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Abstract

Partially Observable Markov Decision Processes (POMDPs)
are often used to model planning problems under uncertainty.
The goal in Risk-Sensitive POMDPs (RS-POMDPs) is to find
a policy that maximizes the probability that the cumulative
cost is within some user-defined cost threshold. In this paper,
unlike existing POMDP literature, we distinguish between the
two cases of whether costs can or cannot be observed and show
the empirical impact of cost observations. We also introduce a
new search-based algorithm to solve RS-POMDPs and show
that it is faster and more scalable than existing approaches
in two synthetic domains and a taxi domain generated with
real-world data.

Introduction

In planning their daily movement strategies to get customers,
most taxi drivers (Ziebart et al. 2008; Varakantham et al.
2012) are focused on reducing the risk associated with achiev-
ing a certain goal in terms of revenue. Similarly, electric car
drivers (Eisner, Funke, and Storandt 2011) are more focused
on reducing the risk of being stranded on a highway than try-
ing to reach a destination several minutes earlier. Trucks de-
ployed to clear snow in cities (Salazar-Aguilar, Langevin, and
Laporte 2013) are motivated by the need to reduce the risk of
not clearing snow on “important” highways and roads. Moti-
vated by such problems, this paper focuses on risk-sensitive
planning under uncertainty.

Markov Decision Processes (MDPs) and Partially Ob-
servable MDPs (POMDPs) have been shown to be effec-
tive models for planning under uncertainty. There is a large
body of work by researchers who incorporated notions
of risk in MDPs and POMDPs (Liu and Koenig 2005;
2006; Osogami 2011; 2012; Biuerle and Rieder 2014;
Marecki and Varakantham 2010). Among them, Yu, Lin,
and Yan (1998) introduced Risk-Sensitive MDPs (RS-MDPs),
which seek a policy that maximizes the probability that the
cumulative cost is within some user-defined cost threshold.
In this model, the Risk-Sensitive criterion (RS-criterion) is
equivalent to having a utility function that is a step function,
where an execution trajectory has no utility if its cost exceeds
the threshold and a non-zero constant utility otherwise.
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In this paper, we investigate goal-directed Risk-Sensitive
POMDPs (RS-POMDPs), a generalization of RS-MDPs to
the partially observable case. In the motivating domains ear-
lier, partial observability may correspond to taxi drivers not
completely observing other taxis in the same zone, electric
car drivers not knowing about traffic conditions, and lack
of accurate knowledge of snow conditions on the ground.
Additionally, it is often not explicitly stated in the POMDP
literature if agents can or cannot observe actual costs incurred
during execution (Kaelbling, Littman, and Cassandra 1998).
When costs can be observed, one can use them to update and
get more accurate belief states, which can result in improved
policies. Unfortunately, most algorithms do not explicitly use
them to do so even when costs can be observed.

Towards solving goal-directed RS-POMDPs, we make
the following key contributions: (i) We generalize Func-
tional Value Iteration (FVI) (Marecki and Varakantham 2010),
which was developed to solve finite-horizon RS-POMDPs, to
now solve goal-directed RS-POMDPs with our RS-criterion;
(if) We propose a new exact search-based algorithm that is
tailored specifically to RS-POMDPs with our RS-criterion;
(iii) In domains where agents can observe actual costs of
actions and they can provide more information than the ob-
servations, we provide a mechanism to exploit the extra in-
formation provided by observed costs; and (iv) Finally, we
experimentally show that the new algorithm performs bet-
ter than FVI in two synthetic domains and a taxi domain
(Ziebart et al. 2008; Varakantham et al. 2012) generated with
real-world data.

Background

A Goal-Directed POMDP (GD-POMDP) (Geffner
and Bonet 2013) is represented as a tuple P
(S,by, G, A, T, C,Q,O). It consists of a set of states S;
an initial belief state by; a subset G C S of observable
goal states; a set of actions Aj; a transition function
T :S x A xS — [0,1] that gives the probability T'(s, a, s")
of transitioning from state s to state s’ when action a is
executed; a cost function C : Sx A — R that gives the cost
C'(s, a) of executing action a in state s; a set of observations
Q; and an observation function O : A x S x © — [0, 1]
that gives the probability O(a, s, 0) of receiving observation
o when the action a is executed and state s’ is reached. In
this paper, we will focus on GD-POMDPs and will thus use



the term POMDPs to refer to GD-POMDPs.

