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Abstract
Uncertainty in activity durations is a key characteristic of
many real world scheduling problems in manufacturing, lo-
gistics and project management. RCPSP/max with dura-
tional uncertainty is a general model that can be used to rep-
resent durational uncertainty in a wide variety of scheduling
problems where there exist resource constraints. However,
computing schedules or execution strategies for RCPSP/max
with durational uncertainty is NP-hard and hence we focus
on providing approximation methods in this paper. We pro-
vide a principled approximation approach based on Sample
Average Approximation (SAA) to compute proactive sched-
ules for RCPSP/max with durational uncertainty. We fur-
ther contribute an extension to SAA for improving scala-
bility significantly without sacrificing on solution quality.
Not only is our approach able to compute schedules at com-
parable runtimes as existing approaches, it also provides
lower α-quantile makespan (also referred to as α-robust
makespan) values than the best known approach on bench-
mark problems from the literature.

Introduction
In most manufacturing, logistics and project management
problems, activity durations are uncertain because of com-
monly occurring events such as human error, manpower un-
availability and weather changes. Hence, accounting for un-
certainty in scheduling problems is practically important.
There have been proactive (compute offline schedules or
strategies), reactive (provide online decisions on next ac-
tivity to be scheduled) and proactive-reactive combination
approaches developed in the literature to solve scheduling
problems with durational uncertainty. We refer the readers to
(Beck and Wilson 2007; Fu et al. 2012; Davenport, Gefflot,
and Beck 2001; Herroelen and Leus 2005; Bidot et al. 2009;
Lombardi and Milano 2009; Cimatti, Micheli, and Roveri
2015) for a survey of existing work in scheduling under un-
certainty.

In this paper, we are specifically interested in develop-
ing proactive approaches for resource constrained schedul-
ing problems where there is durational uncertainty. Our re-
search is complementary to other works that have focussed
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on reactive approaches for scheduling problems. We employ
RCPSP/max with durational uncertainty model provided by
(Fu et al. 2012). Jobshop Scheduling Problems (JSP) with
uncertainty (Beck and Wilson 2007) and RCPSP with un-
certainty (Lamas and Demeulemeester 2015) are subsumed
by RCPSP/max with durational uncertainty. The presence of
maximum time lags in RCPSP/max makes the problem sig-
nificantly challenging, as demonstrated in our experimental
results. Our approaches are similar to scenario-based opti-
mization (Kouvelis, Daniels, and Vairaktarakis 2000; Mul-
vey, Vanderbei, and Zenios 1995) that have previously been
applied to sub-problems of the RCPSP/max with uncertainty
model. The current best approach for solving RCPSP/max
is by (Fu et al. 2012), where local search methods are em-
ployed. We provide principled stochastic approximation ap-
proaches based on Sample Average Approximation (SAA).

Similar to a few existing proactive approaches for con-
sidering uncertainty in scheduling (Fu et al. 2012; Beck and
Wilson 2007), we consider a risk aware objective in solv-
ing RCPSP/max with durational uncertainty. Specifically,
given a risk parameter α, we minimize the α-quantile1 on
the makespan distributions2 . We refer to this α-quantile also
as the α-robust makespan.

Concretely, we make the following key contributions in
this paper. First, we provide an exact MIP formulation for
solving deterministic RCPSP/max. A key advantage of this
deterministic formulation is that it helps provide a princi-
pled approximation approach for solving RCPSP/max with
durational uncertainty. Second, we extend the MIP formu-
lation with Sample Average Approximation to represent un-
certainty in activity durations. Third, we provide a scalable
extension to SAA in order to significantly improve the scal-
ability of the MIP formulation with SAA. Because of this
extension, existing algorithms (Schutt et al. 2013) for solv-
ing deterministic RCPSP/max become relevant and comple-
mentary. Finally, we provide an extensive experimental eval-
uation on benchmark problems from literature and compare
against the best known approach to solve RCPSP/max with
uncertainty.

1α-quantile for a probability distribution is the minimum value
(outcome) amongst all those values (outcomes) whose cumulative
probability exceeds α.

