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Abstract 
Textual complexity is widely used to assess the difficulty of 
reading materials and writing quality in student essays. At a 
lexical level, word complexity can represent a building 
block for creating a comprehensive model of lexical net-
works that adequately estimates learners’ understanding. In 
order to best capture how lexical associations are created 
between related concepts, we propose automated indices of 
word complexity based on Age of Exposure (AoE). AOE 
indices computationally model the lexical learning process 
as a function of a learner's experience with language. This 
study describes a proof of concept based on the on a large-
scale learning corpus (i.e., TASA). The results indicate that 
AoE indices yield strong associations with human ratings of 
age of acquisition, word frequency, entropy, and human lex-
ical response latencies providing evidence of convergent va-
lidity. 

Introduction  
Measuring and quantifying the complexity of texts has 
been of particular interest in terms of aligning reading ma-
terials to a learner’s level. However, determining a materi-
al’s textual complexity is a difficult task as any potential 
measure is relative to the reader and individual differences 
that may arise due to prior knowledge, language familiarity 
or personal motivation and general interests. In addition to 
aligning reading material, as proposed in the Common 
Core State Standards Initiative (National Governors 
Association Center for Best Practices & Council of Chief 
State School Officers, 2010), textual complexity has a 
strong role in the evaluations of students' readiness for col-
lege and their later careers (Dascalu, 2014). 

The words that comprise a text are one textual constitu-
ent that contributes to the complexity of a text. Hence, 
measuring a text’s difficulty relies on determining the un-
derlying complexity of its words. One approach to estimat-
ing lexical complexity might depend on experts to annotate 
data and dictionaries and to create lists of words with their 
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corresponding complexity. This qualitative method would 
provide important information, but it is not scalable and 
continuous updates may be required. In addition, the ap-
proach is not adaptable to different educational/domain 
contexts that can vary greatly. Therefore, automatic quanti-
tative formulas of lexical complexity such as the Lexile 
reader measure (Stenner, 1996), the Flesch–Kincaid index 
(Kincaid, Fishburne, Rogers, & Chissom, 1975) or the 
Coleman-Liau index (Coleman & Liau, 1975) have be-
come viable alternatives. These formulas provide automat-
ed estimates of text difficulty level based on the difficulty 
of the words and the sentences. Although these empirical 
and heuristic metrics do not provide perfect outputs, they 
work well in general and are widely adopted (about half of 
U.S. students from 3rd to 12th grade levels receive a Lexile 
measure each year; (Nelson, Perfetti, Liben, & Liben, 
2012). However, a major problem with these metrics is that 
more in-depth discourse structures are not considered. For 
instance, Lexile measures are based on word frequencies 
and sentence length, whereas the Flesch-Kincaid index is 
built on average syllables per word. More modern research 
has indicated that lexical complexity is more complicated 
than these simple approaches and thus new approaches are 
necessary (Crossley, Greenfield, & McNamara, 2008). For 
instance, a word can have multiple meanings that are ac-
quired gradually by students and allowing appropriate as-
sociations between concepts to be created over time. In 
order to model such a timeline, Landauer, Kireyev, and 
Panaccione (2011) adopted an approach for examining the 
evolution of a word’s meaning through a large corpus 
analysis. They termed this approach “word maturity.” 

The aim of the research presented in this paper is to 
build on the word maturity metric proposed by Landauer et 
al. (2011) and create a model of lexical complexity that 
simulates the learning process as a function of experience 
with language. Therefore, in this study we present a model 
of lexical complexity that evaluates the learning curve of a 
word, the word's complexity, and the relations of its under-
lying meaning and associations to other concepts. Our new 
metric, named Age of Exposure (AoE), describes a word's 
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state of development in terms of inchoate, intermediate, 
and fully developed moments of acquisition which are 
modeled and generated from a learning corpus. Each in-
termediate model is built based on the learning materials 
available at a certain grade level (i.e., a word’s age of ex-
posure). The AoE metric thus reflects the age/grade level 
of a learner when s/he has been exposed to enough infor-
mation to understand and create the appropriate associa-
tions for the given concept. Our approach also differs in 
that most computational research into lexical complexity 
has focused on using algebraic or probabilistic methods to 
represent words in semantic spaces starting from co-
occurrence patterns of words in documents. Only a few 
approaches have considered the evolution of words’ con-
ceptualization and, in particular, the practical applications 
in Learning Analytics (LA). By training multiple semantic 
models on cumulative training data of increasing text diffi-
culty, we are able to model the learning curve and potential 
difficulty of each word. 

