
Inverse Reinforcement Learning
through Policy Gradient Minimization

Matteo Pirotta and Marcello Restelli
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano

Piazza Leonardo da Vinci, 32
I-20133, Milan, Italy

{matteo.pirotta, marcello.restelli}@polimi.it

Abstract

Inverse Reinforcement Learning (IRL) deals with the
problem of recovering the reward function optimized by
an expert given a set of demonstrations of the expert’s
policy. Most IRL algorithms need to repeatedly com-
pute the optimal policy for different reward functions.
This paper proposes a new IRL approach that allows to
recover the reward function without the need of solv-
ing any “direct” RL problem. The idea is to find the
reward function that minimizes the gradient of a param-
eterized representation of the expert’s policy. In partic-
ular, when the reward function can be represented as
a linear combination of some basis functions, we will
show that the aforementioned optimization problem can
be efficiently solved. We present an empirical evalua-
tion of the proposed approach on a multidimensional
version of the Linear-Quadratic Regulator (LQR) both
in the case where the parameters of the expert’s pol-
icy are known and in the (more realistic) case where
the parameters of the expert’s policy need to be inferred
from the expert’s demonstrations. Finally, the algorithm
is compared against the state-of-the-art on the mountain
car domain, where the expert’s policy is unknown.

Introduction

Markov Decision Processes (MDPs) are an effective mathe-
matical tool in modeling decision making in uncertain dy-
namic environments, where tasks are simply defined by
providing a reward function. However, in many real-world
problems, even the specification of the reward function
can be problematic and it is easier to provide demonstra-
tions from a desired policy. Inverse Reinforcement Learning
(IRL) aims at finding the reward function that is (implicitly
or explicitly) optimized by the demonstrated policy.

The approach proposed in this paper is based on the fol-
lowing observation: given a differentiable parametric repre-
sentation of the expert’s policy, that is optimal w.r.t. to some
unknown reward function RE , its policy gradient computed
according to RE is zero. So, given a parametrized represen-
tation of the reward function, we solve the IRL problem by
searching the reward function that minimizes some norm of
the policy gradient. We show how this result can be obtained
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using a model-free approach that is based only on the data
provided by the expert’s demonstrations. Contrary to most
existing algorithms, the proposed approach does not require
to repeatedly solve the “direct” MDP. Although no assump-
tion on the reward model is needed, for the case of linear
parametrization we provide an efficient algorithm for com-
puting the solution to the optimization problem. Empirical
results on the Linear-Quadratic Regulator (LQR) test case
allow to evaluate the effectiveness of the proposed method in
recovering the parameters of the reward function optimized
by the expert both when the expert’s policy is known and
when it has to be estimated from demonstrated trajectories.
Comparisons with the state-of-the-art is performed on the
well-known mountain-car domain.

Preliminaries

A Markov Decision process without reward MDP\R is de-
fined by M = 〈S,A,P, γ,D〉, where S is the state space,
A is the action space, P is a Markovian transition model
where P(s′|s, a) defines the transition density between state
s and s′ under action a, γ ∈ [0, 1) is the discount factor, and
D is the distribution of the initial state. A stochastic policy
is defined by a density distribution π(·; s) that specifies for
each state s the density distribution over the action space A.

We observe the behavior of an expert that follows a pol-
icy πE that is optimal w.r.t. some reward function RE . We
assume that RE can be represented through a linear or non-
linear function R(s, a;ω), where ω ∈ R

q .
We consider infinite horizon problems where the future

rewards are exponentially discounted with γ. Policies can
be ranked by their expected discounted reward starting from
the state distribution D:

JD (π) =

∫
S
dπμ(s)

∫
A
π(a; s)R(s, a;ω)dads,

where dπμ is the γ–discounted feature state distribution for
starting state distribution D (Sutton et al. 1999). In this work
we limit our attention to parametrized differentiable policies
π(a; s,θ), where θ ∈ R

d. Where possible we will use the
compact notation πθ .

