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Abstract

We cast the Proactive Learning (PAL) problem—Active
Learning (AL) with multiple reluctant, fallible, cost-varying
oracles—as a Partially Observable Markov Decision Process
(POMDP). The agent selects an oracle at each time step to
label a data point while it maintains a belief over the true un-
derlying correctness of its current dataset’s labels. The goal
is to minimize labeling costs while considering the value of
obtaining correct labels, thus maximizing final resultant clas-
sifier accuracy. We prove three properties that show our par-
ticular formulation leads to a structured and bounded-size
set of belief points, enabling strong performance of point-
based methods to solve the POMDP. Our method is compared
with the original three algorithms proposed by Donmez and
Carbonell and a simple baseline. We demonstrate that our
approach matches or improves upon the original approach
within five different oracle scenarios, each on two datasets.
Finally, our algorithm provides a general, well-defined math-
ematical foundation to build upon.

Introduction

Active Learning (AL) techniques capture the process of tak-
ing an unlabeled dataset and labeling a selected subset by
querying an omniscient oracle for labels (Cohn, Atlas, and
Ladner 1994). In practice, however, active learning makes
strong assumptions regarding the labeling process. Specifi-
cally, real world applications often involve multiple oracles,
each of which may be reluctant to answer, incorrectly an-
swer, and have data point-sensitive costs subject to a fixed
budget (Attenberg and Provost 2011). Proactive Learning
(PAL) captures all of these properties in a formal problem
domain (Donmez and Carbonell 2008a). We present a Par-
tially Observable Markov Decision Process (POMDP) solu-
tion for this inherently sequential optimization problem.

Within AL, multi-oracle (Ipeirotis et al. 2014; Yan et al.
2011), imprecise oracle (Golovin and Krause 2011; Ipeirotis
et al. 2014), and cost-varying oracle (Culotta and McCallum
2005; Golovin and Krause 2011) scenarios have been ex-
plored separately in depth. Also, for single-oracle AL, both
MDP (Lizotte, Madani, and Greiner 2003), POMDP (Jaul-
mes, Pineau, and Precup 2005), and other related meth-
ods (Golovin and Krause 2011) have been devised. These
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do not capture the entire multiple, fallible, reluctant, and
cost-varying oracles found in the realistic PAL domain. As
such, the MDP-like states, actions, observations, and transi-
tion functions differ markedly from ours. The distinct, but
related, preference elicitation problem seeks to perform as
few queries as possible while maximizing the belief of a
user’s preferences. POMDPs have been successfully imple-
mented here; however, they do not maintain a belief over a
dataset, model oracles, or manage a budget (Boutilier 2002).

Our primary contribution is an algorithm which maps a
PAL problem directly to the true underlying sequential opti-
mization problem using a POMDP. To the best of our knowl-
edge, no one has proposed such a POMDP solution to PAL.
We state and prove three propositions regarding the belief
points and horizon required to rapidly produce high-quality
solutions for the PAL POMDP using point-based methods.
Additionally, we provide experimental evidence that demon-
strates our approach either meets or exceeds the perfor-
mance of the original algorithms and a random baseline.

The next section formally defines PAL, POMDPs, and our
algorithm. Then, we provide a rigorous theoretical analysis
of the point-based algorithm used to solve our PAL POMDP.
Next, we present our experiments and discuss our findings.
Finally, we conclude with a summary of our contributions.

An Automated Planning Approach

We formalize the general proactive learning problem and
propose a general POMDP framework for solving it. To the
best of our knowledge, neither has been previously formu-
lated in this manner.

Proactive Learning Definition

Originally proposed by Donmez and Carbonell (2008a),
proactive learning originally considered four relaxations to
active learning. Their approach handled each of them sepa-
rately. We state the problem in its most general form, simul-
taneously describing all four within one problem domain.