In this study, we present a proof of concept of our AoE 
model and corresponding complexity indices, as well as 
validations based on comparisons to word features such as 
human ratings of age of acquisition, word frequency, en-
tropy, and human lexical response latencies. We find that 
the AoE indices strongly correlate with other indices of 
lexical complexity, thus providing evidence for the validity 
in measuring lexical complexity. Because the indices are 
automated, they can be used in a number of artificial intel-
ligence systems to a) best align reading materials to learn-
er’s level of comprehension, b) improve the representation 
of concept maps of semantically related concepts filtered 
via complexity, or c) recommend students readings. 

State of the Art – Word Maturity 
The “word maturity” metric estimates how a word’s mean-
ings are acquired gradually, depending on its complexity 
(Landauer et al., 2011). In extent, word maturity models 
the degree to which a word is known at different levels of 
language exposure. For example, children are generally 
exposed to a word such as “dog" early in life, leading to a 
greater likelihood of it being acquired. In contrast children 
are less likely to be exposed to a word such as “focal” at 
an early stage. Also, instead of considering words as inde-
pendent concepts that can be either understood or not, a 
word maturity index sees them as bags of hidden associat-
ed concepts with each concept having a degree of contribu-
tion. One example of this is the word “turkey”. The word 
has a double meaning: the first and simplest meaning refers 
to the bird, but there is also a more complex meaning refer-
ring to “Turkey” – the country found in Europe. Each 
meaning has a different complexity level leading to the 
“country” concept most likely being acquired later in time. 

Pearson Education currently uses word maturity to cre-
ate assessment tools and personalized vocabulary instruc-
tion (http://www.readingmaturity.com/rmm-web/#/). Addi-
tional features such as word length, sentence length, within 
sentence punctuation, sentence and paragraph complexity, 
order of information and semantic coherence (within and 
between sentences; (Nelson et al., 2012) are also consid-
ered in the final assessment of a document’s complexity. 
However, word maturity is proprietary and not all details 
for the computational analysis are available to the public, 
making comparisons difficult. 

While not all implementation details of word maturity 
are available, the algorithm consists of the following prin-
cipal stages (Kireyev & Landauer, 2011): 
1. Create an LSA (Landauer, Foltz, & Laham, 1998) space 

for each intermediate complexity model. Create an addi-
tional LSA space for the mature model 
For computing word maturity, multiple intermediate 

LSA spaces are built based on text corpora of increasing 
number of paragraphs. LSA is an unsupervised learning 
algorithm based on Singular Value Decomposition (SVD) 
often used in natural language processing to determine 
relations between documents and words while projecting 
them into a vector space. Given a document set, a term-
document occurrence matrix X is constructed using the 
word weights – usually Tf-Idf or log-entropy weights 
(Landauer, McNamara, Dennis, & Kintsch, 2007) – (rows) 
that appear in a document (the column). The obtained ma-
trix is factorized into three matrices followed by a rank 
reduction. Given a fixed number k (k<<rank of initial ma-
trices - representing the most important latent dimensions), 
an approximation of X is computed that has the property to 
have minimal errors in terms of the Frobenius norm. In the 
end, the semantic distance between words is computed as 
cosine similarity. 

The collections of texts based on increasing paragraphs 
are used to represent cumulatively enlarged samples of 
documents generated by adding texts at successive Lexile 
levels. Therefore, more and more difficult texts are added 
to each intermediate complexity model, generating the ma-
ture corpus. 
2. Make the spaces compatible via Procustes Alignment 

(PA) in order to be able to compare concepts across dif-
ferent LSA spaces 
Comparing vectors obtained from different LSA spaces 

poses two problems: dimensionality and coordinate incon-
sistencies. Procustes Analysis (PA, (Krzanowski, 2000) 
can be used to align vectors in order to make them compa-
rable. After applying PA, the comparison of word mean-
ings in two different LSA spaces is reduced to analyzing 
the standard cosine metric for the two words in the joint 
space with compatible coordinates. 
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3. Compute the word maturity as the similarity of a word in 
the target model with the same word in the mature mod-
el 
The previous alignment technique makes it possible to 

