
General Error Bounds in Heuristic Search Algorithms
for Stochastic Shortest Path Problems

Eric A. Hansen and Ibrahim Abdoulahi
Dept. of Computer Science and Engineering

Mississippi State University
Mississippi State, MS 39762

hansen@cse.msstate.edu, ia91@msstate.edu

Abstract

We consider recently-derived error bounds that can be
used to bound the quality of solutions found by heuristic
search algorithms for stochastic shortest path problems.
In their original form, the bounds can only be used for
problems with positive action costs. We show how to
generalize the bounds so that they can be used in solv-
ing any stochastic shortest path problem, regardless of
cost structure. In addition, we introduce a simple new
heuristic search algorithm that performs as well or bet-
ter than previous algorithms for this class of problems,
while being easier to implement and analyze.

Introduction
Decision-theoretic planning problems are often modeled as
stochastic shortest path (SSP) problems. For SSP problems,
actions have probabilistic outcomes, and the objective is to
find a conditional plan, or policy, that reaches a goal state
from the start state with minimum expected cost. Classic
dynamic programming algorithms find a solution for the en-
tire state space, that is, for all possible start states. By con-
trast, heuristic search algorithms find a conditional plan for a
given start state, and can do so by evaluating only a fraction
of the state space. The heuristic search approach to solv-
ing SSP problems generalizes the approach of A* and re-
lated heuristic search algorithms for solving deterministic
shortest-path problems, which also limit the number of states
that must be evaluated in the search for an optimal path from
a given start state to a goal state.

The heuristic search approach to solving SSP problems
is based on the insight that if the initial cost-to-go func-
tion is an admissible heuristic (that is, if it underestimates
the optimal cost-to-go function), then an algorithm that only
visits and updates states that are reachable from the start
state under the current greedy policy converges in the limit
to the optimal cost-to-go function for these states, with-
out necessarily evaluating the full state space. Two broad
strategies for using heuristic search in solving SSP prob-
lems have been studied. Real-time dynamic programming
(RTDP) uses trial-based search methods that generalize real-
time heuristic search techniques for deterministic shortest-
path problems (Barto, Bradtke, and Singh 1995; McMahan,

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Likhachev, and Gordon 2005; Smith and Simmons 2006;
Sanner et al. 2009). An alternative approach generalizes tra-
ditional AND/OR graph search techniques (Hansen and Zil-
berstein 2001; Bonet and Geffner 2003a; 2006; Warnquist,
Kvarnström, and Doherty 2010). Whereas RTDP samples
the reachable state space by repeated simulated trajecto-
ries from the start state, the second approach systematically
explores the reachable state space by repeated depth-first
traversals from the start state. Some algorithms use a mix
of the two strategies (Bonet and Geffner 2003b).

The systematic approach to heuristic search shares with
traditional value iteration the important advantage that it
computes a residual each iteration, where the residual is
equal to the largest improvement in value for any (reach-
able) state. Computation of the residual is useful because it
can be used to test for convergence. The smaller the residual,
the higher the quality of the solution. When the residual is
equal to zero, the solution is optimal. Because the residual
only converges to zero in the limit, however, it is common
practice to test for convergence by testing for an ε-consistent
solution, which is a solution for which the residual is less
than some threshold ε > 0. Until recently, however, this ap-
proach has lacked a principled way of selecting a threshold ε
that provides a bound on the suboptimality of the solution.

Hansen and Abdoulahi (2015) recently derived the first
easily-computed error bounds for SSP problems, where the
bounds are based only on the residual and the cost-to-go
function. The bounds perform very well in practice. But the
approach has two limitations. First, it is only applicable if
all action costs are positive. Second, the bounds are tight-
est if action costs are uniform, or nearly uniform. For prob-
lems with non-uniform action costs, the quality of the error
bounds decreases, roughly in proportion to the difference be-
tween the smallest action cost and the average action cost.

In this paper, we overcome both limitations by showing
how to compute error bounds that are equally good whether
action costs are uniform or not, and are available regard-
less of the cost structure of the problem; in particular, the
bounds do not depend on all action costs being positive.
In discussing how to incorporate these bounds in different
heuristic search algorithms, we also introduce a simple new
heuristic search algorithm that we show performs as well
or better than previous heuristic search algorithms for SSP
problems, and is easier to implement and analyze.

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

3130

Stochastic shortest path problem

A stochastic shortest path (SSP) problem (Bertsekas and
Tsitsiklis 1991) is a discrete-stage infinite-horizon Markov
decision process (MDP) with the following elements:

• S denotes a finite set of non-goal states, with initial state
s0 ∈ S, and G denotes a non-empty set of goal states;

• for each state i ∈ S ∪G, A(i) denotes a finite, non-empty
set of feasible actions;

• P a
ij denotes the probability that action a ∈ A(i) taken in

state i results in a transition to state j; and

• gai ∈ � denotes the immediate cost received when action
a ∈ A(i) is taken in state i.

