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Abstract

One of the key concerns in computational semantics is to con-
struct a domain independent semantic representation which
captures the richness of natural language, yet can be quickly
customized to a specific domain for practical applications. We
propose to use generic semantic frames defined in FrameNet,
a domain-independent semantic resource, as an intermediate
semantic representation for language understanding in dia-
log systems. In this paper we: (a) outline a novel method
for FrameNet-style semantic dependency labeling that builds
on a syntactic dependency parse; and (b) compare the accu-
racy of domain-adapted and generic approaches to semantic
parsing for dialog tasks, using a frame-annotated corpus of
human-computer dialogs in an airline reservation domain.

Introduction

With advancements in artificial intelligence new types of
systems are emerging, for which speech is a natural input
modality. Speech is increasingly used with autonomous cars
and robots. Speech also eliminates the need for graphical
user interfaces in “smart home” systems; users may turn the
lights on, change the temperature of a thermostat, choose
music to listen to, or control robotic vacuum cleaners us-
ing spoken commands. On mobile devices, apps can be con-
trolled through speech; for example, a user can find a restau-
rant in a search application or retrieve schedule information
from a calendar application.

A Spoken Language Understanding (SLU) component for
a speech interface identifies intents and related entities in
spoken natural language utterances. For example, the utter-
ance “Leaving from New York on Friday” has a Departing
intent with the arguments location (New York) and time (Fri-
day). A SLU must be quick to support high interactivity, ac-
curate for retaining user engagement, and precise for map-
ping into domain-specific functions or database queries. For
these reasons SLUs are often domain specific. To create a
domain-specific SLU, a system developer annotates domain-
specific data or creates rules that convert a user’s spoken
input into a domain-specific representation (Williams et al.
2015; Wit.AI 2015). Designing a domain-specific SLU is a
laborious and time-consuming process. As speech interfaces
evolve into general purpose personal assistants, SLUs need
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to also achieve generality and rapid adaptability to new do-
mains.

One way to achieve generality and rapid domain adapta-
tion is to use a generic semantic representation for SLU
with a mapping from generic to application-specific repre-
sentations in a later control component (Dzikovska, Allen,
and Swift 2008; Bastianelli et al. 2014). FrameNet (Fillmore
1982; Baker, Fillmore, and Lowe 1998) is one such rep-
resentation. FrameNet defines a set of domain-independent
and language-independent semantic frames. Each FrameNet
frame is associated with a (non-exhaustive) list of rarget
words and typed arguments. For example, a frame repre-
senting the notion of Departing is associated with the words
leave, decamp, exit, go, etc. with the core arguments source
(location) and theme (physical object). FrameNet is not only
alexicon, but also a growing dataset with 170K manually an-
notated English sentences, providing a unique resource for
training SLUs.

There are existing general purpose statistical semantic
parsers based on FrameNet annotations (Das et al. 2010;
Johansson and Nugues 2007; Croce and Basili 2011). While
generic semantic resources have been successfully used for
domain-specific SLUs by researchers (Bastianelli et al.
2014; Tur, Hakkani-Tiir, and Chotimongkol 2005), they are
not widely used in commercial spoken dialog systems due
to accuracy issues, some related to the handling of speech
disfluencies in spoken language input, and some related to
domain-specific coverage gaps.

In this paper, we present a systematic evaluation of ap-
proaches to domain adaptation of generic semantic resources
for SLU. We define a semantic dependency labeling (SDL)
task, which is similar to the semantic parsing task (Das et al.
2010) except that frame targets and arguments are labeled
on single nodes (phrase heads) in a dependency tree rather
than on text spans. Because it uses features associated with a
head word of the argument instead of the full argument span,
an SDL system should be more robust to speech recognition
errors and disfluencies than existing semantic parsers. In ad-
dition, a semantically annotated dependency tree provides a
rich joint representation of semantic and syntactic informa-
tion that may be useful for downstream processing.