2Since the duration is uncertain, makespan is no longer a single
value but a probability distribution.
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RCPSP/max with Durational Uncertainty
A deterministic RCPSP/max consists of N activities
{a1, · · · , aN} and K types of renewable resources limited
by capacity Ck, where k = 1, · · · ,K. Each activity ai
should be executed for a time duration di without preemp-
tion. Furthermore, ai requires rik units of type k resource
during execution. In addition, two dummy activities a0 and
aN+1 with zero durations are introduced to represent the be-
ginning and the completion of the project, respectively.

A schedule s = (s1, · · · , sN ) is an assignment of start
times to all activities, where si represents the start time of
activity ai. The goal of the deterministic RCPSP/max is to
determine a time (temporal constraints) and resource (re-
source capacity constraints) feasible schedule, such that the
project makespan, which is defined as the start time of the
final dummy activity aN+1, is minimized. The two types of
constraints present in an RCPSP/max instance are:
• Generalized Temporal Constraints (s ≤ T): They spec-

ify the minimal or maximal time lags between pairs of
activities. There exist four types of generalized temporal
constraints: start-start, start-finish, finish-start and finish-
finish. In the deterministic setting, the different types
of constraints can be represented in standardized start-
start form by using the transformation rules (Bartusch,
Mohring, and Radermacher 1988).

Tmin
i,j ≤ sj − si ≤ Tmax

i,j ,∀i, j

• Resource Capacity Constraints (r ≤ C): These ensure that
at any time during execution of schedule, the number of
resources in use does not exceed the capacity.∑

{i|si≤t≤si+di}
rik ≤ Ck,∀t, k

In most real world problems, activity durations, di are un-
certain. To represent this uncertainty, we assume that du-
ration of an activity, ai is a random variable, d̃i. In the
deterministic setting, makespan can be used to evaluate
the performance of a schedule. However, when uncertainty
is involved, the makespan itself becomes a random vari-
able. Similar to existing work (Fu et al. 2012), we employ
α−robust makespan as the objective. We focus on comput-
ing a start time schedule, s instead of an execution strategy3.

As indicated earlier, α-robust makespan for a schedule
is the α-quantile value for the makespan distribution cor-
responding to the schedule. Formally, given α (0 ≤ α ≤ 1),
our goal is to find a start time schedule with the least α-
robust makespan. Formally, ρ is an α-robust makespan for a
schedule s if

Pr(ρs(d̃) ≥ ρ ∧ s ≤ T ∧ r ≤ C)) ≤ α

where ρs(d̃) is a random variable that denotes the makespan
for s given uncertain durations of activities, d̃. Formally, the
least value of α-robust makespan is computed by solving the
abstract optimization model in Table 1.

3More discussion on this choice in ”Discussion” section

min
s

ρ

s.t Pr(ρs(d̃) ≥ ρ ∧ s ≤ T ∧ r ≤ C)) ≤ α

Table 1: Abstract Optimization Formulation

Solving the Deterministic RCPSP/max
In this section, we make the abstract optimization formu-
lation presented in previous section more concrete. Specifi-
cally, we develop an MILP (Mixed Integer Linear Program)
formulation for RCPSP/max that is amenable to sampling
based extensions for addressing the stochasticity. In con-
trast to the formulations for modeling RCPSP using vari-
ables indexed by sequence and flow (Artigues, Michelon,
and Reusser 2003), by starting and ending events (Koné et al.
2011), or using lazy clause generation to model cumulative
constraints by decomposition (Schutt et al. 2009), we pro-
pose a formulation based on identifying resource usage over-
laps. A key challenge in providing an optimization model is
the efficient enforcement of the resource capacity constraint
at all times. We employ the following observation to provide
an efficient constraint that prevents resource capacity viola-
tion at all time points:
Observation 1. Given a schedule s, if we ensure no viola-
tion of resource capacity happens at the starting times of all
activities, then no resource capacity constraint is violated at
any time throughout the execution of the schedule.
Observation 1 is justified as resource usage increases only
at activity start times. We now develop the optimization
formulation that enforces characteristics of a makespan
minimizing schedule, S.