By assumption, goal states are zero-cost and absorbing,
which means gai = 0 and P a

ii = 1, for all i ∈ G, a ∈ A(i).
Let M denote the set of deterministic and stationary poli-

cies, where a policy μ ∈ M maps each state i ∈ S to an
action μ(i) ∈ A(i). A policy is said to be proper if it en-
sures that a goal state is reached within some finite k num-
ber of stages with probability greater than zero from every
state i ∈ S. Under this condition, it follows that a goal state
is reached with probability 1 from every state i ∈ S.

The cost-to-go function Jμ : S → � ∪ {±∞} of a pol-
icy μ gives the expected total cost incurred by following the
policy μ starting from any state i. It is the solution of the
following system of |S| linear equations in |S| unknowns,

Jμ(i) = g
μ(i)
i +

∑
j∈S

P
μ(i)
ij Jμ(j), i ∈ S, (1)

where Jμ(i) = 0, for all i ∈ G. The optimal cost-to-go
function J∗ is defined as J∗(i) = minμ∈M Jμ(i), i ∈ S,
and an optimal policy μ∗ satisfies

J∗(i) = Jμ∗(i) ≤ Jμ(i), μ ∈M, i ∈ S. (2)

Bertsekas and Tsitsiklis (1991) show that an optimal pol-
icy is proper under the following assumptions: (i) there is at
least one proper policy, and (ii) any improper policy incurs
positive infinite cost for some initial state.

Given an initial cost vector J0, value iteration generates
an improved cost vector Jk each iteration k = 1, 2, 3, . . .,
by updating the value of every state i ∈ S as follows,

Jk(i) = min
a∈A(i)

⎧⎨
⎩gai +

∑
j∈S

P a
ijJk−1(j)

⎫⎬
⎭ , (3)

where Jk(i) = 0, for i ∈ G. A greedy policy μk with respect
to a cost vector Jk−1 is defined as a policy that selects, for
each state i ∈ S, the action that maximizes the right-hand
size of Equation (3). It is common to refer to the update of
a single state value based on (3) as a backup, and the update
of all state values based on (3) as a dynamic programming
update. For SSP problems, Bertsekas and Tsitsiklis (1991)
prove that for any initial cost vector J0 ∈ �|S|, the sequence
of vectors, J1, J2, J3, . . ., generated by value iteration con-
verges in the limit to the optimal cost vector J∗, and a greedy
policy with respect to the optimal cost vector J∗ is optimal.

The rate at which value iteration converges can often be
accelerated by using Gauss-Seidel dynamic programming
updates, where Jk(j) is used in place of Jk−1(j) on the
right-hand side of (3), whenever Jk(i) is already available.
If the states in S are indexed from 1 to n, with n = |S|, a
Gauss-Seidel update can be defined for each state i as,

Jk(i)= min
a∈A(i)

⎧⎨
⎩gai +

i−1∑
j=1

P a
ijJk(j)+

n∑
j=i

P a
ijJk−1(j)

⎫⎬
⎭. (4)

The standard update of (3) is called a Jacobi update.

Error bounds

Although value iteration converges to an optimal solution
in the limit, it must be terminated after a finite number of
iterations, in practice. Therefore, it is useful to be able to
bound the sub-optimality of a solution. A policy μk is said
to be ε-optimal if Jμk(i) − J∗(i) ≤ ε, ∀i ∈ S, where Jμk

is the cost-to-go function of the policy μk. By assumption,
an improper policy has positive infinite cost for some initial
state. Therefore, only a proper policy can be ε-optimal.

To test for the ε-optimality of a policy μk in practice, we
need a lower bound on J∗ and an upper bound on Jμk . In
this paper, we assume that the initial cost-to-go function J0
is a lower bound, that is, J0(i) ≤ J∗(i), ∀i ∈ S. By a sim-
ple inductive argument, it follows that each updated cost-to-
go function Jk, for k ≥ 1, is also a lower bound. There-
fore, a greedy policy μk with respect to Jk−1 is ε-optimal if
Jμk(i) − Jk(i) ≤ ε, ∀i ∈ S. Given the lower bound Jk, we
still need an upper bound on Jμk in order to have a practical
test for the ε-optimality of μk.

Bertsekas bounds

For SSP problems, Bertsekas (2005, p. 413) derives error
bounds for value iteration that take the following form when
the cost vector Jk is a lower-bound function. For all i ∈ S,

Jk(i) ≤ J∗(i) ≤ Jμk(i) ≤ Jk(i) + (Nμk(i)− 1) · ck, (5)

where μk is a greedy policy with respect to Jk−1, Nμk(i) is
the expected number of stages to reach a goal state starting
from state i and following the greedy policy μk, and

ck = max
i∈S

{Jk(i)− Jk−1(i)} , (6)

is the residual.1 Bertsekas’ derivation of these bounds as-
sumes the standard Jacobi dynamic programming update
of (3). For a Gauss-Seidel dynamic programming update, the
error bounds of (5) remain valid under the assumption that
Jk is a lower-bound function. However, establishing this re-
quires an additional proof that is not given by Bertsekas. We
give a proof in an appendix. (The proof also considers the
general case where Jk is not a lower-bound function.)