obtain a similarity metric between two words in separate 
corpora. At this point, each word’s maturity level can be 
computed as the cosine similarity between the word in the 
intermediate model and the same word in the mature mod-
el. The visual representations of a word’s evolution 
(Landauer et al., 2011) depends on the number of para-
graphs within each training corpora, which can be also 
mapped on to the grade level of the underlying textual ma-
terials (Kireyev & Landauer, 2011). To validate the maturi-
ty function, a time-to-maturity index is defined as the min-
imum at which the word maturity (or semantic similarity to 
the mature space) reaches a particular threshold . When 
compared to human vocabulary development word lists 
(e.g., Age Of Acquisition Norms), the Time-to-Maturity 
(  = 0.45) index had a Spearman correlation of .72 to the 
(Gilhooly & Logie, 1980) AoA norms (n = 1643) and a .64 
correlation to Bristol (Stadthagen-Gonzalez & Davis, 
2006) AoA norms (n = 1402). 

Method 
Similar to Landauer et al. (2011), our aim is to create a 
generalized model of word complexity - Age of Exposure - 
that simulates the potential learning curve of a concept 
based on its associations to other words. One main differ-
ence is that we use Latent Dirichlet Allocation (LDA) 
(Blei, Ng, & Jordan, 2003) to accomplish this rather than 
LSA. Our method consists of the following steps: 
 Create incremental corpora in terms of dimensions and 

of complexity in order to model the word learning pro-
cess. The largest/highest ranking space is considered the 
most developed or mature space. 

 Train dedicated LDA models for each intermediate cor-
pus and on the most developed corpus. 

 Align and match intermediate model topics to the most 
developed model by creating a bi-partite graph and by 
applying a flow algorithm. 

 Based on the matching, compare the representation of a 
concept in an intermediate model with the matched topic 
distribution in the aligned most developed model via co-
sine similarity. 
This approach provides a series of matchings between 

each incremental corpus and the most developed/mature 
corpus, denoting the representation of a concept in terms of 
topic distributions in incremental semantic models. Based 
on these series of [0 - 1] similarity values, we develop dif-
ferent Age of Exposure (AoE) indices, presented later in 
detail, in order to obtain an estimation of each word’s 
complexity. 

Building LDA intermediate and mature models 
AoE relies on Latent Dirichlet Allocation (LDA), a reliable 
topic modeling techniques that uses a generative probabil-
istic process to infer underlying topics (Blei et al., 2003). 
Starting from the presumption that documents integrate 
multiple topics, each document can now be considered a 
random mixture of corpus-wide topics. A topic is a Di-
richlet distribution (Kotz, Balakrishnan, & Johnson, 2000) 
over the vocabulary simplex (the space of all possible dis-
tributions of words from the training corpora) in which 
semantically related words have similar probabilities of 
occurrence.  

LDA captures and creates word associations based on 
co-occurrence data, which means that an in-depth view of 
word understanding is provided, based on its links to other 
semantically related concepts. Using LDA provides ex-
tendibility and a wider applicability because a major con-
straint of LSA is that the SVD decomposition is a highly 
computational and resource demanding process, while 
LDA can be easily applied on larger corpora. Moreover, 
LDA partially addresses polysemy (i.e., ambiguity in the 
senses attributed to a word), which is disregarded in LSA. 
Polysemy is reflected in the number of different top-
ics/contexts containing the given word. In addition, the 
usage of LDA is more straightforward and better highlights 
the associations between concepts through the underlying 
latent topics. 

Although LDA has proven to be reliable in extracting 
topics and has the lowest perplexity when compared to 
other probabilistic semantic models (Blei et al., 2003), we 
must also consider its drawbacks. First, there are no actual 
significances assigned to topics as words have correspond-
ing probabilities, but there is no overarching domain classi-
fication marking a certain topic (e.g., the is no explicit 
marking for frequently encountered topics on “religion”, 
“war”, “economy”, etc.). Moreover, topics are not equi-
probable (Arora & Ravindran, 2008) and there is no im-
posed ordering (e.g., topic i in one training is centered on 
concepts related to “politics”, but in another it can consist 
of words from any other semantically related subset of 
concepts). Second, there are inevitable estimation errors by 
using an approximate inference model, which are more 
notable when addressing smaller texts with a more uncer-
tain mixture of topics. Third, like LSA, LDA is blind to 
word order, but polysemy is now reflected in the member-
ship of the same word, with high probabilities, in multiple 
topics. Lastly, LDA loses LSA’s cognitive significance 
from a psychological point of view (Landauer et al., 2007). 