In POMDPs, a belief state b is a probability distribution
over the states such that b(s) is the probability of s being
the actual state. We use B to denote the set of belief states.
Let by (s) = >, b(s')T(s!a, s) denote the belief state after
performing action « in belief state b and Pr(o | b,a) =
> ba(s)O(a, s,0) denote the probability of observing o
after performing action a in belief state b. Then, b2(s)
ba (5)O(

s (OI;)I ;)O) denotes the belief state after performing action

a in belief state b and observing o.

A POMDP policy m : B — A is a mapping from belief
states to actions. A common objective is to find a policy 7*
with the minimum expected cost C*(bg), defined by

ZPr (0]b,a™)C* (b3)

for all belief states b € B, where a* = 7*(b) is the ac-
tion prescribed by policy 7* in belief state b and ¢(b, a*) =
> b(s)C(s,a*) is the expected cost of applying action a*
in belief state b.

C*(b) = c(b,a") (1)

Exact Algorithms: Exact POMDP algorithms (Kaelbling,
Littman, and Cassandra 1998) use a finite set I" of |S|-
dimensional real vectors. Each vector corresponds to a partic-
ular policy and each element in a vector corresponds to the
expected cost «(s) of starting at a particular state s. Then,
the expected cost of a belief state b is:

C(b) = min

min 3" b(s)a(s)

s

@

The number of vectors in I' corresponds to the number of un-

dominated policies.! The algorithms iteratively perform full
Dynamic Programming (DP) updates to update the vector set
T", where, in each iteration k, each vector in the set represents
the expected cost of policies up to time step k.

Since DP updates are done backwards in time (i.e., starting
from the horizon), each policy in iteration k£ + 1 will have
policies in iteration k as subpolicies. If we define a function
v : & — T’ to map each observation to the |S|-dimensional
real vector of a possible subpolicy in iteration k, and Vj, as
the set of all such functions, then the full set of possible
vectors after the update in iteration k + 1 is:

Tit1 ={aav|a € Ajv eV} 3)

where o, (s) =C(s,a)+) ., T (s,a,5")O0(a,s50)v(0)(s").
Some of these vectors may be dominated by other vectors
and can be pruned by using linear program.

Point-Based Algorithms: Since the number of vectors in
T" grows exponentially in each iteration, researchers have in-
troduced point-based algorithms (Pineau, Gordon, and Thrun
2003; Shani, Pineau, and Kaplow 2013) that update the vec-
tors by considering only a restricted subset of belief points.
In each iteration, these algorithms keep only a vector with
the smallest cost for each belief point, thereby restricting the
number of vectors in I" to the number of belief points.

'A policy is an undominated policy if it has the smallest cost for
at least one belief state.
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Risk-Sensitive POMDP (RS-POMDP) Model

An RS-POMDP is defined by the tuple (P, ©, 6y), where P
is a POMDP, O is a set of possible cost thresholds, and 6, €
© is the user-defined initial cost threshold. The objective
is to find a policy 7 that maximizes the probability that the
expected cumulative cost ¢7 (™) over all states s with a non-
zero initial belief by(s) is no greater than the initial cost
threshold 6:

argmax Z bo(s

The cumulative cost ¢’ (™) of a trajectory T (s, ) = (sq =
s, 81, 82, - . .), formed by executing policy 7 from state s, is
defined by T m) = Ztoio ct, where ¢; is the cost incurred
when transitioning from s; to s;11 in time step ¢.

