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Abstract

In this paper, we focus on a novel knowledge reuse scenario
where the knowledge in the source schema needs to be trans-
lated to a semantically heterogeneous target schema. We re-
fer to this task as “knowledge translation” (KT). Unlike data
translation and transfer learning, KT does not require any
data from the source or target schema. We adopt a proba-
bilistic approach to KT by representing the knowledge in the
source schema, the mapping between the source and target
schemas, and the resulting knowledge in the target schema
all as probability distributions, specially using Markov ran-
dom fields and Markov logic networks. Given the source
knowledge and mappings, we use standard learning and in-
ference algorithms for probabilistic graphical models to find
an explicit probability distribution in the target schema that
minimizes the Kullback-Leibler divergence from the implicit
distribution. This gives us a compact probabilistic model that
represents knowledge from the source schema as well as pos-
sible, respecting the uncertainty in both the source knowl-
edge and the mapping. In experiments on both propositional
and relational domains, we find that the knowledge obtained
by KT is comparable to other approaches that require data,
demonstrating that knowledge can be reused without data.

Introduction

Knowledge acquisition is a critical process for building pre-
dictive or descriptive models for many applications. When
domain expertise is available, knowledge can be constructed
manually. When enough high-quality data is available,
knowledge can be constructed automatically using data min-
ing or machine learning tools. Both approaches can be dif-
ficult and expensive, so we would prefer to reuse or transfer
knowledge from one application or system to another when-
ever possible. However, different applications or systems of-
ten have different semantics, which makes knowledge reuse
or transfer a non-trivial task.

As a motivating example, suppose a new credit card com-
pany without historical data wants to use the classification
model mined by a partner credit card company to determine
whether the applicants of the new company are qualified or
not. Since the two companies may use different schemas to
store their applicants’ data (e.g., in one schema, we have an-
nual income recorded as a numerical attribute, while in the
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other, we have salary as an attribute with discretized ranges),
we cannot simply reuse the old classifier. Due to privacy
and scalability concerns, we cannot transfer the collabora-
tive company’s data to the new schema, either. Therefore,
we want to franslate the classification model itself to the
new schema, without using any data.

In this paper, we propose knowledge translation (KT) as
a novel solution to translate knowledge across conceptu-
ally similar but semantically heterogeneous schemas or on-
tologies. For convenience, we refer to them generically as
“schemas.” As shown in the previous example, KT is useful
in situations where data translation/transfer is problematic
due to privacy or scalability concerns.

We formally define knowledge translation as the task of
converting knowledge K in source schema S to equiva-
lent knowledge K7 in target schema 7, where the corre-
spondence between the schemas is given by some mapping
M 7. In general, one schema may have concepts that are
more general or specific than the other, so an exact transla-
tion may not exist. We will therefore attempt to find the best
translation, acknowledging that the best translation may still
be a lossy approximation of the source knowledge.

We adopt a probabilistic approach to knowledge trans-
lation, in which the knowledge in the source schema, the
mapping between the source and target schemas, and the re-
sulting knowledge in the target schema are all represented
as probability distributions. This gives us a consistent math-
ematical framework for handling uncertainty at every step
in the process. This uncertainty is clearly necessary when
the source knowledge is probabilistic, but it is also neces-
sary when there is no exact mapping between the schemas,
or when the correct mapping is uncertain. We propose to
represent these probability distributions using Markov ran-
dom fields, for propositional (non-relational) domains, and
Markov logic networks, for relational domains. Given prob-
ability distributions for both the source knowledge and the
schema mapping, we can combine them to define an im-
plicit probability distribution in the target schema. Our goal
is to find an explicit probability distribution in the target
schema that is close to this implicit distribution in terms of
the Kullback-Leibler divergence.

Our main contributions are:

e We formally define the problem of knowledge translation
(KT), which allows knowledge to be reused for heteroge-



neous schemas when data is unavailable.
e We propose a novel probabilistic approach for KT.

e We implement an experimental KT system and evaluate
it on two real datasets. We compare our data-free KT ap-
proach to baselines that use data from the source or target
schema and show that we can obtain comparable accuracy
without data.