Given a cost vector Jk that is a lower-bound function, all
we need to bound the sub-optimality of a greedy policy μk is

1Bertsekas also defines a complimentary residual, ck =
mini∈S {Jk(i)− Jk−1(i)}, that can be used to compute a lower-
bound function. Since we assume that Jk itself is a lower-bound
function, we do not use this residual.

3131

to compute either one of the two upper bounds on the right-
hand side of (5). If we know that μk is a proper policy, one
way to get an upper bound is to compute its cost-to-go func-
tion, Jμk , using policy evaluation. But exact policy evalua-
tion requires solving the system of |S| linear equations in |S|
unknowns given by (1). The other way to get an upper bound
is by using the inequality Jμk(i) ≤ Jk(i)+(Nμk(i)−1) ·ck
from (5). But determining Nμk(i), which is the expected
number of stages to reach a goal state starting from state
i and following the policy μk, requires solving the following
system of |S| linear equations in |S| unknowns:

Nμk(i) = 1 +
∑
j∈S

P
μk(i)
ij Nμk(j), i ∈ S. (7)

Computing these values is as expensive as policy evaluation.
“Unfortunately,” writes Bertsekas (2005, p. 414), the

bounds of (5) “are easily computed or approximated only
in the presence of special problem structure.” The only ex-
ample of special problem structure given by Bertsekas is
discounting. By a well-known reduction, any discounted
infinite-horizon Markov decision problem can be reduced to
an equivalent SSP problem, where Nμk(i)− 1 = β/(1− β)
for all μ ∈ M, i ∈ S. In the discounted case, the Bertsekas
bounds of (5) reduce to the following well-known bounds
(still assuming that Jk is a lower bound):

Jk(i) ≤ J∗(i) ≤ Jμk(i) ≤ Jk(i) +

(
β

1− β

)
· ck. (8)

Except for the special case of discounting, the Bertsekas
bounds of (5) are too expensive to be useful in practice.

Positive-cost bounds

Hansen and Abdoulahi (2015) recently derived practical er-
ror bounds for SSP problems with positive action costs. The
bounds are, in fact, bounds on the Bertsekas bounds, but
have the advantage that they can be computed easily.

Theorem 1. (Hansen and Abdoulahi 2015) For an SSP
problem where all actions taken in a non-goal state have
positive cost, and g = mini∈S,a∈A(i) g

a
i denotes the small-

est action cost, if ck < g then:

(a) a greedy policy μk with respect to Jk−1 is proper, and
(b) for each state i ∈ S, we have the following upper bound,

where Jμk(i) ≤ Jμk(i):

Jμk(i) =
(Jk(i)− ck) · g

(g − ck)
. (9)

The upper bound given by (9) is easy to compute because
it depends only on the quantities Jk(i) and ck, and not also
on the difficult-to-compute quantity Nμk(i) that is needed
for the Bertsekas upper bound of (5). We refer to the paper
of Hansen and Abdoulahi (2015) for a full and formal proof
of this theorem, and just briefly review one of its key ideas.

The derivation of (9) is based on the insight that when
all action costs are positive, with minimum cost g > 0, an

upper bound Nμk(i) on Nμk(i) is related to an upper bound
Jμk(i) on Jμk(i) by the formula:

Nμk(i) =
Jμk(i)

g
. (10)

This formula simply states that an upper bound Nμk(i) on
the expected number of steps until termination when follow-
ing a policy μk starting from state i is given by an upper
bound Jμk(i) on the cost-to-go Jμk(i) divided by the small-
est action cost g. Given this formula, the bound of (9) is
derived by substituting Nμk(i) for Nμk(i) in the Bertsekas
bound of (5) to obtain the upper bound,

Jμk(i) = Jk(i) + (Nμk(i)− 1) · ck, (11)

and then substituting Jμk(i)/g for Nμk(i) based on (10),
and solving for Jμk(i). Note that from (9) and (10), we have

Nμk(i) =
(Jk(i)− ck)

(g − ck)
. (12)

New bounds for the general case

The bounds of Theorem 1 are only available if all action
costs are positive. Moreover, even when all action costs are
positive, the quality of the bounds decreases when action
costs are not uniform. Their quality decreases because the
ratio Jμk(i)/g in Equation (10) increases with the difference
between the smallest action cost and the average action cost,
and the resulting increase in Nμk(i) loosens the bounds.

These limitations are related to the fact that the bounds
of Theorem 1 use the value of Jk(i) to compute Nμk(i),
as shown by Equation (12). We next show how to compute
Nμk(i) independently of Jk(i), and thus in a way that does
not depend on the cost structure of the problem.