Gradient Inverse Reinforcement Learning

In the first scenario we consider the problem of recover-
ing the reward function RE when the expert’s policy πE
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is known. Having access to the analytic formulation of the
policy, we can use gradient information to derive a new IRL
algorithm that does not need to solve the forward model. It is
worth to stress that even knowing the expert’s policy, behav-
ioral cloning may not be the best solution to IRL problems.
In particular, the reward is a more succinct and powerful in-
formation than the policy itself. The reward function can be
used to generalize the expert’s behavior to state space re-
gions not covered by the samples or to new situations. For
instance, the transition model can change and, as a conse-
quence, the optimal policy may change as well. Further-
more, behavioral cloning cannot be applied whenever the
expert demonstrates actions that cannot be executed by the
learner (think at a humanoid robot that learns by observing a
human expert). In all these cases, knowing the reward func-
tion, the optimal policy can be derived.

Standard policy gradient approaches require the policy to
be stochastic in order to get rid of the knowledge of the tran-
sition model (Sutton et al. 1999). When the expert’s policy
is deterministic the model must be available or the policy
must be forced to be stochastic1. For continuous state-action
domains the latter approach can be easily implemented by
adding zero-mean Gaussian noise. Instead the Gibbs model
is suited for discrete actions because the stochasticity can be
regulated by varying the temperature parameter.

Given a parametric (linear or non linear) reward function
R(s, a;ω), we can compute the associate policy gradient

∇θJ
(
π
E
θ ,ω

)
=

∫
S
d
πE
θ

μ (s)

∫
A

∇θπ
E
(a; s, θ)Q

πE
(s, a;ω) dads.

We assume to have an analytic description of the expert’s
policy, but we have a limited set of demonstrations of the
expert’s behavior in the environment. Let denote by D =

{τi}Ni=1 the set of expert’s trajectories. Then, the gradient
can be estimated off-line using the N trajectories and any
standard policy gradient algorithm: REINFORCE (Williams
1992), GPOMDP (Baxter and Bartlett 2001), natural gradi-
ent (Kakade 2002) or eNAC (Peters and Schaal 2008a).

If the policy performance J (π,ω) is differentiable w.r.t.
the policy parameters θ and the expert πE

θ is optimal w.r.t. a
parametrization R(s, a,ωE), the associated policy gradient
is identically equal to zero. Clearly, the expert’s policy πE

θ

is a stationary point for J
(
π,ωE

)
.

The Gradient IRL (GIRL) algorithm aims at finding a sta-
tionary point of J

(
πE
θ ,ω

)
w.r.t. the reward parameter ω ,

that is, for any x, y ≥ 1

ω
A

= argmin
ω

Cy
x

(
π
E
θ ,ω

)
= argmin

ω

1

y

∥∥∥∇θJ
(
π
E
θ ,ω

)∥∥∥y

x
. (1)

GIRL properties One of the key properties of the GIRL
algorithm is the convexity of the objective function whenever
the parametric reward model is convex w.r.t. ω .

1Recently a deterministic version of the policy gradient theorem
has been provided in (Silver et al. 2014). However, it cannot be
directly applied in this framework because it requires a stochastic
policy for exploration.

Lemma 1 (Convexity of Cy
x). Given a convex representation

of the reward function R(s, a;ω) w.r.t. the reward parame-
ters, the objective function Cy

x, with x, y ≥ 1, is convex.

This means that the optimization problem can be solved
using any standard convex optimization approach. In this
work we consider the case of squared �2–norm (x = 2 and
y = 2) and a constrained gradient descent approach.

We want to stress the fact that the only requirement for
the convexity of the optimization process is the convexity of
the parametric class of rewards (that is free to be designed).
We think that this class is big enough to be used in several
real problems. Note, no assumption is posed on the real (ex-
pert’s) reward. In this scenario (convex optimization func-
tion) there are no problems related to stationary points.

Meaning of GIRL As mentioned before, when the ex-
pert is optimal w.r.t. the parametric reward, the minimum
of Cy

x

(
πE
θ ,ω

)
is attained by the expert’s weights ωE . On

the other hand, there are several reasons for which the ex-
pert may be not optimal: I) the expert is optimizing a reward
function that cannot be represented by the chosen reward
parametrization; II) the expert exhibits a suboptimal policy;
III) the samples available to estimate the gradient are not suf-
ficient to obtain a reliable estimate. When the expert’s policy
is not optimal for any reward function in the chosen reward
class, the solution ωA represents the minimum norm gradi-
ent, i.e., the reward that induces the minimum change in the
policy parameters. In other words, GIRL tries to provide the
reward weights in the chosen space that better explain the
behavior of the expert’s policy. Note that the result ωA is
reliable as long as the norm of the gradient is small enough,
otherwise the optimal policy associated to the given reward
weights can be arbitrarily different than expert’s policy.2

