planner call (plan), the necessary steps to ex-
plore a specific zone are generated. An assertion is used to
insert steps for identification iff a machine has been detected
within a zone. GOLOG CP for the RCLL shows its useful-

10000 ~
L ——— GKI CP (TFD)

- = = Golog CP w/ assertions (only FD)

------ Golog CP w/o assertions (FF and FD)
Golog CP w/ assertions (FF and FD)

Total planning time in sec

1 2 3 4 5 6 7 8 9 10
Number of cups

Figure 5: Planning times with the GKI CP and the GOLOG
CP with and without assertions, running Task 1 (log. scale)

ness in multi-robot scenarios by combining the expressive-
ness of GOLOG with the efficiency of planning.

Framework Architecture and Example

In this section, we describe the architecture of our frame-
work and we give a detailed example of a run in the house-
hold domain.

Implementation

Our GOLOG interpreter is based on the Prolog imple-
mentations of INDIGOLOG and READYLOG. We use
ECLIiPSe as Prolog interpreter which is integrated into the
robot software framework Fawkes (Niemueller et al. 2010).
Fawkes provides the functional components and simula-
tion integration. The Lua-based Behavior Engine (BE)
(Niemueller, Ferrein, and Lakemeyer 2010) provides the
primitive actions. Our implementation is available on
https://www.fawkesrobotics.org/p/golog-cp.

As shown in Figure 6, the GOLOG main loop consists
of three stages: First, passive sensing is done by reading
sensing results from Fawkes’ sensing modules. Second, the
current program is monitored. During monitoring, all as-
sertions in the program are checked for expandability and
are expanded if necessary. The monitor also checks if the
current program achieves the goal. If not, it first tries to re-
cover from any exogenous changes and replans if recovery
fails. Assertion expansion, recovery, and replanning use the
GoOLOG-PDDL interface for planning. The monitor uses a
goal action of the form ! (goal), which like GOLOG’s test
actions has no effects and which succeeds if the goal for-
mula holds. It is used to determine a plan’s validity. After
the monitoring stage, the next action of the current program
is executed. For plan actions, the external planner is called
via the GOLOG-PDDL interface. Other actions are trans-
lated to a command for the BE, which takes care of the de-
tails of action execution. After the action has been executed,
the interpreter continues with the next loop iteration.

Example

We present an example of a run of Task 1 with one clean
and one dirty cup. The goal is to clean up all cups:

. Golog Main Loop
sensing

results
Blackboard Passive Sensing

| Monitoring

recover/replan
expand assertion

Sensing Modules

Golog-PDDL
Interface

other

. . actions . .
Behavior Engine Action Execution

Figure 6: Interaction between GOLOG, Fawkes, and the
PDDL planners

FastForward

FastDownward

3352

and(looking_at(livingroom_table),all(c,cup,
and(kif_at(c,livingroom_table),
impl(or(holding(c),some(l,location,at(c,l))),
and(kif_clean(c),
and(impl(neg(clean(c)),at(c,dishwasher)),
impl(clean(c),at(c,counter)))))))))

In the following, we abbreviate the goal formula with
<goal>. Initially, the program consists of a single plan ac-
tion, which achieves the main goal, and a goal check.

[plan(<goal>), !(<goal>)]

After one execution step, the plan call has been replaced by
an actual plan. As the agent has not sensed any cups, it only
needs to look at the table in order to accomplish the goal:

[goto(dining_table), look_at(dining_table), !(<goal>)]

After the agent has executed the look_at action, it senses
cupl and cup2 by means of passive sensing. The goal state-
ment does not hold, replanning is initiated. After replanning,
the program contains two clean_up_cup assertions:

[pick_up(cupl), is_cup_clean(cupl), clean_up_cup(cupl),
pick_up(cup?2), is_cup_clean(cup2), clean_up_cup(cup2),
(< goal>)]

After executing is_cup_clean(cupl), the state of cupl is
known and the first assertion is replanned:

[pick_up(cupl), look_up(dining_table), goto(counter),
align_to(counter), look_at(counter), put_down(cup2, counter),
pick_up(cup?2), is_cup_clean(cup2), clean_up_cup(cup2),