CPr(c”e™ < gy) )

Cost Observation: It is often not explicitly stated if agents
can or cannot observe the actual cost incurred during ex-
ecution (Kaelbling, Littman, and Cassandra 1998). While
one can imagine incorporating the observed cost in the ob-
servation function, as the observed cost depends on the pre-
decessor state s, action a, and successor state s’, the new
observation function O’(s, a, s’,0’) must include all these
elements. Let O(a, s’,0) denote the observation function
without costs, where o is the regular POMDP observation
without costs. Also, let ¢ denote the observed cost. Then, the
new observation o’ = (¢, 0) and the new observation function
O'(s,a, s, 0") should satisfy the constraint O’ (s, a, s’,0") =
O(a,s',0)if c = C(s,a) and O'(s, a,s’,0") = 0 otherwise.
While it is possible to represent cost observations this way,
we provide a more compact representation in this paper that
separates the observed costs from the observation function.

In cases where actual costs can be observed, most POMDP
algorithms do not explicitly use them to update the belief
state. In some real-world applications, the actual costs can
indeed be observed. For example, in our electric car exam-
ple in the introduction, costs can correspond to the amount
of battery power used, and the driver can observe the drop
in its internal battery power. Therefore, in this paper, we
distinguish between the two cases and describe solution ap-
proaches for both cases. Additionally, we assume that in both
cases, the agent can accurately detect if the actual cumulative
cost of its trajectory is greater than its initial cost threshold
(i.e., when its resource is depleted or its deadline has passed)
and it will then stop executing actions.

RS-POMDP Policy: The optimal policy for a POMDP
often does not depend on the accumulated cost thus far. In
contrast, an optimal policy for an RS-POMDP does depend
on the accumulated cost thus far. Therefore, RS-POMDP
policies need to take accumulated costs into account.

One way to do so is to incorporate costs in the belief states,
which we define for the following two cases:

e If actual costs cannot be observed, then a belief state b is
now a probability distribution over pairs (s, ) of states
s € S and cost thresholds § € ©®, which is the initial cost
threshold 6y minus the accumulated cost thus far. Then,
b(s, 0) is the probability of (s, #) being the pair of actual
state and cost threshold. We use B_,. to denote this set of
belief states.



e If actual costs can be observed, then a belief state b is
also a probability distribution as defined for the previous
case, except that all pairs (s, #) with non-zero probability
b(s,0) > 0 have exactly the same cost threshold 6 since
costs can be observed. We use B, to denote this set of
belief states.

Finally, an RS-POMDP policy 7 is a mapping of belief
states to actions, where belief states are defined as above.
More specifically, it is 7 : B_. — A if actual costs cannot
be observed and 7 : B, — A if costs can be observed.

We use P™(b) to denote the reachable probability:

PT(b) = b(s,0) - Pr(c” ™ < 0)
s,0

(&)

In other words, it is the probability that the accumulated
cost of starting from belief state b is no larger than the corre-
sponding cost threshold 6 with policy 7. Thus, in solving an
RS-POMDP, the goal is to find a policy 7* such that:

Q)

" = argmax P (bo)
s

One can represent reachable probabilities as piecewise-
constant utility functions of cost thresholds 6. For example,
consider a simple POMDP with S = {s1, s2,53,5¢}; G =
{s4}; bo(s;) = P* for each s; ¢ G; and an action a that
can be executed from all states s; ¢ G and transitions to the
goal state s, with probability 1 and cost §°. Assume that cost
63 > f, exceeds the initial cost threshold, and 8! < 6% < 6.
Then, Figures 1(a) and 1(b) represent the utility functions of
the belief by at states s; and ss, respectively. For example,
if the agent is at state s; with probability by(s;) = P!, and
it has a current cost threshold 6 € [0, 6], then it receives a
utility equal to the probability P! of reaching a goal since its
action a can reach a goal with complete certainty. The utility
function of the initial belief state is thus the sum of the two
utility functions and is shown in Figure 1(c).

Functional Value Iteration (FVI)

FVI is an exact algorithm that can solve finite-horizon
RS-POMDPs without cost observations and with arbitrary
piecewise-linear non-decreasing utility functions (Marecki
and Varakantham 2010). In this section, we describe how to
generalize FVI to solve goal-directed RS-POMDPs with or
without cost observations. Additionally, we describe how to
optimize FVI for our piecewise-constant utility functions.