The Proactive Learning (PAL) problem is a tuple
xX ,Yl,O,Pr,Pc, Cy. X “ Xl Y Xu is a dataset of d data
points (zero-indexed), Xl denotes the dl labeled data points
with corresponding labels Yl, and Xu denotes the du unla-
beled data points. O is a set of m oracles. Pr : X ˆ O Ñ
r0, 1s denotes the probability that an oracle will respond for a
data point. Pc : X ˆO Ñ r0, 1s denotes the probability that
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an oracle’s response is correct for a data point. These proba-
bilities may be given (e.g., guarantees by oracles), estimated
(e.g., cluster centroids), or a mix of both. C : X ˆO Ñ R

`
is a cost function for an oracle labeling a data point.

The true underlying objective in PAL is to maximize clas-
sifier accuracy while minimizing cost. Unfortunately, we
cannot directly measure classifier accuracy given that we do
not necessarily have any labeled data for comparison. Thus,
the objective of a PAL algorithm is to maximize a measure
of the expected information gain, subject to a budget con-
straint β P R`. Formally, let S Ď X ˆO be a set of samples
of data point-oracle pairs, and V : S Ñ R denote any value
of information metric. Our optimization problem is to max-
imize ErřsPS Vpsqs subject to

ř
xx,oyPS Cpx, oq ď β.

PAL Algorithm Initialization

As stated above, the probabilities Pr and Pc are obtained in
one of two ways: (1) initially given, or (2) acquired using a
clustering method. We experiment with both scenarios.

In many proactive learning domains, these probabilities
are given. For example, consider medical domains that re-
quire a company “oracle” to conduct lab work in order to
label a data point. Any contract with the company to do this
work will clearly state estimates for duration, and thus oracle
reluctance, as well as probabilistic guarantees regarding the
quality of the labels, and thus oracle correctness. Obviously,
costs are provided for each oracular company.

Other domains require a pre-processing step to obtain es-
timates of these probabilities. We employ a similar cluster-
ing method as the original PAL algorithms (Donmez and
Carbonell 2008a) and others (Wallace et al. 2011). In sum-
mary, we are given an initial clustering budget βc ă β. Us-
ing this budget, we run k-means, obtain k 9 βc data points
closest to the cluster centroids, query the oracles to obtain la-
bels, and train a classifier on any labeled data points yielding
parameters ŵ. Then, for each unlabeled data point xi P Xu

we now have Prpyi|xi, ŵq. Using this and a distance met-
ric dpxiq P r0, 1s from the closest cluster centroid denoted
as xc with label yc (possibly undefined, denoted as H), we
compute our probabilities for oracle o P O:

Prpxi, oq “ σpp2ryc‰Hs ´ 1qp1´ dpxiqqq (1)
Pcpxi, oq “ σpp2max

yPY Prpy|xi, ŵq ´ 1qp1´ dpxiqqq (2)

with standard sigmoid function σp¨q and Iverson brackets r¨s.
This assumes (strongly) that if an oracle does not respond,
then it is likely to not respond for data points nearby.

POMDP Definition

A POMDP is represented by the tuple
xS,A,Ω, T, O,Ry (Smallwood and Sondik 1973;
Sondik 1978; Kaelbling, Littman, and Cassandra 1998).
S is a set of n states, A is a set of m actions, and Ω is a
set of z observations. T is a state transition function that
captures the stochastic Markovian state transitions after
each action is taken, with T : S ˆAˆ S Ñ r0, 1s such that
T ps, a, s1q ” Prps1|s, aq. O is an observation function that
stochastically presents an observation to the agent based
on the action performed and the true underlying state that

resulted from that action, with O : AˆSˆΩÑ r0, 1s such
that Opa, s1, ωq ” Prpω|a, s1q. Finally, R : S ˆ A Ñ R is
a function mapping state-action pairs to rewards such that
Rps, aq P R. The sequential optimization process considers
a number of time steps called the horizon h. Infinite horizon
(h “ 8) POMDPs could be approximated using a finite
horizon (h P N) or solved directly using a variety of
methods (Amato, Bernstein, and Zilberstein 2007). The
overall objective is to maximize the cumulative reward over
the problem horizon, where rewards are discounted by a
discount factor γ P r0, 1s per time step.