Temporal Feasibility: We employ the following two con-
straints to enforce the minimum and maximum time lags:

sj − si ≥Tmin
ij , ∀(i, j) ∈ Tmin (1)

sj − si ≤Tmax
ij , ∀(i, j) ∈ Tmax (2)

where si and sj correspond to the starting times of activity
ai and activity aj respectively.

Note that this temporal feasibility is defined based on only
the start-start temporal constraints. In the Discussion sec-
tion, we will present how the other temporal constraints are
handled in our stochastic setting.
Resource Feasibility: At any time during the execution of
schedule s , the consumption of any resource type k cannot
exceed its capacity. Based on Observation 1, this can be en-
forced by:
(1) Identifying all activities aj that are executing when ac-
tivity ai is started; and then
(2) Computing the overall resource consumption for every
resource type k at the starting time of ai and enforcing the
capacity constraint.

First, we employ two sets of binary variables, δ1ij and δ2ij
to determine if aj is executing when ai is started. If both δ1ij
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and δ2ij are set to 1, then aj is executing when ai started. We
add the following constraints to set δ1ij and δ2ij :

δ1ij ≥
si − sj
M

+
1

M
; δ2ij ≥

sj + dj − si
M

where M in the above constraints is a large positive con-
stant. One possible metric ofM is the sum of all activity du-
rations. We add the term 1

M in first constraint to account for
the boundary case where si = sj . To better understand how
the above constraints work, we consider all three scenarios
possible where ε represents a small positive value:
• Case 1: Activity ai starts after activity aj is completed.

δ1ij ≥ +ε =⇒ δ1ij = 1 ; δ2ij ≥ −ε =⇒ δ2ij = 0 or 1

• Case 2: ai starts during the execution of activity aj .

δ1ij ≥ +ε =⇒ δ1ij = 1 ; δ2ij ≥ +ε =⇒ δ2ij = 1

• Case 3: ai starts before activity aj starts.

δ1ij ≥ −ε =⇒ δ1ij = 0 or 1 ; δ2ij ≥ +ε =⇒ δ2ij = 1

Second, we use these sets of indicator variables δ1 and
δ2 to compute resource consumption by an activity at the
start of a specific activity. Formally, let resijk denote the total
resource of type k consumed by activity aj at the start of
activity ai . If δ1ij and δ2ij are equal to 1, then resijk is equal
to rjk ( requirement of resource type k for aj) and for any
other case is equal to 0, as aj is not being executed at the
start of ai. The following constraints ensure that the above
logical condition is satisfied:

resijk ≤ δ1ijrjk ; resijk ≤ δ2ijrjk
resijk ≥ rjk − (2− δ1ij − δ2ij) · M̂

where M̂ is a large number. Given values of resijk, resource
capacity can then be enforced using the following constraint:

rik +
∑
j:j 6=i

resijk ≤ Ck

Makespan Minimization: Since the starting time of the
sink node, sN+1 corresponds to the makespan of the given
start time schedule, we use ”min sN+1” as the objective.
The overall optimization model for solving the RCPSP/max
is shown in Table 2.

Solving RCPSP/max with Durational
Uncertainty

In this section, we introduce a sampling based approach to
solve RCPSP/max with durational uncertainty. More specif-
ically, we employ duration samples to operationalise the
abstract optimization model of Table 2. The approach pre-
sented in this section is not dependent on the specific dis-
tribution employed to represent durational uncertainty for
activities. In fact, as long as there is a simulator that can

min sN+1

s.t. sj − si ≥ Tmin
ij , ∀(i, j) ∈ Tmin (3)

sj − si ≤ Tmax
ij , ∀(i, j) ∈ Tmax (4)

s0 = 0 (5)

δ1ij ≥
si − sj + 1

M
, ∀i, j (6)

δ2ij ≥
sj + dj − si

M
, ∀i, j (7)

resijk ≤ δ1ijrjk, ∀i, j, k (8)

resijk ≤ δ2ijrjk, ∀i, j, k (9)

resijk ≥ rjk − (2− δ1ij − δ2ij) · M̂, ∀i, j, k (10)

rik +
∑
j 6=i

resijk ≤ Ck, ∀i, k (11)

resijk ≥ 0, ∀i, j, k (12)

Table 2: SOLVERCPSPMAX({dj}j≤N )

generate duration samples for the activities, our methods are
applicable.