Recall that, in POMDPs, T is a set of |S|-dimensional
vectors, where each element of these vectors is the expected
cost of starting at a particular state. In RS-POMDPs, T is also
a set of |S|-dimensional vectors, but each element of these
vectors is now a piecewise-constant function that describes
the reachable probability as a function of cost thresholds.
In other words, each vector in I is a mapping S — (© —
[0,1]), that is, a particular state s € S maps to a piecewise-
constant utility function, and a particular cost threshold 6 €
©® maps to a reachable probability in that utility function.
Then, the reachable probability of a belief state b is:

P(b) =max » b(s,0)a(s)(0) @)

ael
s,0
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Similar to exact POMDP algorithms, FVI iteratively up-
dates the vector set I' until convergence. Then, the full set of
possible vectors after the update in iteration & + 1 is still:

Fk+1 = {aa,v ‘ a e A,'U € Vk} (8)

where V), is the set of functions v, and the definition of v
differs in the following two cases:

e If actual costs cannot be observed, then v : 2 — I';, is
similar to the one defined for POMDPs.

e If actual costs can be observed, then v : C x & — I';.

Finally, the update of the vectors « , are different than those

in POMDP algorithms as they now contain functions instead

of real numbers:

e [f actual costs cannot be observed, then

@a,o(5)(0)=)_ T(s,a,5)O0(a, s 0)v(0)(s)(0) (9
s'0%0
forall € ©, where ' = 6 — C(s,a).
e If actual costs can be observed, then
Qa,w(s)(0) = (10)

0 ifc # C(s,a)
ZT(S, a,s")O0(a, s,0)v(c,0)(s")(0") otherwise

s10%o0

|

for all # € ©, where 8/ = 6 — C(s,a) and c is the
observed cost.
We now describe how to prune dominated vectors from
I" to scale up FVI. Note that vector «; is not dominated by
other vectors if the following holds for all vectors «; € I*:

3b: Z b(s,0) [ai(s)(0) —a;(s)(0)] >0 (11)
s,0

In order to compute a;(s)(6) — «;(s)(8) efficiently for
our piecewise-constant utility functions, we observe the fol-
lowing:

Observation 1 Each piecewise-constant utility function can
be represented by an ordered list of pairs {(6*, P'), (6%, P?),
.o, (0™, P™)} that describe the ‘pieces’ of the function.

Observation 2 For each piecewise-constant utility function,
the reachable probability for all cost thresholds 0 € [6°,6*T1)
are identical.

Therefore, instead of considering all cost thresholds 6
in Equation 11, one can divide the utility functions into
segments of cost thresholds [0, 6%),[02,63),...,[6" 1, 0™),
where, for each utility function «; (s), the reachable probabili-
ties «;($)(0) = «;(s)(0") are identical for all cost thresholds
0,0’ € [¢7,67F1) within a segment. One can identify these
segments by taking the union of all cost thresholds in the or-
dered list of pairs over all utility functions «; () in all vectors
a; €T

We now describe the optimizations and the pruning condi-
tion to replace Equation 11 for the following two cases:

e In the case where actual costs cannot be observed, since
the computation of the difference a;(s)(6) — c;(s)(6) is
for the same state s, one can optimize the process above by
computing segments for each state s in order to minimize
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Figure 1: Example Piecewise-Constant Utility Functions

the number of segments. Then, one can use the following
condition to check for dominance:

By D (s.0) [an()(0) —as(s)(05)] 2 0 (12)

k+1
sk gefok obtt)

where 0% is the start of the k-th cost threshold segment for
state s. This dominance check can be implemented with a
single linear program.

o In the case where actual costs can be observed, recall
that for a particular belief state b, all pairs (s,6) with
non-zero probability b(s,d) > 0 have exactly the same
cost threshold 6. Therefore, one needs to only check the
following condition for that particular cost threshold 6:

B> b(s,0) [ai(s)(Gk) —aj(s)(ek)] >0 (13)

where 6 € [0, 6%*1) and 6F is the start of the k-th cost
threshold segment in the union of all cost threshold seg-
ments over all states. This dominance check can be im-
plemented with n (= number of cost threshold segments)
linear programs, where 6 = 6 in the k-th linear program.