Linear Reward Settings

In this section we reformulate the GIRL algorithm in
the case of linear parametrization of the reward function
R(s, a;ω). This interpretation comes from a multi-objective
optimization (MOO) view of the IRL problem. When the re-
ward is linearly parametrized we have that

J (π,ω) =

q∑
i=1

ωi E

s0 ∼ D

at ∼ π st ∼ P

[ ∞∑
t=0

γ
t
φi(st, at)

]
=

q∑
i=1

ωiJi (π)

(2)

where J (π) ∈ R
q are the unconditional feature expecta-

tions under policy π and basis functions Φ(s, a) ∈ R
q .

MOO Perspective Equation (2) can be interpreted as a
weighted sum of the objective vector J (π). This view con-
nects our approach to the search of the reward weights that
make the expert Pareto optimal. The test for locally Pareto
optimal solutions is an important aspect of many MOO al-
gorithms and has been extemv nsively studied (Fliege and

2The threshold between reliable and unreliable results is prob-
lem dependent.
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Svaiter 2000). It can be formulated as (Brown and Smith
2005), for any non–zero (convex) vector α � 0

α ∈ Null (DθJ (π)) , (3)

where Null is the (right) null space of the Jacobian
DθJ (π). The same idea was used by (Désidéri 2012) to
define the concept of Pareto–stationary solution. This def-
inition derives from the geometric interpretation of Equa-
tion (3), that is, a point is Pareto–stationary if there exists a
convex combination of the individual gradients that gener-
ates an identically zero vector:

DθJ (π)α = 0,

q∑
i=1

αi = 1, αi ≥ 0 ∀i ∈ {1, . . . , q} .

A solution that is Pareto optimal is also Pareto–
stationary (Désidéri 2012). A simple and intuitive interpre-
tation of the Pareto-stationary condition can be provided
in the case of two objectives. When the solution lies out-
side the frontier it is possible to identify a set of direc-
tions (ascent cone) that simultaneously increase all the ob-
jectives. When the solution belongs to the Pareto frontier
(i.e., ∃(convex)α : DθJ (π)α = 0), the ascent cone is
empty because any change in the parameters will cause the
decrease of at least one objective. Geometrically, the gra-
dient vectors related to the different reward features result
coplanar and with contrasting directions.

From MOO to IRL Under generic nonlinear reward
parametrizations the problem faced by GIRL is a sim-
ple unconstrained problem. In the case of linear reward
parametrization the GIRL problem is severely ill-posed
(invariant to scalar factors) and admits a trivial zero-
solution. A common solution to overcome this ambigu-
ity problem (Ng and Russell 2000; Syed and Schapire
2007) is to restrict (without loss of generality) the expert
weights ωE to belong to the unit (q − 1)-simplex Δq−1 =
{ω ∈ R

q : ‖ω‖1 = 1 ∧ ω � 0}3.
As a consequence, the convex combination α represents

the scalarization, i.e., the reward parameters. In particular,
notice that α ≡ ω coincides with the solution computed by
GIRL. This result follows easily by noticing that

∥∥∥∇θJ
(
π
E
θ ,ω

)∥∥∥
x
=

∥∥∥∥
∫
S
d
πE
θ

μ (s)

∫
A
∇θπ

E
(a; s, θ)J

π
(s, a)dads · ω

∥∥∥∥
x

=
∥∥∥DθJ

(
π
E
)
ω
∥∥∥
x
,

where Jπ(s, a) ∈ R
q is the vector of conditional feature

expectations given s0 = s and a0 = a. When the expert is
optimal, the latter equation is made identically equal to zero
by any vector that is in the (right) null space of DθJ

(
πE

)
.

Otherwise, as mentioned in the previous section, the vector
ω represents the reward function that induces the minimum
change in the policy.

3The symbol � denotes the component-wise inequality.