Topic matching 
Applying LDA to the intermediate and mature corpora 
creates increasingly complex LDA models, but comparing 
topics across LDA spaces is not directly possible as the 
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latent variable between LDA spaces are independent and 
have no direct linkage between models. Therefore, our aim 
is to track, match, and align the topics behind LDA spaces. 
However, this task of topic alignment can be reformulated 
to a more popular problem: finding the best node matching 
in a bipartite graph while minimizing the total cost (see 
Figure 1). Therefore, every topic from an intermediate cor-
pus can be matched to a topic in the most developed model 
with a cost, or more specifically, the Jensen-Shannon di-
vergence (JSD) between all word probabilities from the 
two topics (Dascalu, 2014). Computing the minimum cut 
with the minimum total cost can be performed by using the 
maximum flow (Ford–Fulkerson) algorithm with a few 
changes. First, after adding a virtual source and a virtual 
sink with infinite capacities (see Figure 1), the Bellman-
Ford algorithm was used (Cormen, Leiserson, Rivest, & 
Stein, 2009) to determine the optimal path via intermediate 
and mature topics because the semantic similarity function 
(JSD) can have negative costs. Second, only pairs of topics 
that correspond to the same or highly similar meanings 
were selected, ensuring that each topic from an intermedi-
ate model had a corresponding topic in the mature one. 
 

 
Figure 1. Bipartite graph depicting the potential matching based 

on JSD between topics, as well as the virtual source and sink 
used for the maximum flow algorithm. 

Overall, the topic matching is a completely automated 
process that builds the bipartite graph on the JSD between 
all word probabilities from two topics (one from the inter-
mediate model and the other from the mature model). 
Similar to Landauer’s word maturity model, there is no 
automatic alignment between two different LSA spaces 
(coordinate inconsistency of each ith dimension of the k 
existing ones between the two models), which was ad-
dressed in their case via Procustes Alignment. 

Computing AoE 
At this point in the computation of AoE, multiple LDA 
intermediate and mature spaces are trained allowing the 
topics of any intermediate models to be matched with ma-
ture models. Moreover, each word from any specific cor-

pus has a discrete probability distribution over the set of 
topics corresponding to that LDA model. Based on the 
previous matching, a permutation of the topics is per-
formed enabling the comparison of a word’s representation 
in an intermediate LDA model to its aligned topic distribu-
tion in the mature space. Therefore, our AoE function per 
intermediate model is captured as the cosine similarity be-
tween the word in the intermediate space versus the word’s 
topic distribution in the mature model. In other words, AoE 
gradually captures the degree to which a word is correctly 
represented with regards to the emergent latent topics or 
the level of its potential understanding in any intermediate 
model. 

By considering multiple snapshots derived from inter-
mediate LDA models, we obtain the potential learning 
curve of a concept by simulating the creation of a learner’s 
word associations based on the provided corpora. After-
wards, multiple AoE indices can be developed that cap-
tured a word’s complexity level based on the adequacy of 
its associations. Of these potential indices, we focus on the 
following: 
 Inverse Average Similarity = 1 – Avg (similarity values 

per intermediate model): The easier a concept is, the 
faster it is will be represented correctly in an intermedi-
ate model versus the most developed space. 

 Inverse Linear Regression Slope: A linear regression 
from (0, 0) up to (1, 1) was generated as all intermediate 
cosine values are equally distributed on the Ox axis. 
AoE is estimated as the inverse of the slope 
(AoE = 1/slope). 

 Index above Threshold: The index of the intermediate 
model for which the cosine value exceeds an imposed 
threshold (experimentally, a threshold of .4 provided the 
best results when considering all possible thresholds 
from 0.4 to 0.7 with a 0.1 increment). 

 Index Polynomial Fit above Threshold: Because indi-
vidual word development is reflected by the amount of 
simulated reading (the volume of text that a learner is 
potentially exposed to, up until a certain grade level), the 
polynomial fit of degree 3 provides a continuous meas-
ure and follows more smoothly the similarities than a 
linear interpolation or a 2nd degree fit. The index repre-
sents the first intermediate model/grade level that ex-
ceeds an imposed threshold (a 0.4 threshold provided the 
best results). 

 Inflection Point of the Polynomial Fit: After creating an 
extended data series that ensures the S shape of the in-
terpolation for reducing noisy input, the inflection point 
of the generated polynomial fit best marks the beginning 
of correctly representing a given concept based on its as-
sociations. 

Although tightly connected, the provided indices for AoE 
capture different specificities and were specifically de-
signed to capture different traits of the modeled learning 
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curve (slope, inflection point, and increase over an im-
posed threshold).  