Point-Based FVI (PB-FVI): Similar to point-based
POMDP algorithms, one can extend FVI to PB-FVI: In each
iteration of the DP update, PB-FVI updates the vectors in I"
by considering only a restricted subset of belief points. While
one can select the set of belief points arbitrarily, we select
them in the same way as PBVI (Pineau, Gordon, and Thrun
2003) in our experiments.

Depth-First Search (DFS)

We now describe how to use DFS to search the reachable
belief state space for an optimal policy.

Belief State Updates: In RS-POMDPs, the belief state up-
dates are slightly different than in POMDPs because belief
states now include cost thresholds:

e If actual costs cannot be observed, then, let

ba(s,0") = Z:b(sﬁ)T(s,a7 s') (14)
s,0

denote the belief state after performing action a in belief
state b, where ' = 6 — C(sa), and

() = L ba(/6)0(a, 5.0)

(15)
denote the belief state after performing action a in belief
state b and observing o; Z is the normalizing factor.

o If actual costs can be observed, then, let

ba,e(510') =D bae(s,0,s") (16)
s,0
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n_ Jb(s,0)T(s,a,s") ifc=C(s,a)
base(s,0,57) = { 0 otherwise
denote the unnormalized belief state after performing

action a in belief state b and observing cost ¢, where ¢’ =
6 — ¢, and

b o (s60) = %bw(s: 6'Y0(a, .0) a7

denote the belief state after performing action a in belief
state b and observing c and o; Z is the normalizing factor.

Reachable Probability Backups: Instead of using vectors
in I to compute reachable probabilities, one can also compute
them using the system of linear equations below:

e If actual costs cannot be observed, then

P(b) = max » _ P(a,s,0) (18)
st o’
P(a,s0') =
0 if¢’ <0
ba(s0) ifs'€eG,0 >0

> ba(s10)O(a, s,0) P(b]) if s’ ¢ G, 0" >0

where P(a, s, 0') is the reachable probability of an agent

taking action a and transitioning to successor state s’ with

cost threshold #'. For each action-successor-threshold tuple

(a, s!0"), there are the following three cases:

e If the resulting cost threshold €’ is negative, then the
successor cannot be reached. Thus, the reachable proba-
bility is 0.

e If the successor s’ is a goal state and the resulting cost
threshold 6’ is non-negative, then the goal state can be
reached. Thus, the reachable probability is the belief
probability b, (s;6"). Note that there is no need for the
observation function here since agents can accurately
identify if they have reached goal states.

e If the successor is not a goal state and the resulting
cost threshold is non-negative, then the successor can
be reached. Thus, the reachable probability can be re-
cursively computed as the belief probability b, (s]6’)
multiplied by the product of the observation probability
O(a, s, 0) and the reachable probability of the resulting
belief state P(b2) summed over all observations o.

e [f actual costs can be observed, then

P(b) = max Z P(a,c,s0") (19)
c,s) 0’
P(a,c,50') =
0 if ' <0
ba,c(s,0") ifs'eG,0" >0

> “bae(s10')0(a, s 0) P(bE ) if s’ ¢ G, 0" >0



Algorithm 1: DFS(b)

1 P+ 0

2 for actions @ € A do

3 P,+0

4 | PE«0

5 b, < BELIEF_UPDATE(b, a)

6 for states s’ € S and thresholds 8’ € © do
7 if s’ € G and 4’ > 0 then

8 L | PE « PS4 b,(s]8)

9 P, + P, + P¢

10 for observations o € 2 do

1 PG+ 0

12 for states s’ € S and thresholds ' € © do
13 if ' ¢ Gand 6’ > 0 then

14 L L P,:OG — R:OG +b4(s10") - O(a, s]0)
15 if P,'$' > 0 then

16 b2 < BELIEF_UPDATE(b, a, 0)

17 L P, < P, + P;5 - DFS(b3)

18 if P, > P, then

19 Py« <+ P,

20 record action a in the policy tree

21 return P,-

where P(a, c, s, 8") is the reachable probability of an agent
taking action a, observing cost ¢, and transitioning to suc-
cessor state s’ with cost threshold ¢’. For each action-cost-
successor-threshold tuple (a, ¢, s, 6"), there are three cases
similar to the three cases in the situation where actual costs
cannot be observed.