We present a statistical SDL system, OnePar. OnePar
achieves similar accuracy to the reported results of the
widely used state-of-the-art semantic parser SEMAFOR on



FrameNet data. However, our goal is to explore its utility
for domain adaptation in SLU. For this purpose we man-
ually annotated the unique sentences in the Communicator
2000 corpus of air travel dialogs (Walker and others 2001)
with FrameNet verb frames'. Using this data, we compare
the accuracy of: (a) a generic model for OnePar trained
on FrameNet data; (b) the generic model plus some hand-
written domain-specific constraints (such as a dialog sys-
tem developer would know while designing the system); (c)
a model trained on FrameNet data and a small amount of
domain-specific training data (such as could be labeled in
under a week by trained annotators from a seed corpus for
the domain, during dialog system design), plus the domain-
specific constraints; and (d) a model trained only on domain-
specific training data. We show that domain-specific con-
straints and a small amount of in-domain training data sig-
nificantly improve SDL accuracy in-domain, while allowing
for rapid bootstrapping of coverage in new domains.

The rest of the paper is organized as follows. First, we
describe related work on semantic parsing. Then, we present
OnePar and the datasets we used in our experiments. Finally,
we present and discuss our experimental results.

Related Work

In the field of computational semantics, three semantic
resources are widely used for semantic parsing — Prop-
Bank (Kingsbury, Palmer, and Marcus 2002), VerbNet (Kip-
per et al. 2008) and FrameNet (Lowe, Baker, and Fillmore
1997). PropBank is a set of coarse-grained verb frame an-
notations over the Wall Street Journal Penn Treebank cor-
pus (Marcus, Santorini, and Marcinkiewicz 1993), and was
used in the CoNLL 2004 and 2005 semantic role labeling
shared tasks (Carreras and Marquez 2005). VerbNet and
FrameNet are both semantic lexicons incorporating fine-
grained verb frame specifications, with large sets of labeled
examples. FrameNet was used in the CoNLL 2007 semantic
parsing shared task (Johansson and Nugues 2007).

Frame-semantic parsing involves identification and dis-
ambiguation of the frames associated with certain key words
(targets) and their arguments in a sentence. The most com-
mon approaches to FrameNet-based semantic parsing have
been supervised (e.g. (Das et al. 2010; Johansson and
Nugues 2007)). Recently, unsupervised and semi-supervised
approaches have also been investigated (Lang and Lapata
2014; Das et al. 2014); however, these approaches still lack
the accuracy required for SLU. As described below, OnePar
uses a fairly standard three-stage approach with supervised
training methods for each stage.

Chen et al. (2013) apply generic FrameNet-based seman-
tic parsing for SLU. However, they only use the target la-
bels, ignoring the arguments. Others have trained frame-

"Working with the Linguistic Data Consortium, we plan to re-
lease these annotations in the near future.

2As Martha Palmer noted in
(http://www.flarenet.eu/sites/default/files/S3_01_Palmer.pdf),
“PropBank provides the best training data”, “VerbNet provides
the clearest links between syntax and semantics”, and “FrameNet
provides the richest semantics”.

2009
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semantic SLUs with domain-specific data (Artzi and Zettle-
moyer 2011; Coppola et al. 2008; Coppola, Moschitti, and
Riccardi 2009). However, the effort required to annotate
a sizeable corpus of dialogs for each new domain with
FrameNet frames is large.

Bastianelli et al. (2014) use a FrameNet-style SLU for in-
terpreting commands to an autonomous robot. Their method
of domain adaptation is to manually select a set of FrameNet
frames corresponding to their domain. They use a purpose-
built SLU that is tightly integrated with speech recognition.

Tur et al. (2005) use a generic PropBank-style parser for
semi-supervised intent identification. This method does not
identify arguments. Huang and Yates (2010) present domain
adaptation methods for PropBank-style semantic parsing
using domain-independent preprocessing techniques. Their
method requires only unlabeled domain-specific data. How-
ever, there is still a “chicken and egg” problem: in order to
collect a large set of dialogs a dialog system (with an SLU)
would generally have to be running already.

System: OnePar

The architecture for OnePar is shown in Figure 1. The input
is a syntactically processed sentence. We use our own tools
for syntactic processing. SDL is performed in three stages
typical of frame semantic parsers: (1) target labeling; (2) ar-
gument labeling; and (3) frame fitting.