Geometric Interpretation We have seen the analytical in-
terpretation of the reward weights. Now, if the expert is opti-
mal w.r.t. some linear combination of the objectives, then she
lies on the Pareto frontier. Geometrically, the reward weights
are orthogonal to the hyperplane tangent to the Pareto fron-
tier (identified by the individual gradients ∇θJ i

(
πE

)
, i =

1, . . . , q). By exploiting the local information given by
the individual gradients w.r.t. the expert parametrization
DθJ

(
πE

)
we can compute the tangent hyperplane and the

associated scalarization weights. Such hyperplane can be
identified by the q points associated to the Gram matrix of
DθJ

(
πE

)
=

[∇θJ1

(
πE

)
, . . . ,∇θJq

(
πE

)]
:

G =
(
DθJ

(
πE

))T
DθJ

(
πE

)
.

If G is full rank, the q points univocally identify the tan-
gent hyperplane. Since the expert’s weights are orthogonal
to such hyperplane, they are obtained by computing the null
space of the matrix G: ω ∈ Null(G). Given the indi-
vidual gradients, the complexity of obtaining the weights is
O(q2d + q3). In the following, we will call this version of
GIRL as PGIRL (Plane GIRL).

An Analysis of Linear Reward Settings

We initially state our analysis in the case of complete knowl-
edge where we can compute every single term in exact form.
Later, we will deal with approximations.

Handling Degenerancy We have already mentioned
that the GIRL problem is ill-posed under linear reward
parametrizations. Possible sources of degenerancy of Prob-
lem (1) are, for instance, constant reward functions, dupli-
cated features or useless features. These problems are well-
known design issues that have been already solved in liter-
ature (Neu and Szepesvári 2007). The batch nature of the
GIRL problem allows to incorporate a phase of feature pre-
processing. In that phase we eliminate linearly dependent
features—including also the features that are never active
under the given policy—and constant features.

In PGIRL, this phase is carried out on the gradient matrix.
The rank of the Jacobian matrix DθJ

(
πE

)
plays a funda-

mental role in the reconstruction of the reward weights. Re-
call that the rank is limited by the minimum matrix dimen-
sion. Since we are interested in the influence of the objec-
tives on the rank, we consider the policy parameters to be
linearly independent, or more precisely, the rows of the Ja-
cobian matrix to be linearly independent. Moreover, as long
as the number d of policy parameters is greater or equal than
the number q of reward parameters (q ≤ d), any deficiency
in the rank is due to linear dependence among the objec-
tives. As a consequence, the Jacobian matrix can be reduced
in order to contain only columns that are linearly indepen-
dent (e.g., by means of echelon transformation (Nakos and
Joyner 1998)). The removed columns (objectives) do not af-
fect the reward parametrization, i.e., they are associated to
zero weights. More critical is the scenario in which q > d
because it may be not possible to obtain a unique solution.
Practically, the policy is able to influence only a subset of
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the objectives spanned by the chosen representation. Pre-
processing of the gradient or Gram matrix cannot be carried
out since the rank is upper bounded by the policy parameters
and not by the reward ones. However, this problem can be
overcome by considering additional constraints or directly
in the design phase since either q and d are usually under the
control of the user.

When the Gram matrix G is not full rank we do not have
a unique solution. In this case the null space operator re-
turns an orthonormal basis Z such that DθJ

(
πE

) · Z is
a null matrix. However, infinite vectors are spanned by the
orthonormal basis. The constraint on the �1–norm is not suf-
ficient for the selection of the reward parameters, an addi-
tional criterion is required. Several approaches have been
defined in literature. For example, in order to select so-
lution vectors that consider only a subset of reward fea-
tures, it is possible to design a sparsification approach (in
the experiments �

1
2 –norm has been used). A different ap-

proach is suggested by the field of reward shaping, where
the goal is to find the reward function that maximizes
an information criterion (Ng, Harada, and Russell 1999;
Wiewiora, Cottrell, and Elkan 2003).

Approximate Case When the state transition model is un-
known, the gradients are estimated through trajectories us-
ing some model-free approach (Peters and Schaal 2008a).
The estimation errors of the gradients imply an error in the
expert weights estimated by PGIRL. In the following theo-
rem we provide an upper bound to the �2-norm of the dif-
ference between the expert weights ωE and the weights ωA

estimated by PGIRL, given �2-norm upper bounds on the
gradient estimation errors.4

Theorem 2. Let denote with ĝi the estimated value of
∇θJ i

(
πE

)
. Under the assumption that the reward func-

tion maximized by the expert is a linear combination of ba-
sis functions Φ(s, a) with weights ωE and that, for each i,∥∥∇θJ i

(
πE

)− ĝi

∥∥
2
≤ εi:

∥∥ωE − ωA
∥∥
2
≤

√√√√√2

⎛⎝1−
√
1−

(
ε̄

ρ̄

)2
⎞⎠,

where ε̄ = maxi εi and ρ̄ is the radius of the largest (q− 1)-
dimensional ball inscribed in the convex hull of points ĝi.