The decision maker or agent must select actions without
knowing the true underlying state of the system. Instead, it
maintains a belief over the possible state denoted b P �n,
or a set of r belief points over the standard n-simplex �n

denoted B Ď �n. At every time step, the agent takes action
a at belief b and makes observation ω. This updates the belief
over all possible successor states s1 following:

b1ps1|b, a, ωq “ ηOpa, s1, ωq
ÿ
sPS

T ps, a, s1qbpsq (3)

with normalizing constant η “ Prpω|b, aq´1 (Kaelbling,
Littman, and Cassandra 1998). This belief is a sufficient
statistic for the entire history of actions and observations
the agent has taken. For notational brevity, we often denote
b1 “ rb1ps1|b, a, ωq, . . . , b1psn|b, a, ωqsT .

A policy π maps beliefs to actions π : B Ñ A. With a
policy, we define a value function as V : B Ñ R, denoting
the expected reward at beliefs. Value functions are piece-
wise linear and convex (Smallwood and Sondik 1973). We
represent them by a set of α-vectors Γ “ tα1, . . . , αiu such
that each αi “ rV ps1q, . . . , V psnqsT , with the value of each
state denoted as V psiq. A policy is defined by attaching an
action to each α-vector, compactly denoting V pbq “ αi ¨ b
and πpbq “ aαi

P A. We may write the value function for
an initial belief b, following policy π, at horizon h as:

V h
π pbq “ E

” h´1ÿ
t“0

γtRpbt, πtpbtqq
ˇ̌
ˇb0 “ b, π

ı

The objective is to select a policy which maximizes the
expected reward earned over time. Thus, the optimal pol-
icy follows selecting maximal α-vectors at each belief
point (Kaelbling, Littman, and Cassandra 1998):

V tpbq “ max
aPA b ¨ ra `

ÿ
ωPΩ

max
αPΓt´1

ÿ
sPS

bpsqV t
saωα (4)

with ra “ rRps1, aq, . . . , Rpsn, aqsT and:

V t
saωα “ γ

ÿ
s1PS

Opa, s1, ωqT ps, a, s1qαps1q

Let initial α-vectors be αpsq “ R{p1 ´ γq, with R “
minsPS minaPA Rps, aq, for all s P S. This guarantees α-
vectors weakly monotonically increase (Lovejoy 1991).

The Proactive Learning POMDP Model

We begin by ordering the data points in Xu so that during
policy execution we initially select the most informative data
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Figure 1: Example of PAL POMDP with du “ 3 data points.
States denote the current dataset’s correct and incorrect la-
belings, as well as if the last query’s oracle responded. Ar-
rows denote the non-zero probabilistic state transitions, with
duplicates for each specific action (oracle query) omitted for
clarity. Boxes visually represent an example policy, map-
ping a range of beliefs regarding the true correctness of the
dataset to an oracle selection action.

points to label, progressively selecting less informative ones
at each time step until we either run out of data points or,
more likely, the allotted budget. The order follows by select-
ing the oracle which will receive the highest utility, then se-
lecting the data point which yields the highest utility given
this fixed oracle. Formally, each x P Xu and o P O, let
Ûpx, oq “ Prpx, oqPcpx, oqVpx, oq{Cpx, oq be the utility.
Given current ordered set X t´1

o “ tx1, . . . , xt´1u, the data
point for step t denoted xt is:

ot “ argmax
oPO

max
xPXuzX t´1

o

Ûpx, oq

xt “ argmax
xPXuzX t´1

o

Ûpx, otq

Importantly, this procedure only selects the order, which is
connected to the POMDP state structure below. Hereafter,
we will assume that Xu is reassigned to the ordering of X du

o .
We propose a mapping from a PAL problem to a POMDP.

Figure 1 provides a visual explanation of the mapping, in
addition to an example representation of a policy. The high-
level idea is to represent the process of constructing a cor-
rectly labeled dataset as a sequential optimization problem
using a POMDP. States in the POMDP capture the qual-
ity of the labelings within the dataset. As such, they in-
clude both the number of correctly and incorrectly labeled
data points. In order to properly adjust the policy based on
oracle responses, we also record if the previous oracle re-
sponded or not as part of the state. Formally, for du unla-
beled data points, S “ txc, i, ry|c, i P N, r P tT ,Fu, 0 ď
c ` i ă duu Y txc, i, T y|c, i P N, c ` i “ duu. For exam-
ple, x3, 2,Fy P S, means the dataset has 3 correct labels,

2 incorrect labels, and there was no response from the pre-
viously queried oracle. The final dataset’s correctness state
does not need F , since it is complete upon reaching the end.