Data Preprocessing

Targets and arguments in FrameNet data are labeled on
spans of words, or chunks. Consequently, most semantic
parsers model argument labeling as the tagging of word
spans under optimization constraints, such as no span over-
lap and unique core roles (Punyakanok, Roth, and Yih 2008;
Téckstrom, Ganchev, and Das 2015). By contrast, OnePar
labels head nodes in a dependency parse?, an approach we
borrow from the CoNLL shared tasks on PropBank-style se-
mantic role labeling (Surdeanu et al. 2008; Hajic et al. 2009).
For example, in the FrameNet annotation of the sentence de-
picted in Figure 2, “a clean sheet of paper” is labeled as an
argument span. However, alternative valid argument spans
may be “sheet of paper” or “clean sheet”. In our approach,
we defer span identification and instead label head words of
frame arguments. Spans can be identified from the depen-
dency tree at a later stage if the application requires. This
approach allows for more robust handling of incomplete or
error-filled input as it does not require the argument span to
be a proper subtree.

To convert FrameNet argument span annotations to ar-
gument head word annotations for training and testing, we
identify head words of each span in a manner similar to
(Bauer, Fiirstenau, and Rambow 2012): each sentence is de-
pendency parsed; then, for each annotated argument span, if
the span corresponds to a proper dependency constituent (as
in the example on Figure 2), we mark its head word; else if

3A dependency parse is a graph representation of the syntactic
structure of a sentence in which each pair of grammatically related
words is connected with an edge (see Figure 2).



Input: Output:
Sentence 1. Target 2. Argument 3. Frame Dependency
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Figure 1: OnePar system
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O @ of 7N O
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adpobj
(@)
paper_8 (NN)

Figure 2: Dependency parse for a sentence “He copied it onto a clean sheet of paper” tagged with a frame and arguments.

there is a noun in the argument, we mark the first noun as
the head; else we mark the last word as the head *.

Target Labeling

In the first stage of SDL, we identify and label target words
in the sentence. From the set of all FrameNet frames F, tar-
get labeling assigns a frame identifier F, € F to each can-
didate target w, as determined by Equation 1:

F, UT(w,py) if defined
argmax P(F | ¢s, da, d.) otherwise
F

ey

*Only 20% of arguments in FrameNet data do not correspond
to a proper subtree in the parse from our dependency parser.
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where UT(w,p,,) is an unambiguous targets table that
uniquely identifies a frame given the word (w) and its part-
of-speech (POS), p.,°.

Candidate targets may include all words in the sentence
(all nodes in the dependency tree), or only selected words
(nodes). If all words in the sentence are considered as tar-
gets, target labeling assigns a frame identifier F,, € F U
{None} for joint identification and labeling. For SLU, we
are interested in verb frames, so in our experiments only
verbs are considered as candidate targets. Target labeling in
this case assigns a frame identifier F, € F to every verb in
a sentence.

>The majority of target words (86%) in the FrameNet corpus
are unambiguously associated with a frame.



Feature Type ‘ Used in Features List ‘

Sequence (¢s) TARGET, ARG | word, stem, part of speech tag (POS), word/POS context (2 right, 2 left)

Dependency Parse (¢q) TARGET, ARG | parent relation, parent word, parent POS, child relation, child POS

Constituency Parse (¢.) TARGET, ARG | non-terminal (NT) value of the corresponding node in the constituency parse,
left/right sibling word/POS/NT, parent node’s word/POS/NT

Dependency Parse Link (¢;) ARG path of POS/relations between target and candidate argument, length of the path,
dependency join word/POS/distance to target (if path between target and candi-
date argument is indirect)

Constituency Parse Link (¢;) ARG path of POS/relations between target and candidate argument, path length

Table 1: Features for target and argument labeling. Used in column shows which model is each feature set used in.

P(F | ¢s,¢q,0c) is computed by a maximum entropy
classifier using the sequence (¢), dependency tree (¢4), and
constituency tree (¢..) features outlined in Table 1. Sequence
features include tokens, stems, POS tags and their context.
Dependency features include parent-relation and POS in-
formation for the candidate target and its parent, and the
relation between them. Constituency features include non-
terminal and POS information for the candidate target, its
left and right siblings, and its parent.