The original problem is to compute the start time sched-
ule that has the least α-robust makespan for RCPSP/max
with uncertain activity durations. It can be approximated by
computing a start time schedule that has the least γ-robust
makespan for the discrete set of duration samples, ξ, of the
durational uncertainty distribution. Since, the latter compu-
tation is focused on a limited set, in the worst case, the vio-
lations when the entire set is considered are higher. Hence,
γ ≤ α. As we show in experimental results, we were able
to identify that for our problems, α − γ = 0.1 yields good
results.

Formally, a duration sample q is defined as: ξq =
{dq1, d

q
2, · · · , dqn}, where dqi represents the duration of ai

in sample q and a set of duration samples is defined as
ξ = {ξ1, ξ2, · · · , ξQ} with Q samples4.

In order to compute the start time schedule, s with the
least α-robust makespan for a given sample set ξ with
Q samples, we formulate an optimization model that ex-
tends on the optimization model provided in SOLVERCP-
SPMAX(). s with least α-robust makespan has to satisfy the
following characteristics:
(1) Temporal constraints remain the same as for the deter-
ministic case because of start-start time lags. Essentially,
start-start time lags allow for the start time schedule to be
independent of duration samples5. Also, as we explain in
”Discussion” section, for other types of temporal constraints
(ex: end-start), we have temporal constraints handled in a
different manner and also contribute to temporary constraint
violations.
(2) For a schedule s, resource constraint feasibility has to

4As we assume the existence of simulators, generating the set
of duration samples is trivial.

5It should be noted that in our formulation, duration samples
primarily affect resource capacity constraints.
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min sN+1

s.t. Constraints (3)− (5)

δ1ij ≥
si − sj + 1

M
, ∀i, j (13)

δ2,qij ≥
sj + dqj − si

M
, ∀i, j, q (14)

resi,qjk ≤ δ
1
ijrjk, ∀i, j, k, q (15)

resi,qjk ≤ δ
2,q
ij rjk, ∀i, j, k, q (16)

resi,qjk ≥ rjk − (2− δ1ij − δ2,qij ) · M̂, ∀i, j, k, q
(17)

rik +
∑
j 6=i

resi,qjk ≤ Ck + (1− zq) ·M, ∀i, k, q

(18)∑
q

zq >= (1− γ) · Q (19)

Table 3: SOLVERCPSPUNC-SAA( {dqj}
q≤Q
j≤N )

be examined for each sample of durations. We use the same
resource constraints as those used in the deterministic case,
with the exception that some of the variables are indexed us-
ing the sample number q. More specifically, the δ1ij variables
are not indexed by the sample q as their assignment is only
dependent on starting times of activities and not on durations
of activities. On the other hand, δ2 and resijk variables are
indexed by the sample q. Updated constraints are:

δ1ij >=
sj − si
M

∀i, j, q

δ2,qij >=
si + dqi − sj

M
∀i, j, q

resi,qjk ≤ δ
1
ijrjk ; resi,qjk ≤ δ

2,q
ij rjk ∀i, j, k, q

resi,qjk ≥ rjk − (2− δ1ij − δ
2,q
ij ) · M̂ ∀i, j, k, q

Overall, if both δ1ij and δ2,qij are 1, then resi,qjk = rjk.