Actions within our model directly correspond to which or-
acle should be queried, i.e., A “ O. Observations are simply
if we observed an oracle response, i.e., Ω “ tT ,Fu. This
simplified set of observations works due to the important
structure of the subsequent belief update, which takes into
consideration the state transition function T and observa-
tion transition function O (detailed below). These two prob-
ability functions combined with this definition of observa-
tions, yield the exact desired result: Certainty about the size
of the labeled dataset and previous oracle response, and un-
certainty about the true labelings within the current labeled
dataset. This lets us map beliefs over this to optimal actions,
i.e., select the best oracle to label the next data point.

The state transition function T ps, a, s1q, for states s, s1 P
S and action a P A, captures both the probability of an ora-
cle responding and the probability it successfully labels the
data point. Formally, for s “ xc, i, ry and s1 “ xc1, i1, r1y:

T ps, a, s1q “ (5)$’’’&
’’’%

1 ´ Prpxc`i, aq if c“c1, i“i1, r1“F
Prpxc`i, aqPcpxc`i, aq if c`1“c1, i“i1, r1“T
Prpxc`i, aqp1 ´ Pcpxc`i, aqq if c“c1, i`1“i1, r1“T
1 if c“c1, i“i1, c`i“du
0 otherwise

Observation transition function Opa, s1, ωq, for action a P
A, successor s1 P S, and observation ω P Ω, only needs to
inform the agent if the oracle responded. For s1 “ xc1, i1, r1y:

Opa, s1, ωq “ rω “ r1s (6)

Lastly, the reward function Rps, aq, for state s P S and
action a P A, is built upon the original utility function pro-
posed by Donmez and Carbonell (2008a), which essentially
uses the value of information divided by the cost. For this
value of the information gained by labeling, Vpxq for a data
point x P Xu, we use the same uncertainty weighted density
score as Donmez and Carbonell. This metric assumes that
data points within the same region are relatively clustered
and share the same label. Thus, we first define a neighbor-
hood of indexes Nx over x that are within some threshold
distance τ : Nx “ ti P t0, . . . , du´1u|}x ´ xi} ă τu.
Vpxq is defined in Equation 7 below, with weights ŵ and
entropy Hpyk|xk, ŵq using the probability of labeling data
point xk as yk following the model so far (see initializa-
tion section) (Donmez and Carbonell 2008b). The reward
weighs V , C, and a ratio of correctly versus incorrectly la-
beled points, in addition to a penalty of ε ă 1 only if they
select a reluctant oracle when they just failed to receive a
label. Formally, for state s “ xc, i, ry and action a:

Rps, aq “ c` 1

i` 1

Vpxc`iq
Cpxc`i, aqεps, aq (7)

Vpxq “
ÿ

kPNx

expp´}x´ xk}2qHpyk|xk, ŵq

with εps, aq “ ε only if Prpxc`i, aq ă 1 and r “ F as
described above; εps, aq “ 1 otherwise.
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Algorithm 1 Proactive Learning POMDP: Initially un-
known oracles; thus, it requires clustering.
Require: xXu,Xl,Yly: The unlabeled and labeled datasets.
Require: O: The set of oracles that may be queried.
Require: xβc, βy: The initial clustering budget and entire budget.
1: xPr,Pc, Cy Ð init palpXu,Xl,Yl,O, βc, βq
2: xS,A,Ω, T,O,Ry Ð init pomdppXu,O,Pr,Pc, Cq
3: π Ð solvepS,A,Ω, T,O,Rq
4: bpsq Ð rs “ x0, 0, T ys, @s P S
5: i Ð 0
6: ct Ð βc