(< goal>)]

Note that this plan is invalid; in addition to the assertion’s
effect, the expanded plan also changes the robot’s position.
Thus, executing pick_up(cup2) is not possible. However, af-
ter monitoring, the new program is again valid:

[pick_up(cupl), look_up(dining_table), goto(counter),
align_to(counter), look_at(counter), put_down(cup2, counter),
goto(dining_table), look _at(dining_table),
pick_up(cup2), is_cup_clean(cup2), clean_up_cup(cup2),

(< goal>)]

The other clean_up_cup assertion is expanded similarly after
executing is_cup_clean(cup2). After executing the resulting
plan, goal holds and the execution terminates successfully.

Conclusion

We combined the expressiveness of GOLOG and the abil-
ity to handle incomplete knowledge with the efficiency of
PDDL-based plan generation. With the introduction of as-
sertions for planning we improve on a major drawback of
previous solutions: not being able to handle incomplete
knowledge in the planning part. An assertion specifies con-
ditions when to trigger planning, which could potentially
run concurrently while other parts of the GOLOG program
are being executed. The conditional effect of an assertion
provides the planning goal. The idea is that the planner gen-
erates an appropriate plan to achieve the desired effects. We
can even run multiple different planners concurrently to ben-
efit of their individual strengths, e.g. shorter generated plans
or faster determination that a plan does not exist. By not

relying on the planner for execution, but rather translating
the plan back to GOLOG, we can postpone some decisions
which rely on sensing and make use of GOLOG’s execution
monitoring capabilities.

The presented approach provides a unified modeling
framework for robot tasks based on GOLOG that can call
PDDL-based planners for efficient plan generation. It allows
to encode (partial) domain knowledge into the GOLOG do-
main and program specification and explicitly model when
to generate sub-plans. The evaluation has shown that it pro-
vides comparable or even better performance than purely
PDDL-based systems. Especially the integration of asser-
tions gives a noticeable performance improvement. The sys-
tem has been implemented and run on an actual mobile robot
solving the described clean-up task in a real environment.

Acknowledgments. J. ClaBen, T. Hofmann, and T. Niemueller
were supported by the German National Science Foundation
(DFG) research unit FOR 1513 on Hybrid Reasoning for Intelli-
gent Systems (http://www.hybrid-reasoning.org).

References

Brenner, M., and Nebel, B. 2009. Continual planning and acting in
dynamic multiagent environments. Autonomous Agents and Multi-
Agent Systems 19(3).

ClaBen, J.; Eyerich, P.; Lakemeyer, G.; and Nebel, B. 2007. To-
wards an integration of Golog and planning. In Proc. of the 20th
Int. Joint Conference on Artificial Intelligence (IJCAI-07).

ClaB8en, J.; Engelmann, V.; Lakemeyer, G.; and Roger, G. 2008.
Integrating Golog and planning: An empirical evaluation. In Proc.
of the 12th Int. Workshop on Nonmonotonic Reasoning.

ClaBen, J.; Roger, G.; Lakemeyer, G.; and Nebel, B. 2012.
PLATAS — integrating planning and the action language Golog.
KI - Kiinstliche Intelligenz 26(1).

De Giacomo, G.; Lespérance, Y.; Levesque, H. J.; and Sardina, S.
2009. IndiGolog: A high-level programming language for embed-
ded reasoning agents. In Multi-Agent Programming. Springer.

De Giacomo, G.; Lespérance, Y.; and Levesque, H. J. 2000. Con-
Golog, a concurrent programming language based on the situation
calculus. Artificial Intelligence 121(1-2).

De Giacomo, G.; Reiter, R.; and Soutchanski, M. 1998. Execution
monitoring of high-level robot programs. In Int. Conf on Principles
of Knowledge Representation and Reasoning.

Demolombe, R., and del Pilar Pozos Parra, M. 2000. A simple and
tractable extension of situation calculus to epistemic logic. In Proc.
12th Int. Symp. on Methodologies for Intelligent Systems. Springer.