One can extract the optimal policy by taking the action
that is returned by the maximization operator in Equations 18
and 19 for each belief state b.

Algorithm Description: Algorithm 1 shows the pseu-
docode of the DFS algorithm for the case where actual costs
cannot be observed. It uses the following variables:

e P, - stores the reachable probability for the best action a*.
e P, stores the reachable probability for action a.

e PY stores the reachable probability of reaching a goal

state with action a.

. P;f stores the reachable probability of reaching a non-

goal state with action a and observation o.

The algorithm is implemented recursively corresponding
to Equation 18, where it computes the reachable probability
for all possible actions a and stores the action with the largest
probability (lines 18-20). The function BELIEF_UPDATE is
overloaded, where the function in lines 5 and 16 implements
Equations 14 and 15, respectively.

For the case where actual costs can be observed, the algo-
rithm needs to also loop over all possible costs c. This loop
starts between lines 3 and 4 and ends between lines 17 and 18.
Additionally, the BELIEF_UPDATE function includes c in its
argument, and the function in lines 5 and 16 implements
Equations 16 and 17, respectively. Therefore, b, and b, are
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actually b, . and by ., respectively, and the variables P& and
P.$ should be called PC, and P,'¢, respectively, which

are reachable probabilities for a particular cost c.

Theoretical Results

Theorem 1 Solving RS-POMDPs optimally is PSPACE-
hard in the original state space.

PROOF SKETCH: Similar to the proof by Papadimitriou and
Tsitsiklis (1987), one can reduce a Quantified SAT (QSAT)
to an RS-POMDP. ]

Theorem 2 Solving RS-POMDPs with negative costs is un-
decidable.

PROOF SKETCH: Chatterjee et al. (2015) showed that check-
ing for the existence of a policy that guarantees reaching
a goal with an arbitrarily small expected cumulative cost
is undecidable. Our RS-POMDP objective subsumes their
objective and, thus, it is undecidable as well. [ ]

Theorem 3 There is at least one optimal RS-POMDP policy
that is both stationary and deterministic.

PROOF SKETCH: One can create POMDPs with augmented
states (s, 0) that are equivalent to RS-POMDPs. There is at
least one optimal policy that is both stationary and determin-
istic for these POMDPs (Kaelbling, Littman, and Cassandra
1998) and, thus, it applies to RS-POMDPs as well. [ ]

Related Work

We now describe the related work in two different areas. The
first area relates to the representation of risk through a utility
function. Yu, Lin, and Yan (1998) introduced risk-sensitive
MDPs (RS-MDPs), which optimizes our risk-sensitive crite-
rion in MDPs, and a VI-based approach to solve RS-MDPs
in their seminal work. Hou, Yeoh, and Varakantham (2014)
followed up with improved search and dynamic program-
ming based RS-MDP algorithms. Liu and Koenig (2006)
generalized the piecewise-constant utility function to arbi-
trary piecewise-linear utility functions and introduced FVI
to solve MDPs with these utility functions. Marecki and
Varakantham (2010) extended FVI to solve POMDPs with
these utility functions. Our work is the first that introduce RS-
POMDP solvers that are optimized for piecewise-constant
utility functions.

The second related area includes the body of work on the
inclusion of reachability in the optimization criteria of MDPs
and POMDPs. In this area, researchers have introduced the
MAXPROB MDP, which is a goal-directed MDP with the
objective of maximizing the probability of getting to a goal
independent of cost (Kolobov et al. 2011; Kolobov, Mausam,
and Weld 2012). Finally, Chatterjee et al. (2015) introduced
a different optimization criterion for POMDPs, where they
are interested in finding a policy that minimizes the expected
cost but guarantees that the reachable probability of the initial
belief state with this policy is 1. These criteria are different
compared to the one we optimize for in RS-POMDPs.