7: while ct ă β or Xu “ H do
8: xy, cy Ð querypxi, πpbqq
9: ω Ð F

10: if y ‰ H then
11: xXu,Xl,Yly Ð xXuztxiu,Xl Y txiu,Yl Y tyuy
12: i Ð i ` 1
13: ω Ð T
14: end if
15: bpsq Ð b1ps|b, πpbq, ωq, @s P S
16: ct Ð ct ` c
17: end while
18: return xXu,Xl,Yly

The entire PAL POMDP procedure is detailed in Algo-
rithm 1. The functions init palp¨q and init pomdpp¨q im-
plement the previous two sections, respectively. The func-
tion solvep¨q solves the POMDP, returning a policy π, using
Point-Based Value Iteration (PBVI) (Pineau, Gordon, and
Thrun 2003). Note another Iverson bracket on Line 4. The
function queryp¨q queries an oracle for a data point label.

A variant of Algorithm 1 reorders all future data points
upon each successful query after updating Pr and Pc (Equa-
tions 1 and 2). We then re-solve this modified POMDP on
every step. Note that the current belief b over the dataset
does not change, since the prior data points’ ordering re-
mains fixed. This process is obviously computationally ex-
pensive. In practice, however, domains which have a long
real-world time delay for oracle queries (e.g., biological ex-
periments) allow plenty of time to re-solve the POMDP.

Theoretical Analysis and Optimizations of

Point-Based Value Iteration

Exact solutions to POMDPs require defining a policy tree.
These trees have a height equal to the horizon h, with each
node’s branching factor equal to the number of possible ob-
servations z. Each node in this tree is assigned an action
to take given its history of observations. In practice, this
makes exact solutions intractable for anything but the small-
est of POMDPs; in fact, POMDPs are PSPACE-hard (Pa-
padimitriou and Tsitsiklis 1987). Instead, point-based meth-
ods were developed which operate over a fixed set of belief
points, with additional methods for intelligently adding new
belief points to the set (Pineau, Gordon, and Thrun 2003).
We briefly describe the point-based method, then establish
three properties of our PAL POMDP that enable us to define
B and h in order to quickly produce high-quality solutions.

Point-Based POMDP Solvers

Point-Based Value Iteration (PBVI) was proposed
by Pineau, Gordon, and Thrun (2003). It operates over
the set of α-vectors Γt, updating each one in the set at each
time step t. Over these time steps, we only focus on a fixed
set of belief points B. This is commonly defined using
intermediate variables Γb and Γaω:

Γt
aω “ trV t

s1aωα, . . . , V
t
snaωαsT ,@α P Γt´1u

Γt
b “ tra `

ÿ
ωPΩ

argmax
αPΓt

aω

α ¨ b,@a P Au, @b P B (8)

Γt “ targmax
αPΓt

b

α ¨ b,@b P Bu (9)

Theoretical Analysis

The quality of the solution returned by this approach de-
pends heavily on which belief points are chosen for B. Com-
mon algorithms explore the policy tree (i.e., reachable belief
points) to define a B which best represents the belief space,
to obtain the highest (and thus most accurate) values. Our
specific PAL POMDP enables us to define three strong prop-
erties regarding the reachable belief points and the horizon
required for PBVI. First we define helpful variables.

Let b0 P �n be the initial belief from Algorithm 1, Line 4.
Let � “ xa0, ω1, a1, ω2, . . . , ah´1, ωhy be any history. Let
bh P �n be the resultant belief applying Equation 3 at each
time step in history �, starting with initial belief b0. Finally,
let Sdω “ ts P S|s “ xc, i, ry, c` i ‰ d_r ‰ ωu be the set
of states which are not at data point index d or did not have
previous oracle response ω (or both).

Our first proposition describes the structure of our belief
points, following any history of actions and observations.
Importantly, it means that the agent’s uncertainty of the true
state space is only over the dataset accuracy it built so far.

Proposition 1 (Guarantee: Belief Is Always Over Dataset
Correctness). For any history �, with dh “ |ti P
t1, . . . , hu|ωi “ T u|, if s P Sdhωh , then bhpsq “ 0.

Proof. By induction on h.
Base Case: h“0. Thus, b0 “ bh with s0 “ x0, 0, T y we
have dh “ 0 and implicit ω0 “ T . This yields Sd0ω0 “
Sztx0, 0, T yu. By Algorithm 1, Line 4, b0psq “ 0 for all
s ‰ x0, 0, T y, i.e., s P Sd0ω0 . Thus, the base case is shown
to hold true.