Argument Labeling

The second stage of SDL is argument labeling. For each tar-
get labeled in the first stage, the argument labeler determines
the probability of each head word in the dependency tree
being an argument of the corresponding frame. Each frame
F requires a set of arguments Ap. Although according to
the FrameNet annotation scheme, each frame is unique, in
fact many frames share common argument types, such as
Agent, Entity, Event, Manner, Means, Place or Time. We ex-
ploit this redundancy to address the data sparseness prob-
lem in FrameNet. We leverage argument annotation data
across different frames by creating a single argument label
set (A =|J Ar U {None}) and training a single model for
F

argument labeling.

OnePar labels each word (w) in a sentence with a prob-
ability distribution over argument labels P(a € A |
w, @s, dd, Pe, Pr) using a maximum entropy model with fea-
tures ¢, ¢4 and ¢, defined as for target identification, and
¢y, link features defining the path between target and argu-
ment in dependency and constituency parses (see Table 1).

Frame Fitting

Given a target, its associated frame F' and arguments Ap,
and a probability over potential argument labels for each
non-target word, we want to find the most likely assignment
for each a; € Ap. Frame arguments are defined in a list
of arguments (LA) table®. The final assignment of argument
labels to words is made according to the following:

Ay = argmamP(a | w, ¢37 ¢da (bca ¢l) (2)

a€AR
‘AF| <=C
P(Cl | w,¢5,¢d7¢c7¢l) > T

The LA table is automatically generated from FrameNet XML
frame definitions.
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where C' and T are two parameters used to threshold the
number of candidate argument labels for each word and
their probabilities respectively. For each candidate argument
we consider the top C argument labels that have probability
above T as determined during argument labeling’.

Arguments for each frame are identified and fitted inde-
pendently of the other frames. This allows argument sharing
across frames, such that the same head word can be an ar-
gument of multiple frames. For example, the sentence “The
boy met the girl that he loves” has two verbal predicates met
and loves that share the same arguments boy and girl. How-
ever, independent assignment of frames and arguments does
not take into account the relationships between frames and
arguments in a single sentence. In future work, we plan to
investigate joint labeling of all targets and their correspond-
ing attributes in a sentence using tree kernels (Croce, Basili,
and Moschitti 2015).

Domain Adaptation

We use two methods for domain adaptation: 1) domain con-
figuration and 2) model interpolation.

Domain configuration is achieved through modifying the
UT and LA configuration tables for unambiguous targets
and frame arguments respectively. Target words that are am-
biguous in FrameNet may be unambiguous in a particu-
lar domain. For example, in our Communicator data (see
next section), the verb leave is consistently annotated as a
Departing frame, while in FrameNet it has six additional
frames, including Causation, Giving, and Quitting. Simi-
larly, frame arguments observed in a domain may be fewer
than those in FrameNet. For example, the Departing frame
occurs with 9 different arguments in Communicator while its
FrameNet definition lists 24 different arguments. A dialog
system developer can construct UT and LA while designing
the dialog system (cf. (Bastianelli et al. 2014)).

For model interpolation, a small amount of domain-
specific data is added to the FrameNet data prior to model
training. We used 10% of the unique Communicator sen-
tences, about 300 sentences, which can be annotated by a
trained labeler within two days®. We plan to investigate more
sophisticated models for domain adaptation in future work.



Dataset #Frames | #Sent | #Targets | #Args

unique total total
FrameNet LU 866 150K 150K 306K
FrameNet FT 706 4K 20K 42K
Communicator 80 3.2K 3.3K 7.5K

Table 2: Evaluation datasets

Data

Table 2 summarizes the datasets used in our experiments.
The FrameNet dataset (Lowe, Baker, and Fillmore 1997)
contains 150K sentences with selective annotations of lexi-
cal units (LU) and 4K sentences with full text annotations of
all predicates in each sentence (FT). The FrameNet data in-
cludes a total of 1K unique frames. The Communicator 2000
corpus consists of 662 human-computer spoken (telephone)
dialogs in a travel booking domain. We annotated FrameNet
verb frames on the 3.2K unique sentences resulting from au-
tomatic sentence splitting of Communicator utterances. The
corpus includes 80 unique frames.