(3) Schedule s should be such that the proportion of samples
that violate resource capacity constraints at any time point is
less than γ ∗Q. We introduce a binary variable zq associated
with each sample q and zq is set to 1 if q is resource feasible
at all time points. Following constraints are used to set zq:∑

q∈Q

zq ≥ (1− γ) · Q

rik +
∑
j 6=i

resi,qjk ≤ Ck + (1− zq) ·M ∀i, k, q

Intuitively, the first constraint enforces that at most γ · Q of
the samples can violate resource capacity constraints. The
second constraint sets zq to 0 only if the resource require-
ment for resource type k exceeds capacity Ck at the start of
any activity, ai with durations from sample ξq .
Combining the constraints, we formulate the optimization
model SOLVERCPSPMAXUNC-SAA as shown in Tabl 3.

We refer to this approach of solving RCPSP/Max with dura-
tional uncertainty as SORU (SAA Optimization for solving
RCPSP/Max under Uncertainty). The objective function of
the SORU optimization model ( i.e., sN+1) is the γ-robust
makespan.

Heuristic Approximation
The scalability of the SORU approach is determined by the
problem type (tightness of scheduling constraints) and the
number of samples employed. It turns out that the number of
samples required for obtaining good schedules in complex
and large scale problem instances increases quickly and can
be a severe bottleneck in the scalability of SORU.

One key insight that we provide in this paper, which is a
general purpose extension to SAA, is to summarise the sam-
ples and make use of only a few summary samples. More
concretely, in this work, we summarise the duration sample
set ξ by using one γ-percentile duration sample. We refer
to this as SORU-H (SORU Heuristic) that trades off guar-
antees on solution quality for scalability and has the same
complexity as solving the deterministic RCPSP/max.

Formally, given a duration sample set ξ and risk factor γ,
we create a deterministic RCPSP/max R̂ with activity dura-
tions given by:

d̂i = PERCENTILE(di, 1− γ), ∀i ≤ N (20)

where di = {d1i , · · · , d
q
i , · · · d

Q
i } and dqi refers to the dura-

tion for activity ai in duration sample ξq . The above expres-
sion computes a (1−γ)th percentile of activity duration from
all durations in the set di. Equation 20 entails that at least
(1 − γ) · Q samples in ξ will have lower durations than d̂i
for every activity i. The overall algorithm for SORU-H can
therefore be summarized as SOLVERCPSPMAX({d̂i}i≤N ).

Let the schedule obtained by solving the deterministic
RCPSP/max instance be given by ŝ = (ŝ1, ŝ2, · · · , ŝn). Let
δ̂1ij and δ̂2ij be the set of variables used to check if aj over-
laps with ai’s starting time using the duration sample (Equa-
tion 20) selected by SORU-H.
Observation 2. For a given schedule ŝ, given two samples
ξq1 and ξq2: dq1i ≥ d

q2
i =⇒ δ2,q1ij ≥ δ2,q2ij

Intuitively, for a given schedule, if the duration is higher
for an activity ai in a sample, then it only increases the
chance that ai would overlap in resource usage with aj . Ob-
servation 2 provides an intuition for why SORU-H generates
α-robust makespan for sample set ξ effectively.

Experimental Evaluation
To demonstrate the utility of our proposed approaches, we
compare against the best known work in the literature on
generating α-robust makespan for RCPSP/max with dura-
tional uncertainty, referred to as FLPV (Fu et al. 2012).
FLPV employs Partial Ordered Schedule to represent so-
lutions, and our approaches, SORU and SORU-H employ
a start time schedule. Also, while FLPV uses local search,
SORU and SORU-H use mixed integer optimization. Even
with these differences in solution representation and ap-
proach, since both FLPV and our two approaches (SORU
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Figure 1: SORU performance: (a) Gamma; (b) Samples

and SORU-H) take as input an RCPSP/max with durational
uncertainty instance and output α-robust makespan, they are
directly comparable.

Experimental Setup

In FLPV, there are constraint violations with respect to max-
imum time lags due to durational uncertainty. In our case
however, we need not deal with such maximum time lag vi-
olations since the start time schedule derived by our model
already satisfy these constraints. On the other hand, our ap-
proaches need to handle resource capacity violations. In or-
der to perform a fair comparison of these methods, we will
count the number of violations (whether they are temporal
or resource constraints). For both approaches, we define a
common metric, namely the Probability of Failure (PoF), as
the ratio of number of violations (obtained by evaluating the
solution on duration instantiations) to the total number of
duration instantiations (1000). In addition, to compare the
quality of solution, we also measure the respecitve α-robust
makespan (referred to also as α-RM in this section).