Inductive Step: Assume true for h´1 (induction hypoth-
esis), must show that for h, for all s1 P Sdhωh (given by �)
that bhps1q “ 0. Given our history �, and thus ah´1 and ωh,
we apply Equation 3 to bh´1 and prove bh equals zero for all
s1 P Sdhωh :

bhps1|bh´1, ah´1, ωhq “
ηOpah´1, s1, ωhq

ÿ
sPS

T ps, ah´1, s1qbh´1psq

Two cases (by Sdhωh ): (1) r1 ‰ ωh, and (2) c1 ` i1 ‰ dh.
Case 1: r1‰ωh. Thus, by Equation 6, we have

Opah´1, s1, ωhq “ 0. Therefore, bhps1q “ 0.
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Case 2: c1`i1‰dh. We assume r1 “ ωh, otherwise
bhps1q “ 0. Thus, Opah´1, s1, ωhq “ 1 and we eliminate
values in which bh´1 is zero (induction hypothesis):

bhps1|bh´1, ah´1, ωhq “ η ¨ 1 ¨
ÿ
sPS

T ps, ah´1, s1qbh´1psq

“ η
ÿ

sPSzS
dh´1ωh´1

T ps, ah´1, s1qbh´1psq

We must show that for all remaining s “ xc, i, ry P
SzSdh´1ωh´1 , that T or bh´1 is zero. By definition of
Sdh´1ωh´1 , we know c ` i “ dh´1 and r “ ωh´1. By defi-
nition of Sdhωh , we know c1` i ‰ dh or r1 ‰ ωh. By defini-
tion of dh, we also know dh´1 ď dh, and since c1 ` i1 ‰ dh

it implies dh´1 ă dh must be true. This, in turn, implies
ωh “ T by definition of dh. Three possible sub-cases: (1)
c1 ` i1 ă dh´1, (2) c1 ` i1 ą dh, and (3) c1 ` i1 “ dh´1.

By Equation 5, sub-case (1) has T ps, ah´1, s1q “ 0, since
c1 ` i1 ă dh´1 “ c ` i implies all four non-zero condi-
tions cannot occur; informally, it describes transitioning to a
state with less data points. For sub-case (2), c1 ` i1 ą dh ą
dh´1 “ c ` i, which again implies all four non-zero con-
ditions cannot occur; informally, it describes skipping data
points, because s and s1 would strictly be two data point in-
dexes away from one another. Lastly, sub-case (3) implies
c1 ` i1 “ dh´1 “ c` i. Since r1 “ ωh “ T , again, all four
non-zero conditions cannot occur, namely one (ωh “ T )
and four (dh´1 ă dh ď du); informally, it describes a con-
tradiction in which it receives a response but does not transi-
tion. In each sub-case, T ps, ah´1, s1q “ 0, thus bhps1q “ 0.

Case 1 and 2 are proven: bhps1q “ 0 for all s1 P Sdhωh .
The Base Case and Inductive Step are proven, thus by in-

duction for any history �, for all s P Sdhωh , bhpsq “ 0.

The second proposition has four results. First, it solidifies
a bound on the size of any belief point vector’s potential non-
zero values. Second, this is bounded by a value proportional
to the number of data points or square of the states, such that
as the POMDP grows, the maximal number of the non-zero
values in a belief point is asymptotically smaller. Third, the
size of the POMDP itself grows quadratically with the num-
ber of data points, not exponentially. Lastly, the application
of this insight enables us to compute dot products with the
belief point vectors b over just potential non-zero elements
(as in Equations 4, 8, and 9). We found this to vastly improve
the performance of PBVI.

Proposition 2 (Bound: Reachable Belief Size; POMDP
Size). For any history � and its belief bh P �n, the num-
ber of non-zero elements in bh is bounded: |ts P S|bhpsq ą
0u| ď du “ ?n´ 1.