Training Corpora 
Our AoE indices were implemented using the TASA cor-
pus (http://lsa.colorado.edu/spaces.html) which was seg-
mented based on Degrees of Reading Power (DRP; (Koslin 
et al., 1987) into 13 grade levels (McNamara, Graesser, & 
Louwerse, 2012). The n-th AoE intermediate model con-
tained all the documents of complexity 1 up to n (with a 
corresponding notation of [1 – n]). Lemmatization and stop 
words elimination were used when preparing the corpus. 
The TASA corpus is used to create a proof of concept. 
However, our model can be easily applied on any other 
textual databases in order to compute both domain specific 
and domain general AoEs. 

Text preprocessing was performed, but the prepro-
cessing phases described later on represent only an option-
al refinement of our model. Lemmatization was performed 
by applying the Stanford Core NLP MorphAnnotator 
(http://nlp.stanford.edu/software/) and our stop word list 
was a slightly modified version of the Snowball list 
(http://snowball.tartarus.org). We hypothesized that part of 
speech (POS) tags would be detrimental to the overall per-
formance of the AoE indices because they might generate 
conflicting AoE scores for each POS tag. In other words, a 
concept or lemma would develop an AoE score for each 
POS tag. We thus did not use POS tagging on the corpus. 

Because we were dealing with incremental corpora and 
the sizes followed an almost arithmetic progression (see 
Table 1), the trained LDA models used for this proof of 
concept had a similar progression in terms of number of 
topics. The arithmetic progression from Table 1 yield bet-
ter results in terms of correlations to other word features 
than a proportional growth with the number of types. For 
the most developed model, we opted to use 100 topics as 
indicated by Blei (2012). Further refinements of AoE will 
consider optimizing the identification of topics via Hierar-
chical Dirichlet Processes (HDP; Teh, Jordan, Beal, & 
Blei, 2006) used to infer the number of topics from each 
intermediate or mature model. 

Because low ranking intermediate models consisted only 
of general words contained within a number of mature top-
ics, the actual perception between adjacent intermediate 
models was disrupted. Moreover, as there were no actual 
best matches between low-ranking intermediate topics and 
the mature ones due to the limited vocabulary and corpora, 
the partial associations that could have been generated by 
other concepts degenerated the AoE results. In addition, as 
a particular implementation tweak, we had a cosine meas-
ure between two vectors containing just one value in some 
particular cases, which is quite normal because a word in 
an intermediate space could be present in only one topic. 

Due to the fact that cosine similarity would automatically 
create an optimal matching of 1, the individual similarity 
value was replaced with the ratio of word weights between 
the models. 

 
Table 1. Statistics of intermediate and mature models after 

lemmatization and stop-words elimination. 
Grade 
level 

Types Tokens Paragraphs Topics 

[1 – 1] 8,377 367,277 3,612 5 
[1 – 2] 12,601 681,087 6,530 10 
[1 – 3] 15,652 962,751 9,078 15 
[1 – 4] 18,492 1,292,570 12,022 20 
[1 – 5] 22,457 1,841,657 16,810 25 
[1 – 6] 25,930 2,432,460 21,824 30 
[1 – 7] 26,976 2,620,402 23,378 35 
[1 – 8] 27,967 2,807,591 24,912 40 
[1 – 9] 29,057 3,004,454 26,499 45 
[1 – 10] 30,909 3,378,804 29,465 50 
[1 – 11] 32,553 3,728,315 32,160 55 
[1 – 12] 33,268 3,892,696 33,409 60 
Mature 
model 

37,633 5,084,243 41,866 100 

 
In total, 26,470 words were represented in our AoE 

model. Around 7,000 words from the [1-12] intermediate 
model had singular occurrences and were not representa-
tive within the LDA spaces. Out of the 26,470 words in-
cluded in the AoE model, 6,258 words (23.64%) had an 
approximate monotonic growth. That is to say, for each 
intermediate model i, the current cosine similarity to the 
mature model was greater than 75% of the previous (i-1) 
similarity. This approximation of a trending growth for 
word assimilation in all subsequent models was frequently 
encountered for concepts that had only one sense. In con-
trast, polysemy is reflected in decreases and spikes in the 
learning curve of a concept as new senses are introduced 
into more complex models (e.g., see pattern for “class” in 
Figure 2). Simple concepts were well associated from the 
beginning (e.g., “chocolate”, “happy”), whereas more 
complex words become well represented later on (e.g., 
“tech” or “clustering”). Specific scientific concepts were 
only introduced in higher grade levels (e.g. “virus”) and 
their conceptualization may never become fully adequate 
without the entire mature corpora (e.g., “singularity”). 