Notice that the above bound is valid only when ε̄ < ρ̄, oth-
erwise the upper bound is the maximum distance between
two vectors belonging to the unit simplex, that is

√
2. As ex-

pected, when the gradients are known exactly (i.e., εi = 0
for all i), the term ε̄ is zero and consequently the upper
bound is zero. On the other hand, it is interesting to notice
that a small value of the term ε̄ is not enough to guarantee
that the weights computed by PGIRL are a good approxima-
tion of the expert ones. In fact, when ρ̄ = ε̄ the upper bound
on the weight error reaches its maximum value. Intuitively,
a small value of ρ̄ means that all the gradients are aligned

4The reader may refer to (Pirotta, Restelli, and Bascetta 2013)
for error bounds on the gradient estimate with Gaussian policies.

along some direction, thus making the problem less robust
to approximation errors.

Approximated Expert’s Policy Parameters

When the expert’s policy is unknown, to apply the same
idea presented in the previous section, we need to infer a
parametric policy model from a set of trajectories {τi}Ni=0
of length M . This problem is a standard density estima-
tion problem. Given a parametric policy model π(a; s,θ),
a parametric density estimation problem can be defined as a
maximum likelihood estimation (MLE) problem: θ̂MLE =

argmaxθ L (θ;D) = argmaxθ
∏N ·M

i=1 π(ai; si,θ).

Related Work

In the last decade, many IRL algorithms have been pro-
posed (see (Zhifei and Meng Joo 2012) for a recent sur-
vey), most of which are approaches that require the MDP
model and/or need to iteratively compute the optimal pol-
icy of the MDP obtained by considering intermediate re-
ward functions. Since an accurate solution to the IRL prob-
lem may require many iterations, when the optimal pol-
icy for the MDP cannot be efficiently computed, these IRL
approaches are not practical. For this reason, some recent
works have proposed model-free IRL approaches that do not
require to solve MDPs. The approach proposed by (Dvi-
jotham and Todorov 2010) does not need to solve many
MDPs, but it can be applied only to linearly solvable MDPs.
In (Boularias, Kober, and Peters 2011) the authors proposed
a model-free version of the Maximum Entropy IRL ap-
proach (Ziebart et al. 2008) that minimizes the relative en-
tropy between the empirical distribution of the state-action
trajectories demonstrated by the expert and their distribution
under the learned policy. Even if this approach avoids the
need of solving MDPs, it requires sampling trajectories ac-
cording to a non-expert (explorative) policy. Classification-
based approaches (SCIRL and CSI) (Klein et al. 2012;
2013) can produce near-optimal results when accurate es-
timation of the feature expectations can be computed and
heuristic versions have been proved effective even when a
few demonstrations are available. While SCIRL is limited
to linearly parametrized reward functions, CSI can deal with
nonlinear functions. However, both the algorithms require
the expert to be deterministic and need to use heuristic ap-
proaches in order to learn with the only knowledge of ex-
pert’s trajectories. Without using heuristics, they require an
additional data set for exploration of the system dynamics.
Moreover, CSI does not aim to recover the unknown expert’s
reward, but to obtain a reward for which the expert is nearly-
optimal. Finally, the main limitation of these classification-
based approaches is the assumption that the expert is opti-
mal, the suboptimality scenario was not addressed.

In (Neu and Szepesvári 2007) the authors have proposed
an IRL approach that can work even with non-linear reward
parametrizations, but it needs to estimate the optimal action-
value function. Other related works are (Levine and Koltun
2012) and (Johnson, Aghasadeghi, and Bretl 2013). Both ap-
proaches optimize an objective function related to the gradi-
ent information, but they require to know the dynamics.
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Episodes PGIRL GIRL
R RB G GB eNAC R RB G GB eNAC