(a) Randomly Generated POMDPs: Actual costs cannot be observed

DFS FVI w/o Pruning FVI w/ Pruning PB-FVI(10) PB-FVI(100) PB-FVI(1000)
% | time | P ||[%] time | P ||%]| time | P % |time| P % |time| P % | time | P
0o=1.25-C},, || 100 22510.160 || 10| 540005 [ 0.142 || 16| 504695 | 0.126 || 100 210.136|[100| 26(0.160| 100 1139 0.160
0o =1.50-CJ., || 100| 3919|0.205| 6|564001|0.169 | 10|540020|0.134 || 100 6]0.185|[100| 105[0.204(100| 2768 ]0.205
0o=1.75-Cj.. || 98| 35241|0.227 || 4|576001|0.173 || 10|540490|0.135|/100| 26|0.208 || 100| 560|0.228| 100| 18255|0.228
0p=2.00-C]., || 86(132378|0.214| 2|588000|0.178| 4|576014|0.136(100| 45|0.226|100|4088|0.247 || 80|171146|0.248
[S] =50 100 2627(0.208 | 12528028 |0.184 || 16 | 504394 | 0.154 || 100 110.1841[100| 50{0.208 || 100 1407 |0.208
|S| =100 100| 3919(0.205| 6]564001 [0.169 || 10|540020 [0.134 | 100 6]0.185|[100| 105[0.204 ] 100| 2768]0.205
IS| = 200 96| 30390 (0.113| 6|564002|0.079|| 6564004 |0.051 || 100 910.089(100| 295|0.115||100| 10362|0.117
|S| = 400 92| 90179|0.081 | 2[588392|0.043 | 2|588024|0.021100| 31{0.055100]2699|0.085| 94| 52983|0.085
(b) Randomly Generated POMDPs: Actual costs can be observed
0o=1.25-C;., || 100 44810.163 || 6[565055]0.049 | 8|552567|0.061 [ 100| 24{0.124 [ 100| 264 [0.161|[ 100 2751|0.163
0o=1.50-Cj., || 100| 8735|0.214 | 4|576023|0.037|| 4|576051|0.059(/100| 59|0.168(100| 814|0.210|/100| 11540|0.213
0o=1.75-C].. || 92| 73447|0.231| 2|588000|0.037| 4|576638|0.059 | 100| 100|0.184| 100|2558|0.241 || 100 | 43451|0.248
0o=2.00-C;.. || 80|182883|0.226|| 2|588001|0.037 || 2|588036|0.059| 100| 206|0.201 || 100 |7049|0.268 || 92|155484|0.279
[S| =50 100 7116(0.212| 4]576000 [0.074 || 12]533890 [0.096 || 100 810.165([100| 145]10.208 [ 100| 2014(0.212
|S| = 100 100| 8735(0.214| 4|576023(0.037| 4]576051(0.059(100| 59|0.168|100| 814|0.210(100| 11540|0.213
|S| = 200 96| 41439|0.121 | 2[588007|0.008 || 4|582148|0.022 (| 100| 153|0.071 | 100|2076|0.111|[100| 43319|0.126
|S| = 400 84 1141332(0.081 || 0|600000 |0.000|| 0]600000|0.000|[100| 562|0.047 || 100 |8528 |0.073| 86|231325|0.092
(c) Navigation and Taxi Domains: Actual costs cannot be observed
Navigation 801132629 0.057 || 10| 540000 [0.018 [| 30421011 {0.057 || 100 01{0.000 || 100 710.006 || 100 93510.045
Taxi 50(377887|0.317 | 0]600000|0.000 (| 0600000 |0.000 (| 100| 239{0.000 || 100| 322]0.000|| 50{331017|0.189
(d) Navigation and Taxi Domains: Actual costs can be observed
Navigation 90 [ 111525]0.058 || 10 { 540001 | 0.004 {[ 20 [ 535112 |0.053 || 100 310.000 ([ 100| 229{0.003 | 100 698 10.014
Taxi 50(349765(0.317|| 0|600000 |0.000|| 0]600000|0.000|100| 27{0.000|100| 265|0.000 || 100| 84257 |0.041

Table 1: Experimental Results

Experimental Results

We evaluate DFS, FVI (with and without pruning) and its
point-based version on three domains: (i) Randomly gen-
erated POMDPs; (ii) the Navigation domain from ICAPS
IPPC 2011; and (iii) a taxi domain (Ziebart et al. 2008;
Varakantham et al. 2012) generated with real-world data.
We conducted our experiments on a 3.40 GHz machine with
16GB of RAM.