The problem instances considered in our experiments are
obtained by extending the benchmark sets J10, J20 and
J30 for RCPSP/max, as specified in PSPLib (Kolisch and
Sprecher 1996). Instances in J10, J20 and J30 have 10, 20
and 30 activities respectively and each of the three sets have
270 instances with each instance considering 5 resources.
Similar to (Fu et al. 2012), we also assume the duration
of each activity is normally distributed with mean corre-
sponding to the deterministic duration of instances given in
the benchmark problems, and standard deviation, σ is taken
from the set {0.1, 0.5, 1}. The reported α-RM for each in-
stance is obtained by aggregating solutions from 10 runs.

SORU and SORU-H compute the α-robust makespan us-
ing a set of duration samples. Since the sample based tech-
niques focus only on a limited set of samples, the probabil-
ity of constraint violations when the entire uncertainty set is
considered can only be higher in the worst case. Thus, to cal-
culate α-robust makespan, we adopted a lower value of risk
γ ≤ α in the optimization models of SORU and SORU-H.
This lower value of risk was computed through preliminary
experiments like the one in Figure 1(a). We also did a simi-
lar experiment to identify the right number of samples while
generating the schedule.

Result FLPV vs SORU vs
SORU SORU-H

PoF1 ≤ α ∧ PoF2 ≤ α ∧ 2.96% 11.48%
α-RM1 ≤ α-RM2

PoF1 ≤ α ∧ PoF2 ≤ α ∧ 28.14% 37.04%
α-RM1 > α-RM2

PoF1 ≤ α ∧ PoF2 > α 3.7% 5.93%

PoF1 > α ∧ PoF2 ≤ α 23.33% 0.37%

PoF1 > α ∧ PoF2 > α 41.85% 45.19%

Table 4: Comparison of FLPV, SORU and SORU-H on J10
dataset for α = 0.2. For results of second column, PoF1,
α-RM1 correspond to FLPV and PoF2, α-RM2 correspond
to SORU. For results of third column, PoF1, α-RM1 corre-
spond to SORU and PoF2, α-RM2 correspond to SORU-H.

Results
In Figure 1 (a), we varied the input risk parameter, γ for
a given actual risk parameter α = 0.2, standard deviation,
σ = 0.5 and tested the performance of SORU-H on three
representative instances6. X-axis denotes the gamma, pri-
mary Y-axis denotes the α-robust makespan value and sec-
ondary Y-axis denotes PoF. When γ value is low (0 and
0.05), for one instance, optimization model becomes tightly
constrained resulting in an infeasible solution. For other in-
stances, PoF is much lower than desired (α = 0.2). When
γ value is 0.15, for instance 2 and 3, PoF is higher than
the α value. For γ = 0.1, for all 3 instances, the PoF was
lower than the desired α value. We observed similar be-
havior for other parameter settings of σ and on other in-
stances. Based on these initial tests and settings employed in
prior work on SAA (Pagnoncelli, Ahmed, and Shapiro 2009;
Varakantham and Kumar 2013) in other domains, we em-
ployed α− γ = 0.1.

Unlike FLPV, SORU and SORU-H rely on samples to
generate α-robust makespan and hence we consider num-
ber of samples,Q from the set: {25, 30, 35, 40}. It should be
noted thatQ is only to generate a schedule and not for evalu-
ating the PoF. To determine the right number of samples, we
ran preliminary experiments on multiple different problem
instances. We show results on three representative instances
in Figure 1(b). X-axis denotes the number of samples, pri-
mary Y-axis denotes the α-robust makespan value and sec-
ondary Y-axis denotes the PoF. For all three instances, the
change in makespan is insignificant, however, PoF decreases
as samples are increased until 35 and roughly stays the same
for 40 samples and beyond (tested until 60 samples). This
was observed for other settings of σ and other instances.