Consider a steps-to-go function Nk(i) that estimates the
number of steps, or stages, required to reach a goal state
from state i. Consider also a value iteration algorithm that
performs the following update,

Nk(i) = 1 +
∑
j∈S

P
μk(i)
ij Nk−1(j), (13)

after each backup that computes Jk(i) and μk(i) for state i.
This enhanced value iteration algorithm also computes the
following residual after each iteration:

nk = max
i∈S

(Nk(i)−Nk−1(i)) . (14)

When all action costs are equal to 1, it is easy to see that
Jk(i) = Nk(i), for i = 1, . . . , n, and ck = nk. In that
case, there is no reason to compute these additional values.
But when action costs are not uniform, or when they are not
all positive, the additional values Nk(i) and nk can differ
greatly from the values Jk(i) and ck, and they provide a way
to compute bounds of the same quality as those available
when action costs are uniform and positive.

The following theorem assumes that the value iteration
algorithm also computes a steps-to-go function.

3132

Theorem 2. For any SSP problem, consider a lower-bound
function Jk that is updated by value iteration, where ck is the
residual defined by (6). Consider also a steps-to-go function
Nk that is updated each iteration, where nk is the residual
defined by (14). If nk < 1 then:
(a) a greedy policy μk with respect to Jk−1 is proper, and
(b) for each state i ∈ S, we have the following upper bound

on Jμk(i), where Jμk(i) ≤ Jμk(i):
(i) If 0 ≤ nk < 1, then

Jμk(i) = Jk(i) +

(
Nk(i)− nk

1− nk
− 1

)
· ck. (15)

(ii) If nk ≤ 0, then
Jμk(i) = Jk(i) + (Nk(i)− 1) · ck. (16)

Proof. Part (a) follows by the same logic used in the proof
of part (a) of Theorem 1. In that proof, the key observation
is that the residual ck is an upper bound on the average cost
per stage for any state i ∈ S under a greedy policy μk (Bert-
sekas 2012, p. 329). For an improper policy, there is at least
one state from which a goal state is never reached, and its
average cost per stage cannot be less than the smallest ac-
tion cost g. It follows that if ck < g, the greedy policy μk

must be proper.
Computing the steps-to-go function Nμk for a policy μk

can be viewed a positive-cost SSP problem where the small-
est action cost is 1, and thus the greedy policy μk must be
proper when nk < 1, by the same reasoning.

We next consider part (b). Applying the Bertsekas bounds
of (5) to the problem of computing Nμk , we have:

Nμk(i) ≤ Nk(i) + (Nμk(i)− 1) · nk. (17)
By the same reasoning used to prove part (b) of Theorem 1,
if μk is proper, there must be an upper bound Nμk(i), with
Nμk(i) ≤ Nμk(i), that is the solution of the linear equation:

Nμk(i) = Nk(i) + (Nμk(i)− 1) · nk. (18)

Solving for Nμk(i), we get

Nμk(i) =
Nk(i)− nk

1− nk
. (19)

Substituting the value of Nμk(i) from (19) into (11), we get
the bound of (15).

The bound of (15) is based on the Bertsekas bound
of (5), which assumes Jacobi dynamic programming up-
dates. In an appendix, we show that the Bertsekas upper
bound of (5) also holds under Gauss-Seidel dynamic pro-
gramming updates, provided the residuals ck and nk are both
non-negative. The assumption that Jk is a lower-bound func-
tion ensures that ck ≥ 0. But Nk is not necessarily a lower-
bound function. If nk is non-positive, however, Nk must be a
monotone upper bound, which gives the bound of (16).

For an SSP problem with positive action costs that are not
uniform, the upper bounds of Theorem 2 are tighter, and po-
tentially much tighter, than the upper bounds of Theorem 1.
Moreover, Theorem 2 can be used to compute upper bounds
for any SSP problem, even if action costs are zero or neg-
ative. It only requires the slight extra overhead of updating
the steps-to-go function in each iteration of value iteration.

Heuristic search and bounds

We next consider how to integrate the new bounds in a
heuristic search algorithm. To facilitate this discussion, we
introduce a simplified version of LAO* (Hansen and Zilber-
stein 2001), which we call Focused Value Iteration (FVI).
Algorithm 1 gives the pseudocode for the algorithm.

FVI updates a cost-to-go function over a sequence of iter-
ations, like standard value iteration. But like LAO*, it only
updates the cost-to-go function for the subset Sμk

s0 ⊆ S of
states reachable from the start state s0 under a greedy policy
μk. In each iteration, it performs a depth-first traversal of the
states in Sμk

s0 , beginning from s0. When a state i ∈ Sμk

s0 is
first visited, a backup is performed and the best action μk(i)
is identified. Then each successor state j ∈ Succ(i, μk(i)) is
pushed on the stack used to organize the depth-first traversal,
provided the state has not already been visited this iteration.
The variable visit(j) indicates whether state j has been vis-

Algorithm 1: Focused Value Iteration with new bounds
Input: SSP problem, start state s0, lower-bound function J0

Output: ε-optimal policy for start state s0
1 Algorithm FVI(s0)
2 k ← 0; ∀i ∈ S, visit(i) = 0, N0(i) = 0
3 repeat
4 k ← k + 1 // Iteration counter