Proof. By Proposition 1, if s P Sdhωh , then bhpsq “ 0.

|ts P S|bhpsq ą 0u| “ |ts P SzSdhωh |bhpsq ą 0u|
ď |ts P SzSdhωh |bhpsq ě 0u| ď |SzSdhωh |
“ |txc, i, ry P S|c` i “ dh ^ r “ ωhu|
ď |txc, i, ry P S|c` i “ dhu| ď du

Let us define a function which maps a data point index
k P t0, . . . , duu to how many states have that index: fpkq “
|txc, i, ry P S|c` i “ ku|. By definition of states S:

n “
duÿ
k“0

fpkq “ 2p1` 2` ¨ ¨ ¨ ` duq ` pdu ` 1q

“ 2
dupdu ` 1q

2
` pdu ` 1q “ pdu ` 1q2

Therefore, |ts P S|bhpsq ą 0u| ď du “ ?n´ 1.

Our third proposition determines the horizon h to select
for PBVI in order to guarantee h is large enough to capture
the entire labeling process.
Proposition 3 (Bound: Required Horizon). Let Pr “
minxPXu

minoPO Prpx, oq. For an h ě p1 ´ εqdu{Pr, state
sh “ xch, ih, rhy P S will have ch` ih “ du with probabil-
ity 1´ ε.

Proof. Given history �, the action sequence induces a
Markov process with respect to the true underlying states
(with s0 “ x0, 0, T y). The probabilities Prpst`1|st, atq
vary following equation 5. A lower bound over all time
steps (possible data points) and oracles (possible actions)
reduces the process to a Binomial distribution Z „
Binomialph,Prq, in which the number of “successes”
maps to the data point index up to du. We apply Markov’s
inequality in order to determine h:

1´ε “ PrpZěduq ď ErZs
du
“ hPr

du
ñ h ě p1´εq duPr

Experimentation

We create similar experiments to those of Donmez and Car-
bonell for two of the well-known UCI datasets they used:
Adult and Spambase (Lichman 2013). Adult contains 32544
people each with 14 features. The objective is to classify
which individuals make over $50K a year. Spambase con-
tains 4601 emails each with 57 features. The objective is
to classify which emails are spam. We consider five ora-
cle scenarios: (1-3) Original #1-#3, (4-5) Complex #1-#2.
In all cases, we vary the budget β from 3 to 21 with an
interval of 3, and randomly sample 100-300 data points
for Xu and use the remaining, up to 10000, for our test
set. We use a support vector machine for the final classi-
fier, training with the proactively learned Xl and Yl. Impor-
tantly, we only select the top 40 points for our POMDP’s Xu

due to their complexity (n“pdu`1q2“1681). If a budget re-
mains after 40 labelings, then we execute another POMDP
with the next 40 points, and so on, until the budget was
exhausted. Each configuration of dataset, oracle scenario,
and budget is run 10 times and averaged to produce the
final accuracy results shown in Figure 2. PBVI uses hori-
zon 2du (increasing it only improves performances) and
discount factor 0.9. Our implementation uses Python 3.4.3
with scikit-learn 0.16.1, NumPy 1.9.2, and SciPy 0.15.1,
run on an Intel(R) Core(TM) i7-4702HQ CPU at 2.20GHz,
8GB of RAM, and a Nvidia(R) GeForce GTX 870M. We
leverage a high-performing GPU-based implementation of

3206



PBVI using CUDA(C) 6.5 (Wray and Zilberstein 2015a;
2015b).

We compare our algorithm with the three original
decision-theoretic algorithms designed for a reluctant, fal-
lible, and cost-varying oracles denoted as PAL #1, #2, and
#3, respectively (Donmez and Carbonell 2008a). PAL #1 se-
lects oracles using a utility of Prpx, oqVpxq{Cround, for data
point x and oracle o. Cround is for reluctant oracles, aggre-
gating the cost spent so far trying to label the same data
point. Preference shifts if an oracle is continually queried
but fails to respond. PAL #2 selects oracles using a utility of
Pcpx, oqVpxq{Cpx, oq. PAL #3 selects oracles using a utility
of Vpxq ´ Cpx, oq. We also include a random baseline.