Randomly Generated POMDPs: We randomly generated
POMDPs from 50 to 400 states, 2 actions per state, 2 succes-
sors per action, and 2 observations per action-successor pair.
Each problem has exactly 1 starting state and 1 goal state. We
randomly chose the costs from the range [1, 10] and varied
the initial cost thresholds 6 as a function of the accumulated
cost Cjj,, of the shortest deterministic path from any starting
state in the initial belief state bg.

Tables 1(a) and 1(b) show our results for the two cases
where actual costs can and cannot be observed. There are two
subtables for each case, where we set |S| = 100 and vary 6,
in the first subtables and set 6y = 1.50 - C};,, and vary |S| in
the second subtables. We report scalability in terms of the
percentage of instances (out of 50 instances) solved; average
runtime in milliseconds; and average reachable probability
for each of the algorithms. If an algorithm fails to solve
an instance within a time limit of 10 minutes, we take the
time limit as its runtime and the reachable probability of the
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current solution as its reachable probability. We make the
following observations:

e With increasing initial cost threshold or number of states,
in general, scalability decreases and runtime increases for
all algorithms. The reason is that with a larger cost thresh-
old or a larger number of states, each algorithm has to
search over a larger search space.

When optimal solutions are found, they are better (with
larger reachable probabilities) when costs can be observed.
This observation can be found in the cases where DFS
solves all the instances optimally. The reason for this ob-
servation is that the optimal algorithms can exploit the
observed cost to more accurately update the belief states.
However, this comes at the cost of larger runtimes because
they need to consider more candidate policies. For exam-
ple, in FVI, [V | in Equation 8 grows with the number of
possible costs |C|.

DFS is faster and more scalable than FVI because DFS
ignores non-reachable belief states while FVI does not.
PB-FVI finds better solutions with increasing number of
belief points but at the cost of increasing runtime and
decreasing scalability. With 1000 belief points, PB-FVI
finds close to optimal solutions for the verifiable cases
where DFS also solves all instances. In some cases where
DFS fails to solve all instances (e.g., |S| =200), DFS finds
worse solutions than PB-FVI(1000) even though DFS is an
optimal algorithm and PB-FVI is not. When DFS fails to



solve an instance, its reachable probability is O as it does
not store any full suboptimal policies. In contrast, FVI and
PB-FVI may have positive reachable probabilities since
they iteratively improve their policies.

e Finally, pruning improves the scalability of FVI.

Navigation and Taxi Domains: For the navigation do-
main, we use all 10 IPPC instances, but we changed the
costs to randomly vary from [1, 10] to show the impact of
cost observations. For the taxi domain, states are composed
of the tuple (zone z, time interval ¢, hired rate level p, ),
where there are 10 zones, each time interval is 30 minutes
long, and the hired rate level is either high (= 0.75) or low
(= 0.25). Each taxi has two types of actions: (a;) move to a
zone and (as) look for passengers in its zone. Taxis executing
a1 will move to their desired zone with probability 1 and O
reward. Taxis executing as have probability p, ; of success-
fully picking up a passenger and they can accurately observe
D+ with probability 0.8. If it fails to pick up a passenger, it
ends up in the same zone with O reward. The probability p, ;;
the transition function, which determines which zone a hired
taxi moves to; and the reward function, which determines the
reward of the hired taxi, is generated with real-world data.
We average our results over 10 instances. In both domains,
we set 6o =1.50-C},,.

Tables 1(c) and 1(d) show our results. In general, all the
observations from the randomly generated POMDPs apply
here as well except for the following: PB-FVI solves all
instances but does not find good quality solutions. In fact, it
finds infeasible solutions when the number of points is small.
This observation highlights the fact that PB-FVI’s behavior
is highly dependent on domain structure.

Conclusions

We investigated RS-POMDPs, where we distinguishe be-
tween the two cases of whether costs can or cannot be ob-
served. We also introduced a new RS-POMDP algorithm
based on DFS and generalize FVI to solve RS-POMDPs with
and without cost observations. Our experimental results show
that DFS scales better than FVI on two synthetic domains
and a taxi domain generated with real-world data.
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