Results

Table 3 presents evaluation results comparing generic,
domain-adapted and domain-specific models. We report pre-
cision, recall, and F-measure for target labeling (Lbl-p, Lbl-
1, Lbl-f columns left), argument identification (Id-p, Id-r, Id-
f) and argument labeling (Lbl-p, Lbl-r, Lbl-f columns right).
For Communicator data all words labeled as verb by our
POS tagger are identified as targets. For FrameNet data tar-
gets are identified and labeled by a joint model. Arguments
are labeled on automatically identified targets to estimate the
expected performance of a full system. For all experiments,
we use a single test split of 1.6K utterances selected at ran-
dom from the entire Communicator corpus.

We report two types of argument evaluation: strict and
lenient. For strict evaluation, we measure exact match be-
tween labeled and identified argument head words. Recall
that OnePar labels head words in a dependency parse, while
FrameNet reference annotations label word spans. Because
argument head identification is noisy due to errors in de-
pendency parsing, strict evaluation can erroneously penalize
correct predictions. For lenient evaluation, we consider ar-
gument ID and labeling to be correct if a labeled argument
head word matches any word inside the corresponding argu-
ment span in the annotation.

On FrameNet data, the generic model achieves F-
measures for target and lenient argument labeling of 0.64
and 0.44 respectively (row 1). However, on Communica-
tor data, F-measures decrease to 0.57/0.25 (row 2), which
is comparable to the out-of-the-box performance of SE-
MAFOR on this data (row 7)°. With domain configuration to

"We use C=2 and T=0.2, values optimized on FrameNet data.

$We estimate the Communicator corpus annotation to take five
minutes per sentence.

°To convert SEMAFOR’s argument span prediction to SDL for-
mat, argument span head nodes on SEMAFOR’s predicted spans
are identified using the method described earlier in this paper.
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Figure 3: OnePar system results

the Communicator domain, F-measures increase somewhat
to0 0.68/0.30 (row 3). With domain configuration and domain
adaptation using only about 300 sentences, F-measures in-
crease dramatically to 0.88/0.58 (row 4). Figures 3a and 3b
highlight the effect of domain adaptation on the F-measure
for the target and argument labeling tasks.

For comparison, we trained domain-specific models for
Communicator. A domain-specific model trained on 10%
of the Communicator data (300 sentences) achieves F-
measures for target and argument labeling of 0.89 and 0.63
(row 5), beating the generic model with domain configu-
ration and adaptation. With a larger training set of 50% of
the Communicator data (1.5K utterances), performance in-
creases further to 0.92/0.78'°. Although the performance of
domain-specific models beats that of the generic model with
domain configuration and adaptation, the domain-specific
models can only handle travel booking. If a new domain
is added to the dialog system (as in the recent third dialog
state tracking challenge, http://camdial.org/~mh521/dstc/),
the system should be able to do some SLU quickly. The
generic model with domain configuration and adaptation
represents a reasonable compromise.

Discussion

Our experimental results show poor performance of generic
models on domain-specific spoken language utterances. This
may be one of the reasons why generic semantic parsing,

19Similar performance for target labeling on Italian dialog data
was reported in (Coppola et al. 2008).