Results 
To validate our AoE indices, we took a convergent validity 
approach in which we assessed the degree to which our 
AoE indices converged (i.e., correlated) with other word 
features to which they should be theoretically similar. Spe-
cifically, we selected word features related to age of acqui-
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sition, word frequency, word entropy, response latencies, 
and word familiarity. All of these variables are strongly 
related to lexical sophistication and/or lexical acquisition. 

The selected indices are reported by the Tool for the Au-
tomatic Analysis of Lexical Sophistication (TAALES) 
(Kyle & Crossley, 2015) and briefly discussed below. 

 
Table 2. Correlations between AoE indices and convergent variables. 

Selected index Inverse Average 
Similarity 

Inverse Linear 
Regression Slope 

Index Above 
Threshold 

Index Polynomial 
Fit Above Threshold 

Inflection Point of 
the Polynomial Fit 

Kuperman AoA .884 .716 .912 .891 .893 
SUBTLEXus 
word frequency 

-.742 -.599 -.765 -.749 -.774 

SUBTLEXus 
entropy 

-.752 -.615 -.776 -.761 -.780 

Word naming 
latency 

.761 .611 .779 .761 .774 

Lexical decision 
latency 

.754 .616 .766 .756 .753 

 
Figure 2. Comparative view of AoE for selected words. 

 
Age of Acquisition (AoA): (AoA) indices are based on 
human judgments of the age that a particular word is 
learned (Kuperman, Stadthagen-Gonzalez, & Brysbaert, 
2012). We selected AoA scores for 30,121 lemmas based 
on Kuperman et al. (2012). 
Word Frequency: Frequency effects are based on the 
notion that words that are more frequent in natural lan-
guage data are learned earlier and used more often than 
words that are less frequent in natural language data. We 
selected frequency indices from the SUBTLEXus corpus 
(Brysbaert & New, 2009), which includes 51 million 
words. 
Word Entropy: Entropy measures account for how wide-
ly a word or word family is used, usually by providing a 
count of the number of documents in which that word 
occurs. We selected entropy indices based on SUB-
TLEXus, which reports entropy based on 8,388 texts. 
Response Latencies: Lexical decision and naming re-
sponse times were obtained from The English Lexicon 
Project (ELP) (Balota et al., 2007). This dataset includes 
response latencies for 80,962 real word and nonword 
stimuli (40,481 each), including both mono- and multi-
syllabic words. 
Pearson product moment correlations (see Table 2) 

demonstrated that all AoE variables had strong (i.e., strong 

effects, r > .500) and significant relations (i.e., p < .001) 
with the selected convergent validity indices related to lex-
ical sophistication and knowledge. Moreover, the correla-
tions surpass the publicly available results for the word 
maturity measure. 

Conclusions 
Our AoE metric is a reproducible and scalable model that 
can be easily applied on different textual corpora and data-
bases. In contrast to word maturity, AoE has introduced 
more indices for estimating word complexity that better 
correlate to human ratings. Moreover, word maturity intro-
duces an additional approximation for producing a cali-
brated scale. With regards to the latter step, AoE is more 
straightforward and more accurate, providing an in-depth 
perspective of complexity by simulating word learning 
based on potential associations created across time. 

A downside of our proof-of concept AoE model is our 
use of the TASA corpus as a proxy for world experience, 
based on DRP scores (Carver, 1985). As such, our inter-
mediate models are relatively artificial. We considered 
merging adjacent levels and creating a stronger baseline 
(e.g., a larger 1st complexity model using 1-2 or 1-3 levels) 
to generate smother learning curves, but we opted to pre-
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sent the most granular results possible in order to better 
emphasize the benefits of our AoE model versus word ma-
turity. Moreover, we are fully aware of a potential circular 
argument; a more adequate corpus would contain actual 
texts extracted from schoolbooks corresponding to each 
grade level. Nevertheless, this study provides a successful 
proof of concept that automatic textual complexity assess-
ment based on simple surface measures can be used to cre-
ate an initial segmentation of the training corpora. 

However, by using better corpora and by refining the 
number of imposed topics per model, we should be able to 
train specialized AoE models in future iterations of this 
work. We envision that AoE indices can be used to better 
match texts to readers, to better analyze complexity in text 
and speech, and to provide better feedback to users in intel-
ligent systems. 
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