10
0.031 0.020 0.020 0.021 0.037 10.1 8.4 46.1 8.0 3.2

±0.011 ±0.0011 ±0.002 ±0.002 ±0.009 ±1.5 ±1.1 ±6.2 ±1.3 ±0.3

100
0.173 0.168 0.166 0.170 0.179 74.0 70.2 249.7 50.4 32.0

±0.007 ±0.001 ±0.003 ±0.003 ±0.003 ±19.8 ±9.8 ±73.6 ±3.3 ±6.5

1000
1.664 1.655 1.655 1.683 1.640 971.4 472.7 3613.0 498.6 257.4

±0.006 ±0.011 ±0.031 ±0.005 ±0.038 ±270.0 ±25.2 ±1128.2 ±32.5 ±14.7

Table 1: Average Computational Time (s) for the generation of the results presented in Figure 2b (5D LQR).
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Figure 1: Behavior of the eNAC-PGIRL in 2D LQR. Figure
reports the planes in the objective space identified by the
PGIRL algorithm with 10, 100 and 1, 000 trajectories. This
figure represents a zoom of the frontier around the current
solution. The entire frontier is shown in the corner figure.

Experiments

This section is devoted to the empirical analysis of the pro-
posed algorithms. The first domain, a linear quadratic regu-
lator, is used to illustrate the main characteristics of the pro-
posed approach, while the mountain car domain is used to
compare it against the most related approaches.

Linear Quadratic Regulator

In this section we provide a set of experiments in the well-
known Linear Quadratic Regulator (LQR) problem (Peters
and Schaal 2008b). These experiments are meant to be a
proof of concept of our algorithm behavior. We consider
the multi-dimensional, multi-objective version of the prob-
lem provided in (Pirotta, Parisi, and Restelli 2015), the
reader may refer to it for the settings. We consider a lin-
ear parametrization of the reward function:
R(s, a;ω) = −∑q

i=1 ωi(s
TQis+ aTRia).

Exact Expert’s Policy Parameters In the first test, we fo-
cus on the PGIRL approach where the gradient directions
are computed using the eNAC algorithm (eNAC–PGIRL) in
the 2D LQR domain. The goal is to provide a geometric in-
terpretation of what the algorithm does. Figure 1 reports the
planes (lines in 2D) and the associated weights obtained by
the eNAC-PGIRL algorithm with different data set sizes. As
the number of samples increases, the accuracy of the plane
identified by the algorithm improves. With 1, 000 trajecto-
ries, the plane is almost tangent to the Pareto frontier. The
points on the planes are obtained from the Gram matrix (af-
ter a translation from the origin).

The next set of experiments deals with the accuracy and
time complexity of the proposed approaches (GIRL and
PGIRL) with different gradient estimation methods (REIN-
FORCE w/ and w/o baseline (RB, R), GPOMDP w/ and w/o
baseline (GB,G) and eNAC). We selected 5 problem dimen-
sions: (2, 5, 10, 20). For each domain we selected 20 ran-
dom expert’s weights in the unit simplex and we generated
5 different datasets. It is known that the contribute of the
baseline for the gradient estimation is important and can-
not be neglected (Peters and Schaal 2008b). Consider Fig-
ure 2a, using plain R and G the GIRL algorithm is not able
to recover the correct weights. Although the error decreases
as the number of trajectories increases, the error obtained
with 1, 000 trajectories is larger than the one obtained by
the baseline–versions (RB and GB) with only 10 trajecto-
ries. For this reason we have removed the plain gradient al-
gorithms from the other tests. Figures 2b–2d replicate the
test for increasing problem dimensions. All the algorithms
show a decreasing error as the number of samples increases,
but no significant differences can be observed. From such
results, we can conclude that, when the expert’s policy is
known, GIRL is able to recover a good approximation of the
reward function even with a few sample trajectories.

In Table 1 we show how the computational times of the
different algorithms change as a function of the number of
available trajectories. PGIRL algorithm outperforms GIRL
for any possible configuration. Recall that PGIRL has to
compute a fixed number of gradients, equal to the reward
dimensionality, while GIRL is an iterative algorithm. We
have imposed a maximum number of function evaluations
to 500 for the convex optimization algorithm. The results
show that the difference in the time complexity exceeds two
orders of magnitude.5 Although, the best choice for linear
reward parametrizations is PGIRL, GIRL has the advantage
of working even with non–linear parametrizations.