In Original #1-#3, we re-implement the original three sce-
narios and their oracles using the process by Donmez and
Carbonell. Original #1 has a normal and reluctant oracle,
Original #2 has a normal and fallible oracle, and Original #3
has a normal and cost-varying oracle. These three scenarios
assume Pr and Pc are unknown, requiring a clustering step
using βc “ mint5, β{2u. The normal and other oracles cost
0.5 and 0.125, respectively. We observe that our method has
similar or improved performance in comparison with PAL
#1-#3. This is to be expected, since both the PAL POMDP
and PAL #i algorithms were designed to handle the oracle
within scenario Original #i. This also supports the accuracy
of our implementation of original PAL #1-#3, reproducing
their above-baseline performance. Furthermore, it demon-
strates that the cluster approach properly estimates Pr and
Pc (initially unknown) for use with our algorithm. These
scenarios, however, are quite simple, serving as a first com-
parison of individual PAL #1-#3 and our PAL POMDP.

In Complex #1-#2, we seek to truly compare the al-
gorithms by removing the noise introduced by these ini-
tial clustering methods which estimate the probabilities,
since they share the initial clustering step regardless. (Let
xX,Y, Zy denote Prpx, oqPX , Pcpx, oqPY , and Cpx, oqPZ
for all xPX and oPO.) In Complex #1, we create four
randomly assigned xr0.25, 1s, r0.25, 1s, r0.01, 1sy. This truly
represents a realistic scenario with heavily mixed ora-
cles, each with its own benefits and drawbacks for differ-
ent data points. Complex #1 for both Adult and Spam-
base strongly show the capability of our method. Finally,
in Complex #2, we create three oracles: xt1u, t1u, t1uy,
xt0.5u, t0.01u, t0.01uy, and xt0.01u, t0.5u, t0.01uy. This
extreme example illustrates our POMDP PAL algorithm’s
success in solving the true sequential optimization prob-
lem which weighs all oracle information, as well as the
drawbacks of the previous algorithms. It is evident from
both datasets that the previous algorithms select either the
severely fallible or reluctant oracles. Our approach outper-
forms PAL #1-#3 as well as the random baseline, demon-
strating overall that it builds upon the original algorithms
and is able to select the correct oracle each time.

Conclusion
We propose a general solution for proactive learning which
casts the problem as a POMDP, taking into account the ob-
served history in order to optimally select oracles and con-
struct a high quality labeled dataset. This approach simul-

Figure 2: Mean accuracies with 95% confidence intervals
for Adult (left) and Spambase (right) with five oracle sce-
narios: Original #1-#3 and Complex #1-#2 (top to bottom).
Complex #1-#2’s algorithms are marked the same as Origi-
nal #1-#3 (legend omitted for clarity).

taneously captures all aspects of proactive learning (multi-
ple reluctant, fallible, cost-varying oracles) under one uni-
fied mathematical framework. We provide three proposi-
tions which assure point-based methods will quickly pro-
duce quality policies for large datasets. Our algorithm is
compared with the original three PAL algorithms, as well as
a simple baseline, on two distinct datasets. We explore five
oracle configurations, demonstrating our algorithm builds
upon the original three, outperforming them when presented
with realistic reluctant, fallible, and cost-varying oracles.

In future work, we hope to introduce richer aspects of or-
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acles (e.g., responses), data point selection (e.g., relabeling),
and integrate this into other domains (e.g., robotics). Our
model’s data point ordering Û , clustering step, and reward
function components are purposefully built from the PAL
algorithms’ aspects (Donmez and Carbonell 2008a). Con-
sidering different methods within these components is a fer-
tile ground for future exploration. Additionally, our experi-
ments are purposefully designed to be the same as the orig-
inal paper. This guarantees the accuracy of our implementa-
tions and allows for comparison with more difficult scenar-
ios (Complex #1-#2). We will investigate additional applica-
tion domains with this solid foundation established. Another
extension of our work is to use a constrained POMDP to ex-
plicitly incorporate the budget; however, this alone presents
numerous interesting facets which can be explored beyond
the scope of this paper. Finally, we will provide our source
code so that others may more easily build upon this work to
design and implement high caliber proactive learners.
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