Dornhege, C., and Hertle, A. 2013. Integrated symbolic planning
in the tidyup-robot project. In AAAI Spring Symposium - Designing
Intelligent Robots: Reintegrating Al 1.

Eyerich, P.; Mattmiiller, R.; and Roger, G. 2012. Using the context-
enhanced additive heuristic for temporal and numeric planning. In
Towards Service Robots for Everyday Environments. Springer.

Ferrein, A., and Lakemeyer, G. 2008. Logic-based robot control
in highly dynamic domains. Robotics and Autonomous Systems
56(11).

Ferrein, A.; Niemueller, T.; Schiffer, S.; and Lakemeyer, G. 2013.
Lessons learnt from developing the embodied Al platform Caesar
for domestic service robotics. In AAAI Spring Symposium 2013 on
Designing Intelligent Robots: Reintegrating Al I1.

3353

Fikes, R. E., and Nilsson, N. J. 1972. STRIPS: A new approach to
the application of theorem proving to problem solving. Artificial
intelligence 2(3).

Fox, M., and Long, D. 2003. PDDL2. 1: An extension to PDDL
for expressing temporal planning domains. Journal of Artificial
Intelligence Research 20.

Helmert, M. 2006. The Fast Downward planning system. Journal
of Artificial Intelligence Research 26.

Hoffmann, J., and Brafman, R. 2005. Contingent planning via
heuristic forward search with implicit belief states. In Proc. of the
15th Int. Conference on Automated Planning and Scheduling.

Hoffmann, J., and Brafman, R. 2006. Conformant planning via
heuristic forward search: A new approach. Artificial Intelligence
170(6).

Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. Journal of Artificial In-
telligence Research 14:253-302.

Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F.; and Scherl,
R. B. 1997. Golog: A logic programming language for dynamic
domains. The Journal of Logic Programming 31(1-3).

McCarthy, J. 1963. Situations, actions, and causal laws. Technical
report, DTIC Document.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram, A.;
Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL — The Planning
Domain Definition Language. Technical report, AIPS-98 Planning
Competition Committee.

Niemueller, T.; Ferrein, A.; Beck, D.; and Lakemeyer, G. 2010.
Design principles of the component-based robot software frame-
work Fawkes. In Proceedings of the 2nd International Confer-
ence on Simulation, Modeling and Programming for Autonomous
Robots. Springer. 300-311.

Niemueller, T.; Ferrein, A.; and Lakemeyer, G. 2010. A Lua-
based behavior engine for controlling the humanoid robot Nao. In
RoboCup 2009: Robot Soccer World Cup X111, 240-251. Springer.

Niemueller, T.; Lakemeyer, G.; and Ferrein, A. 2015. The
RoboCup Logistics League as a Benchmark for Planning in
Robotics. In WS on Planning and Robotics (PlanRob) at Int. Conf.
on Aut. Planning and Scheduling (ICAPS).

Pednault, E. P. 1989. ADL: Exploring the middle ground between
STRIPS and the situation calculus. In Proc. of the Ist Int. Confer-
ence on Principles of Knowledge Representation and Reasoning.

Petrick, R. P., and Bacchus, F. 2002. A knowledge-based approach
to planning with incomplete information and sensing. In Proc. of
the 6th International Conference on Artificial Intelligence Plan-
ning Systems.

Petrick, R. P., and Bacchus, F. 2004. Extending the knowledge-
based approach to planning with incomplete information and sens-
ing. In 9th Int. Conf on Principles of Knowledge Representation
and Reasoning.

Petrick, R., and Levesque, H. 2002. Knowledge equivalence in
combined action theories. In Proc. of 8th Int. Conference on Prin-
ciples of Knowledge Representation and Reasoning.

Reiter, R. 2001. Knowledge in action: logical foundations for
specifying and implementing dynamical systems. MIT Press.
Scherl, R. B., and Levesque, H. J. 1993. The frame problem and
knowledge-producing actions. In Proc. of the 11th National Con-
ference on Artificial Intelligence.