5 visit(s0) ← k; ck ← nk ← −∞ // initialize

6 FVIrec(s0) // depth-first traversal

7 Jμk (s0) ← ∞ // trivial default upper bound

8 if nk < 1 then // test for proper policy

9 if nk < 0 then

10 Nμk (s0) ← Nk(s0)

11 end
12 else

13 Nμk (s0) ← (Nk(s0)− nk)/(1− nk)

14 end

15 Jk(s0) ← Jk(s0) + (Nk(s0)− 1) · ck
16 end

17 until (Jμk (s0)− Jk(s0) < ε)

18

19 Function FVIrec(i)
// Pre-order backup

20 Jk(i) ← mina∈A(i)[g
a
i +

∑
j∈S P a

ijJk−1(j)]

21 μk(i) ← a // best action

22 ck ← max {ck, Jk(i)− Jk−1(i)}
23 Nk(i) ← 1 +

∑
j∈S P a

ijNk−1(j)

24 nk ← max {nk, Nk(i)−Nk−1(i)}
// Process unvisited descendents

25 foreach j ∈ Succ(i, μk(i)) do
26 if (visit(j) < k) and (j /∈ G) then
27 visit(j) ← k
28 FVIrec (j)
29 end

30 end
// Post-order backup

31 Nk(i) ← 1 +
∑

j∈S P
μk(i)
ij Nk(j)

32 Jk(i) ← mina∈A(i)[g
a
i +

∑
j∈S P a

ijJk(j)]

33 return

3133

 45

 50

 55

 60

 65

 70

 75

 0 7 14 21 28 35 42

S
ta

rt
 s

ta
te

 v
a

lu
e

Iterations
 (a)

Positive-cost upper bound
General upper bound

Lower bound

 23.24

 23.26

 23.28

 23.3

 23.32

 23.34

 1378 1383 1388

Iterations
 (b)

Positive-cost upper bound
General upper bound

Lower bound

 509.92

 509.96

 510

 510.04

 510.08

 510.12

 81509 81559 81609 81659 81709 81759

Iterations
 (c)

Positive-cost upper bound
General upper bound

Lower bound

Figure 1: Convergence of bounds for (a) Tireworld problem, (b) Boxworld problem, and (c) Zenotravel problem.

ited yet in iteration k. At the conclusion of the traversal, a
greedy policy μk has been found, and the cost-to-go func-
tion has been updated for all states in Sμk

s0 .
The pseudocode of Algorithm 1 shows that FVI performs

two backups per iteration for each state i ∈ Sμk

s0 . The ini-
tial backup, performed when the state is first visited, identi-
fies the best action for the state. The second backup, which
is performed when backtracking from the state, further im-
proves the cost-to-go function. In fact, the second backup
tends to improve the cost-to-go function more than the first
because it is performed after the successors of the state have
been backed-up. But the second backup is not used to change
the policy. The greedy policy is selected when states are first
visited by the depth-first traversal to ensure that the set of
states Sμk

s0 is exactly the set of states visited by following
the greedy policy μk starting from s0. The second backup
is not used to compute the residual ck either. It is computed
based on the first backup only. (A residual ck computed by
post-order backups is valid if and only if the policy is not
changed by the post-order backups.)

Although the residuals ck and nk are defined only for the
states in Sμk

s0 , they can be used by a heuristic search algo-
rithm to test whether the policy μk is proper and ε-optimal
relative to the start state. (We say that a policy is proper rela-
tive to the start state if it ensures that the goal state is reached
with probability 1 from the start state. We say that a policy is
ε-optimal relative to the start state if the expected cost-to-go
of the start state under the policy is within ε of optimal.)

Corollary 1. The bounds of Theorem 2 can be used in a
heuristic search algorithm that computes the residuals ck
and nk only for the states in Sμk

s0 .
Proof. Consider a restriction of the SSP problem where the
state set is Sμk

s0 , each state i ∈ Sμk

s0 has a singleton action set
A(i) = {μ(i)}, and transition probabilities and costs are the
same as for the original SSP problem. For each state i ∈ Sμk

s0

and action a ∈ A(i) = {μk(i)}, all possible successor states
are in Sμk

s0 , and so it is a well-defined MDP. The single policy
μk is either proper or not. If proper, this restriction of the
SSP problem is itself a well-defined SSP, and the bounds of
Theorem 2 apply. If not proper, a goal state is not reachable
from at least one state in Sμk

s0 , and nk ≥ 1.

Performance of the new bounds

Figure 1 compares the performance of the new bounds of
Theorem 2 to the positive-cost bounds of Theorem 1 in solv-
ing three test problems from the ICAPS Planning Competi-
tions for which action costs are positive, but not uniform.
The Tireworld problem (instance p07 from the 2004 com-
petition) has one action with a cost of 100, while the other
actions have unit cost. The Boxworld problem (instance c4-
b3 from the 2004 competition) has actions costs of 1, 5, and
25. The Zenotravel problem (instance p01-08 from the 2008
competition) has action costs of 1, 10, and 25.