| | Model | Conf. || Lbl-p [ Lbl-r |

Lbl-f

[ 1d-p [ Idr | 1d-f ] Lbl-p | Lblr | LbIT |

OnePar Target Eval on FrameNet Lenient Argument Eval on FrameNet
[1 |F | F [ 062 ] 0.67 | 0.64 [0581052]055] 047 [ 042 [ 044 |
OnePar Target Eval on Communicator ~ Lenient Argument Eval on Communicator
2 | F F 0.60 | 0.55 0.57 0.69 | 044 | 0.53 || 0.33 | 0.21 | 0.25
3 | F C 0.71 | 0.65 0.68 0.69 | 0.34 | 0.46 || 046 | 0.23 | 0.30
4 | F+C10% C 092 | 0.85 0.88 0.88 | 0.58 | 0.70 || 0.73 | 0.48 | 0.58
5 | C10% C 093 | 0.85 0.89 094 | 0.67 | 0.78 || 0.75 | 0.54 | 0.63
6 | C50% C 0.95 | 0.88 0.92 096 | 0.85 | 090 || 0.83 | 0.73 | 0.78
[ 7 | SEMAFOR | [ 062 ] 053 ] 0.57 [070]037]048 ] 036 [ 0.19 [ 0.24 |
OnePar Strict Argument Eval on Communicator
8 | F F 0.54 | 0.34 | 042 || 0.27 | 0.17 | 0.21
9 | F C 0.56 | 0.27 | 037 || 038 | 0.19 | 0.25
10 | F+C10% C 0.68 | 044 | 0.54 || 0.58 | 0.38 | 0.46
11 | C10% C 0.70 | 0.50 | 0.58 || 0.60 | 0.43 | 0.50
12 | C50% C 0.72 1 0.64 | 0.68 || 0.66 | 0.59 | 0.62
[ 13 [ SEMAFOR | I [ 05570281037 ] 029 [ 0.15 [ 0.20 |

Table 3: SDL performance results for OnePar and SEMAFOR. OnePar’s models and the configuration files for UT and LA are
trained on FrameNet (F), Communicator (C), or both datasets. Precision/recall for target identification (whether a word is a
target) for OnePar on FrameNet data is 0.71/0.76 and on Communicator, 1.0/0.91. Precision/recall for target ID for SEMAFOR

on FrameNet is 1.0/0.86.

for which systems have existed for ten years, is not widely
adapted for SLU. Rule-based domain configuration with a
generic model can improve performance, and the addition
of a small amount of domain-specific training data can give
results close to those achievable by a domain-specific model.
It is surprising that a model trained on only a small
amount of domain specific data (lines 5 and 11 in Ta-
ble 3) outperforms a hybrid model with the same amount
of domain-specific data (lines 4 and 9). The biggest perfor-
mance gain from the domain specific model comes from in-
creased recall in argument identification. While FrameNet
frames are conceptually generic, their instantiation may dif-
fer across domains. Less lexicalized feature sets may help.

Conclusions

In this paper, we consider an essential issue for SLU: how
to obtain accuracy in-domain with rapid adaptability to new
domains, without having to collect and label large amounts
of data for each new domain. Our main contributions are: (1)
a description of OnePar, a novel system for FrameNet-style
semantic dependency labeling (SDL), and (2) a detailed
comparative assessment of methods for domain adaptation
of SDL, conducted using new annotations on the Commu-
nicator 2000 corpus, which we will release to the research
community.

In this paper, we experiment with two separate but related
concepts: generic representations (FrameNet) and generic
resources (data annotated with FrameNet frames). We show
that to obtain good in-domain SLU performance, generic re-
sources must be adapted and augmented with some domain-
specific data. Nevertheless, using a generic representation
like FrameNet provides several benefits. First, it provides a
standardized, linguistically motivated representation across
domains, opening the possibility for reuse of resources. Sec-

2819

ond, a generic model trained on generic resources can be
used to bootstrap an initial version of an SLU, overcom-
ing “the chicken and egg” problem where data is needed
to build a system, and a system is needed to collect data.
The amount of additional domain-specific training data is
small. Lastly, frame-semantic representations can be used
as a human-readable communication protocol to enable in-
teroperability between Al systems running in the cloud. A
personal assistant needs to have a wide range of capabil-
ities that constantly evolve as new products and services
become available. The back-end functions of native ap-
plications (such as hotel reservation or cab booking) can
be mapped into generic frame representations. A generic
SLU would capture natural language requests for these ser-
vices. A generic frame-semantic representation would allow
subscription-based functionality expansion for such systems
much as schema.org allows data sharing for web services.

In future work, we will explore more sophisticated meth-
ods of domain adaptation, including model interpolation and
domain-similar data selection. We will also evaluate OnePar
for SLU in a real dialog system.
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