Unless otherwise specified, the default parameter values
are σ = 0.5, α = 0.2, γ = 0.1 and Q = 35. We com-

6For purposes of exposition and to focus on the key aspects of
the result, we consider three representative instances in this graph
and in the graph considering variation in number of samples. How-
ever, we did test for both on 20 random instances.
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pare our algorithms SORU, SORU-H against the best known
solver for RCPSP/max with duration uncertainty in the liter-
ature, i.e., the FLPV approach7 (Fu et al. 2012) on the three
problems sets, J10, J20 and J30.

SORU was able to obtain solutions within 5 minutes for
every one instance in J10 and 2 hrs for the J20 instances.
However, for J30, we were unable to get optimal solutions
for certain instances in the cut-off limit of 3 hrs. On the other
hand, SORU-H was able to generate solutions for J10 in-
stance within half of a second, J20 instances within 10 sec-
onds and J30 instances within 10 minutes on average. Local
search approaches of FLPV were able to finish in a maxi-
mum of a minute, so we ran multiple times (20) and took
the best solution.

Since there is stochasticity in durations and there are no
theoretical guarantees on violations for all the three ap-
proaches, we have to employ two key criterion for compar-
isons with respect to solution quality:

• α-RM (or α Robust Makespan); and

• PoF (or Probability of Failure);

For two given approaches, let α-RM1 and PoF1 be values
for approach 1 and α-RM2 and PoF2 be values for approach
2. Robust makespan values can be compared only when
both approaches find feasible solutions (i.e., PoF values are
less than or equal to α). Therefore, for comparing two ap-
proaches, there are five different possibilities:

1. PoF1 ≤ α ∧ PoF2 ≤ α ∧ α-RM1 ≤ α-RM2: Both ap-
proaches provide feasible solutions and approach1 has
lower makespan than the approach2.

2. PoF1 ≤ α ∧ PoF2 ≤ α ∧ α-RM1 > α-RM2: Both ap-
proaches provide feasible solutions and approach2 has
lower makespan than approach1.

3. PoF1≤ α ∧ PoF2>α ∧: Only the first approach provides
a feasible solution. This result demonstrates the ability of
approach1 to obtain feasible solutions.

4. PoF1 > α ∧ PoF2 ≤ α: Only the second approach pro-
vides a fesaible solution. This result demonstrates the
ability of approach2 to obtain feasible solutions.

5. PoF1 > α ∧ PoF2 > α: None of the two approaches pro-
vide a feasible solution.

We first compare FLPV and SORU in the second column
of Table 4: (1) In around 31% of the cases, both approaches
returned feasible solution and in 28% of those cases, SORU
had a higher makespan than FLPV. (2) In more than 23% of
the cases, SORU was able to find a solution, but FLPV was
unable to find a solution8. We believe this is due to FLPVs
inability to handle maximum time lags, an issue highlighted
even in their paper (Fu et al. 2012). (3) In 4% percentage of
the cases, SORU was unable to find a solution9, where FLPV

7We use this to refer to the best results provided by the two
approaches, SLA and GNLA.

8PoFs were higher than even α+ 0.1 for most of the cases
9PoF values were almost always between α and α + 0.1. We

believe these cases can be better solved by adopting higher number
of samples or a slightly lower γ. However, identifying instances

Result J10 J20 J30

PoF1 ≤ α ∧ PoF2 ≤ α ∧ 29% 27% 25%
α-RM1 ≤ α-RM2

PoF1 ≤ α ∧ PoF2 ≤ α ∧ 3% 1% 1%
α-RM1 > α-RM2

PoF1 ≤ α ∧ PoF2 > α 18% 17% 23%

PoF1 > α ∧ PoF2 ≤ α 4% 4% 1%

PoF1 > α ∧ PoF2 > α 47% 51% 50%

Table 5: Comparison of SORU-H and FLPV on J10, J20
and J30 datasets for α = 0.2. PoF1, α-RM1 correspond to
SORU-H and PoF2, α-RM2 correspond to FLPV.