The graphs in Figure 1 show the lower bound for the
start state s0, which is computed by FVI, and the two upper
bounds. The new general bounds are better than the positive-
cost bounds (by a factor that is approximately equal to the
ratio Nk(s0)/Jk(s0)). However, the new bounds do not con-
verge quite as smoothly as the positive-cost bounds, as seen
in Figure 1(c), because they are affected by fluctuations in
Nk, nk, and ck, and not just ck. For these three problems, the
overhead for computing the steps-to-go function for the new
bounds is less than 1% of the overall running time of FVI.

The results in Figure 1 show that the positive-cost bounds
of Theorem 1 still perform very well for these test problems,
even though action costs are not uniform. In fact, it takes
only a few more iterations for the positive-cost bounds to
reach the same point as the new bounds. The apparent ex-
planation is that the two upper bounds differ by a constant
factor, while they converge at a geometric rate. Even if the
constant-factor difference is large, a geometric convergence
rate tends to ensure that the difference in the number of iter-
ations required to reach the same point is not that much.

Of course, the most important advantage of the new

Problem Tireworld Boxworld Zenotravel
Number of states 475,078 1, 024,000 313,920
Explored states (by FVI) 273 138,364 139,874
States in final policy 46 34 9
FVI runtime 0.05 471.02 114.21
LAO* runtime 0.05 518.67 118.60
LRTDP runtime 0.09 460.58 1,330.42

Table 1: Problem characteristics and algorithm running
times (in CPU seconds) to solve problems to ε-consistency
with ε = 10−6.

3134

Problem Characteristics Runtime in CPU seconds
|S| |policy| VI LRTDP HDP LDFS LDFS+ LAO*-B LAO* FVI

big 22,534 4,321 1.31 1.44 0.69 0.51 0.21 1.03 0.26 0.30
bigger 51,943 9,037 4.33 3.13 2.40 1.93 0.67 3.20 1.16 0.63
square-3 42,085 790 1.76 0.06 0.03 0.02 0.04 0.09 0.06 0.07
square-4 383,970 1,000 46.57 0.08 0.05 0.04 1.76 0.28 1.09 1.37
ring-5 94,396 12,374 5.47 4.37 2.22 1.90 0.70 8.77 1.38 1.53
ring-6 352,135 37,437 35.64 48.86 16.75 16.16 4.39 68.12 6.01 6.35
wet-160 25,600 1,364 1.85 7.13 70.29 50.72 4.60 0.22 0.06 0.06
wet-200 40,000 749 2.15 3.61 24.62 17.18 1.93 0.10 0.03 0.03
nav-18 262,143 2,494 90.32 55.83 2421.97 3034.58 2.07 3.43 1.67 1.68
nav-20 1,048,575 1,861 407.65 85.28 1946.06 1892.55 3.24 2.83 2.06 2.26

Table 2: Algorithm running times in CPU seconds until ε-consistency with ε = 10−8. Test problems from Bonet and
Geffner (2006).

bounds of Theorem 2 is that they do not require all action
costs to be positive, which means they apply to a broad
range of SSP problems for which the positive-cost bounds
of Theorem 1 cannot be used. The effectiveness of the new
bounds in solving SSP problems with non-uniform positive
costs suggests that they will also be effective in solving SSP
problems for which not all action costs are positive.

There is another important conclusion to draw from the
results shown in Figure 1. For these three test problems,
there is a striking difference in the number of iterations it
takes until convergence. Table 1 gives additional informa-
tion about the problems that helps explain some differences.
For example, convergence is fastest for the Tireworld prob-
lem because the number of states FVI evaluates is very small
for this problem compared to the other two. But such differ-
ences are not easy to predict, and that highlights the value of
the bounds. Without them, it can be very difficult to estimate
how long a heuristic search algorithm should run until it has
found a greedy policy that is ε-optimal, or even proper.

Comparison of algorithms

In discussing how to integrate the error bounds in heuristic
search algorithms for SSP problems, we introduced a very
simple heuristic search algorithm, called Focused Value It-
eration (FVI). We conclude by considering how its perfor-
mance compares to other algorithms.

FVI is most closely related to LAO*. In fact, the only dif-
ference between the two algorithms is that LAO* gradually
expands an open policy over a succession of iterations un-
til it is closed, whereas FVI evaluates the best closed policy
each iteration. (A policy is said to be closed if it specifies
an action for every state that is reachable from the start state
under the policy; otherwise, it is said to be open.)

Bonet and Geffner describe several closely-related
algorithms, including Labeled RTDP (LRTDP) (Bonet
and Geffner 2003b), Heuristic Dynamic Programming
(HDP) (Bonet and Geffner 2003a), and Learning Depth-First
Search (LDFS) (Bonet and Geffner 2006). These algorithms
differ from FVI in two ways. First, they use a technique for
labeling states as solved that can accelerate convergence.
Second, they adopt a find-and-revise approach that termi-
nates a depth-first traversal of the reachable states as soon as

the residual for a state exceeds a threshold value.
Adoption of the find-and-revise approach means that

these algorithms never complete a depth-first traversal un-
til their last iteration, and so they do not compute a residual
until they terminate. It follows that they cannot use the error
bounds to monitor the progress of the search and dynam-
ically decide when to terminate. In this important respect,
the error bounds are a much better fit for FVI and LAO*.