Approximated Expert’s Policy Parameters In the fol-
lowing the parameters of the expert’s policy are unknown
and we have access only to expert’s trajectories. In order
to apply GIRL and PGIRL algorithms we have to learn a
parametric policy from the data, that is, we have to solve
a MLE problem (see Section ). We consider a standard 1–
dimensional LQR problem. Under these settings the pol-
icy is a Gaussian at ∼ N (ks, σ2) and the reward is rt =
−ω1s

2
t −ω2a

2
t . The initial state is randomly selected in the

interval [−3, 3]. Since the action space is continuous and

5The performance of the GIRL algorithm depends on the im-
plementation of the convex algorithm and its parameters. Here we
have exploited NLopt library (http://ab-initio.mit.edu/nlopt).
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Figure 2: The L∞ norm between the expert’s and agent’s weights for different problem and data set dimensions. s0 = −10.
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(a) Optimal Policy (linear)
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(b) Polynomial 3-deg
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Figure 3: The L∞ norm between the expert’s and agent’s weights are reported for different problem and data set dimensions.

we have to learn stochastic policies, we limit our research
among the class of Gaussian policies with fixed diagonal
covariance equal to 2 · I . We consider three different mean
parametrizations: linear in the state (i.e., the optimal one),
with radial basis functions, and polynomial of degree 3.

Figure 3 reports the error made by the different policy
parametrizations with different numbers of expert’s trajec-
tories. Even with a 3–degree polynomial approximation the
learning process shown by the algorithm is smooth and the
error decreases with the increase of the trajectory samples
(Figure 3b). Finally, we consider the policy with 5 Gaussian
RBFs uniformly placed in [−4, 4] with an overlapping factor
of 0.25. While REINFORCE and GPOMDP with baselines
enjoy a smooth behavior, eNAC seems more affected by the
estimation error in the policy parametrization and is not able
to reduce the error even with 1, 000 trajectories.

Mountain Car

In order to compare the PGIRL algorithm against the state-
of-the-art we consider the classical mountain car prob-
lem (Sutton et al. 1999). In particular we refer to the IRL
version defined in (Klein et al. 2013) where REPS, CSI,
SCIRL and a standard classifier have been compared. The
same settings are used here except for the fact that the expert
here is stochastic. She selects a random action with proba-
bility 0.1. It is worth to notice that this change has no impact
on the other algorithms since REPS already uses a random
dataset for importance sampling, while CSI and SCIRL ex-

10 30 100 300

50

100

150

200

Number of samples

M
ea

n
ep

is
od

e
le

ng
th

PGIRL CSI

SCIRL Classifier

REPS Expert

Figure 4: Mountain Car: algorithm performances.

ploit heuristics to provide samples for unseen actions. The
expert’s policy is provided in terms of trajectories, thus, an
MLE estimate is required for PGIRL. We define the expert’s
policy as a Gibbs policy with linear approximation of the
Q-function, a first degree polynomial over the state space
is replicated for each action. The same features considered
in (Klein et al. 2013) are used to represent the reward func-
tion over the state space: evenly-spaced hand-tuned 7 × 7
RBFs. Once the reward function is reconstructed, the new
MDP is solved using LSPI (Lagoudakis and Parr 2003).

The algorithms are evaluated based on the number of steps
needed to reach the goal when starting from a random posi-
tion in the valley, see Figure 4. We can see that PGIRL (using
GPOMDP with baseline) is able to outperform the other al-
gorithms when very few samples are available and attains

1998



an intermediate value for increasing numbers of samples.
By investigating the policies and the rewards recovered by
PGIRL we have noticed that it favors lower velocities when
approaching the goal. This explains why it takes slightly
more steps than SCI and SCIRL. On the other side, CSI and
SCIRL exploit more samples than PGIRL because, as men-
tioned before, they build additional samples using heuristics.

Conclusions and Future Work

We presented GIRL a novel inverse reinforcement learning
approach that is able to recover the reward parameters by
searching for the reward function that minimizes the policy
gradient and avoids to solve the “direct” MDP. While GIRL
defines a minimum–norm problem for linear and non-linear
reward parametrizations, PGIRL method is an efficient im-
plementation of GIRL in case of linear reward functions. We
showed that, knowing the accuracy in the gradient estimates,
it is possible to derive guarantees on the error between the
recovered and the expert’s reward weights. Finally, the algo-
rithm has been evaluated on the LQR domain and compared
with the state-of-the-art on the well-known mountain car do-
main. Tests show that GIRL represents a novel approach that
efficiently and effectively solves IRL problems.
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