was able to find a solution. (4) In around 42% of the cases,
neither approach returned a feasible solution. Overall, of the
58% feasible cases, SORU was able to outperform FLPV in
more than 88%(= 51

58 %) of the cases.
We provide results of comparison between SORU and

SORU-H in the third column of Table 4: (1) In around 48%
of the cases, both approaches were able to obtain feasible
solutions. Of the 48% of cases, SORU-H was able to obtain
lower makespan in 37% of the cases and SORU was able to
obtain lower makespan in 11% of the cases. (2) In around
6% of the cases, SORU was able to find a solution when
SORU-H was unable to find a solution. In only 0.3% of the
cases, SORU-H was able to find a solution when SORU was
unable to find a solution. (3) In around 45% of the cases,
neither approach returned a feasible solution. Overall, of the
55% of the feasible cases for one of the two algorithms, in
67% (= 37

55 %) of the cases SORU-H was able to outper-
form SORU. Given the better run-time and solution quality
performance of SORU-H, we provide comparisons between
SORU-H and FLPV on all the three problem sets.

FLPV SORU-H
J10 44.21 40.43
J20 71.62 62.34
J30 79.09 73.99

Table 6: Comparison of average α-robust makespan.

Table 5 provides the results for the comparison between
SORU-H and FLPV on all three problem sets:
(1) In at least 25% of the instances where SORU-H provided
lower robust makespan values. (2) In at least 17% of the
instances, SORU-H provided a feasible solution but FLPV
was unable to find a solution. (3) Over all the three problem
sets, in at most 7% of the instances, FLPV found a solution
that was either better or SORU-H was unable to find a so-
lution. (4) For all the three problem sets, there were around
50% instances where both approaches had no feasible solu-
tion. In summary, in at least 44% of the cases, SORU-H
outperformed FLPV. In only a maximum of 7% of cases,

where such lower γ or higher samples are required is an important
problem for future work.
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FLPV outperformed SORU-H. The comparison of average
makespan over the feasible instances for both SORU-H and
FLPV are provided in Table 6. SORU-H provides a clear
improvement over FLPV on all the three data sets.

Discussion
Currently, we have start-start temporal constraints in our
optimization models for RCPSP/max and RCPSP/max
with durational uncertainty. Our optimization model for
RCPSP/max in Table 2 can trivially be adapted to account
for end-start temporal constraints. For RCPSP/max with du-
rational uncertainty, accounting for end-start temporal con-
straints is not immediately obvious. We need to update the
temporal lag constraints (constraints on the first line) in Ta-
ble 3 to use the zq variables introduced in SORU.

sj − ei ≥ Tmin
ij − (1− zq) ·M

sj − ei ≤ Tmax
ij + (1− zq) ·M (21)

We now use the same variable, zq to keep track of whether
a sample ξq violates resource or temporal constraints. Sim-
ilar changes can be made to account for other types of con-
straints (start-end and end-end). Thus, our approach is not
limited by the way temporal constraints are specified.

For uncertain duration problems, solutions can either be
start time schedules or execution strategies. Both these so-
lution types have their own advantages and disadvantages.
While start time schedules are rigid, they are easy to com-
pute, understand and execute. On the other hand, while par-
tially ordered schedules are flexible, they are harder to com-
pute and have difficultly handling maximum time lags (as
illustrated with (Fu et al. 2012)).

In summary, our approaches have many useful properties.
First, they can work with any uncertainty distribution, as
long as their is a simulator for durations. Second, all types
of temporal constraints, start-start, end-start, start-end and
end-end can be handled with our approaches. Furthermore,
unlike previous work, our approaches are better equipped to
handle maximum time lag constraints. Third, not only does
SORU-H compute schedules at comparable runtimes as the
best existing approach from literature, it also provides higher
quality solutions. Finally, we can exploit commercial opti-
mization software (e.g., CPLEX) to solve our MIPs.
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