To compare the running times of these search algorithms,
we repeated an experimental comparison reported by Bonet
and Geffner (2006), using their publicly-available imple-
mentation and test set. Table 2 shows the results of the com-
parison, including the performance of value iteration (VI)
and a modified version of LDFS called LDFS+. The re-
sults, averaged over ten runs, are consistent with the re-
sults reported by Bonet and Geffner (2006), although we
draw attention to a couple differences. The column labeled
“LAO*-B” shows the performance of their implementa-
tion of LAO*. We added a column labeled “LAO*” that
shows the performance of the LAO* algorithm described
by Hansen and Zilberstein (2001). The difference is related
to the fact that all of the algorithms of Bonet and Geffner
use an extra stack to manage a procedure for labeling states
as solved, which incurs considerable overhead. They imple-
ment LAO* in the same way, using an extra stack, although
LAO* does not label states as solved. When this unnecessary
overhead is removed from the implementation of LAO*, its
performance improves significantly. The difference is espe-
cially noticeable as the size of the policy increases.

The results in Table 2, as well as additional results in
Table 1 that compare the performance of FVI, LAO*, and
LRTDP in solving the ICAPS planning problems with non-
uniform action costs, show that FVI performs as well or bet-
ter than the other algorithms. Overall, FVI and LAO* per-
form best, and their performance is very similar. In experi-
ments we do not show for space reasons, LAO* has one ad-
vantage compared to FVI: it explores fewer different states
than FVI – in our experiments, about 5% to 10% fewer. That
is, the strategy of gradually expanding an open path until
it is closed, which LAO* inherits from A* and AO*, has
the benefit of reducing the number of “expanded” states. For
A*, which expands and evaluates each state only once, it

3135

is an important advantage. In solving SSP problems, where
a state is “expanded” once, and then evaluated thousands of
times before convergence, it has little effect on running time.

Conclusion

We have shown how to generalize recently-derived error
bounds for stochastic shortest path problems so that they
do not depend on the cost structure of the problem. The
error bounds can be used not only by value iteration, but
by heuristic search algorithms that compute a residual, such
as LAO* and related algorithms. Although we tested the
bounds on problems with non-uniform positive costs, the ap-
proach has greater significance for problems where action
costs are not all positive, and previous results do not apply.

In the course of generalizing the bounds, we also intro-
duced a simpler version of LAO*, called Focused Value Iter-
ation. Somewhat surprisingly, it performs as well as LAO*,
and as well or better than several other algorithms, at least
on some widely-used benchmarks. This result suggests that
most of the benefit from the heuristic search approach comes
from the very simple strategy of only evaluating states that
could be visited by a greedy policy, and identifying these
states with as little overhead as possible. Other search strate-
gies described in the literature may very well improve per-
formance further. More study will help to clarify when they
are effective and how much additional benefit they provide.

Acknowledgements This research was partially sup-
ported by NSF grant IIS-1219114.

Appendix

Bertsekas (2005, p. 413) proves that the following upper
bound holds under Jacobi dynamic programming updates,

J∗(i) ≤ Jμk(i) ≤ Jk(i) + (Nμk(i)− 1) · ck. (20)

It is the same upper bound introduced in Equation (5) and
used to derive our bounds in this paper.

In this appendix, we establish the extent to which the
bounds of (20) also hold under Gauss-Seidel dynamic pro-
gramming updates. Our result turns on the following lemma.

Lemma 1. Given the residual ck for a Gauss-Seidel dy-
namic programming update, the residual ck+1 for a subse-
quent Jacobi dynamic programming update is bounded as
follows: ck+1 ≤ max{0, ck}.

Proof. Assume the states in S are indexed from 1 to n,
where n = |S|, and let

Qk+1(i, a) = gai +
n∑

j=1

P a
ijJk(j)

denote the result of a Jacobi update of state i for action a
taken at stage k, and let

Qk(i, a) = gai +

i−1∑
j=1

P a
ijJk(j) +

n∑
j=i

P a
ijJk−1(j)

denote the result of a Gauss-Seidel update of state i for ac-
tion a taken at stage k − 1. Note that

Qk+1(i, a)−Qk(i, a) = 0 +

n∑
j=i

P a
ij (Jk(j)− Jk−1(j)) ,

(21)
where we include 0 in (21) in case

∑n
j=i P

a
ij = 0.

If the same action a is taken at both stages, then
Jk+1(i)− Jk(i) = Qk+1(i, a)−Qk(i, a)

≤ max
a∈A(i)

{Qk+1(i, a)−Qk(i, a)} .
If a different action a′ is taken at stage k than the action a
taken at stage k − 1, then Qk+1(i, a

′) ≤ Qk+1(i, a), and so
Jk+1(i)− Jk(i) = Qk+1(i, a

′)−Qk(i, a)

≤ Qk+1(i, a)−Qk(i, a)

≤ max
a∈A(i)

{Qk+1(i, a)−Qk(i, a)} .
In both cases,

Jk+1(i)−Jk(i) ≤ max
a∈A(i)

{Qk+1(i, a)−Qk(i, a)}. (22)

From (21) and (22), we have

Jk+1(i)− Jk(i) ≤ max
a∈A(i)

{
0 +

n∑
j=i

P a
ij (Jk(j)− Jk−1(j))

}
.

It follows that

ck+1 = max
i=1,...,n

{Jk+1(i)− Jk(i)}

≤ max
i=1,...,n

max
a∈A(i)

{
0 +

n∑
j=i

P a
ij (Jk+1(j)− Jk(j))

}

≤ max {0, ck} .

From Lemma 1, if the residual ck after a Gauss-Seidel
update is non-negative, it gives an upper bound on the resid-
ual ck+1 of a subsequent Jacobi dynamic programming up-
date. It follows that the error bound of (20) can be used after
a Gauss-Seidel update if ck is non-negative. If ck is nega-
tive, the rightmost upper bound of (20) does not hold under
Gauss-Seidel updates. But in that case, Jk itself is a mono-
tone upper bound. Thus we have the following theorem.

Theorem 3. For a cost-to-go function Jk that is the result
of a Gauss-Seidel dynamic programming update of Jk−1, we
have the following upper bounds for states i = 1, . . . , n.

(a) If 0 < ck, then
J∗(i) ≤ Jμk(i) ≤ Jk(i) +

(
Nμk(i)− 1

) · ck. (23)
(b) If ck ≤ 0, then

J∗(i) ≤ Jμk(i) ≤ Jk(i). (24)

When the cost vector Jk is a lower-bound function, the
residual ck must be non-negative and case (b) of Theorem 3
is not needed. But for the general-cost bounds of Theorem 2,
the steps-to-go function Nk is not necessarily a lower-bound
function, and so both cases of Theorem 3 are needed.

3136

References

Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to
act using real-time dynamic programming. Artificial Intelli-
gence 72(1):81–138.
Bertsekas, D., and Tsitsiklis, J. 1991. Analysis of stochas-
tic shortest path problems. Mathematics of Operations Re-
search 16(3):580–595.
Bertsekas, D. 2005. Dynamic Programming and Optimal
Control, Vol. 1. Belmont, MA: Athena Scientific, 3rd edi-
tion.
Bertsekas, D. 2012. Dynamic Programming and Optimal
Control, Vol. 2. Belmont, MA: Athena Scientific, 4th edi-
tion.
Bonet, B., and Geffner, H. 2003a. Faster heuristic search
algorithms for planning with uncertainty and full feedback.
In Proc. of the 18th Int. Joint Conf. on Artificial Intelligence
(IJCAI-03), 1233–1238. Morgan Kaufmann.
Bonet, B., and Geffner, H. 2003b. Labeled RTDP: Improv-
ing the convergence of real-time dynamic programming. In
Proc. of the 13th Int. Conf. on Automated Planning and
Scheduling (ICAPS-03), 12–21. AAAI Press.
Bonet, B., and Geffner, H. 2006. Learning depth-first search:
A unified approach to heuristic search in deterministic and
non-deterministic settings, and its application to MDPs. In
Proc. of the 16th Int. Conf. on Automated Planning and
Scheduling (ICAPS-06), 142–151. AAAI Press.
Hansen, E., and Abdoulahi, I. 2015. Efficient bounds in
heuristic search algorithms for stochastic shortest path prob-
lems. In Proceedings of the 29th AAAI Conference on Ar-
tificial Intelligence (AAAI-15), 3283–3290. Austin, Texas:
AAAI Press.
Hansen, E., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence 129(1–2):139–157.
McMahan, H. B.; Likhachev, M.; and Gordon, G. 2005.
Bounded real-time dynamic programming: RTDP with
monotone upper bounds and performance guarantees. In
Proc. of the 22nd Int. Conf. on Machine Learning (ICML-
05), 569–576. ACM.
Sanner, S.; Goetschalckx, R.; Driessens, K.; and Shani, G.
2009. Bayesian real-time dynamic programming. In Proc.
of the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI-
09), 1784–1789. AAAI Press.
Smith, T., and Simmons, R. G. 2006. Focused real-time
dynamic programming for MDPs: Squeezing more out of a
heuristic. In Proc. of the 21st National Conf. on Artificial
Intelligence (AAAI-06), 1227–1232. AAAI Press.
Warnquist, H.; Kvarnström, J.; and Doherty, P. 2010. Itera-
tive bounding LAO*. In Proc. of 19th European Conference
on Artificial Intelligence (ECAI-10), 341–346. IOS Press.

3137