The paper is organized as follows. We first summarize
related work, such as semantic integration, distributed data
mining, and transfer learning, and discuss their connections
and distinctions with KT. We then show how Markov ran-
dom fields and Markov logic networks can represent knowl-
edge and mappings with uncertainty. Next, we present a
variant of the MRF/Markov logic learning algorithm to solve
the problem of knowledge translation. We then run experi-
ments on synthetic and real datasets. Finally, we conclude
and outline future work.

Related Work

In this section, we compare the task of knowledge transla-
tion with some related work (See Table 1).

Semantic Integration Data integration and exchange
(e.g., (Lenzerini 2002)) are the most studied areas in se-
mantic integration. The main task of data integration and
exchange is to answer queries posed in terms of the global
schema, given source databases. The standard semantics of
global query answering is to return the tuples in every pos-
sible database that is consistent with the global schema con-
straints and the mapping, i.e., the set of certain answers.

A main difference between data integration/exchange and
knowledge translation (KT) is that KT has probabilistic se-
mantics for the translation process, that is, it defines a dis-
tribution of possible worlds in the target schema, instead of
focusing only on the tuples that are in all the possible worlds
(i.e., certain answers).

Distributed Data Mining Efforts in distributed data min-
ing (DDM) (see surveys in (Park and Kargupta 2002;
Caragea et al. 2005)) have made considerable progress in
mining distributed data resources without putting data in a
centralized location. (Caragea et al. 2005) proposes a gen-
eral DDM framework with two components: one sends sta-
tistical queries to local data sources, and the other uses the
returned statistics to revise the current partial hypothesis and
generate further queries.

Heterogeneous DDM (Caragea et al. 2005) also handles
the semantic heterogeneity between the global and local
schemas, in particular those containing attributes with dif-
ferent granularities called Attribute Value Taxonomy (AVT).
Heterogeneous DDM requires local data resources and their
mappings to the global schema to translate the statistics of
queries. However, KT does not require data from either the
source or the target. Instead, KT uses mappings to translate
the generated/mined knowledge from the source directly.
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Transfer Learning Transfer learning (TL) has been a suc-
cessful approach to knowledge reuse (Pan and Yang 2010).
In traditional machine learning, only one domain and one
task is involved. When the amount of data is limited, it
is desirable to use data from related domains or tasks. As
long as the source and target data share some similarity (e.g.,
in the distribution or underlying feature representation), the
knowledge obtained from the source data can be used as a
“prior” for the target task.

Early transfer learning work focuses on the homogeneous
case in which the source and target domain have identi-
cal attributes. Recently, many other scenarios of transfer
learning have been studied, including heterogeneous transfer
learning (Yang et al. 2009), relational transfer learning (Mi-
halkova, Huynh, and Mooney 2007; Davis and Domingos
2009), and network transfer learning (Fang et al. 2015;
Ye etal. 2013). Some of these scenarios have similar settings
as knowledge translation. Heterogeneous transfer learning
also deals with different representations of the data. While
it uses an implicit mapping of two feature spaces (e.g., texts
and images through the tags on Flickr), KT uses an ex-
plicit mapping via FOL formulas. Relational transfer learn-
ing also involves relational domains and relational knowl-
edge. While it deals with two analogous domains (e.g., in
the movie and university domains, directors correspond to
professors), KT focuses on a single domain with merely dif-
ferent representations. Moreover, relational transfer learn-
ing only handles deterministic one-to-one matchings which
can be inferred with both the source and target data, while
KT does not use any target data and relies on the provided
explicit FOL mapping.

Deductive Knowledge Translation Deductive knowl-
edge translation (Dou, Qin, and Liu 2011) essentially tries
to solve the same problem, but it only considers determinis-
tic knowledge and mappings. Our new KT work can handle
knowledge and mappings with uncertainty, which is more
general than the deterministic scenario deductive knowledge
translation can handle.

Table 1: Comparisons between KT and related work. We
consider three aspects of a task: whether data is available,
what kind of knowledge patterns are supported, and what
kind of mapping is used.

Data avail. Knowledge Mapping
Data integration | Source data Query results GLAV
Hetero. DDM Source data Propositional ~AVT
Hetero. TL Source/target  any Implicit
Relational TL Target data SRL models  Matching
Deductive KT No data FOL FOL
KT No data SRL models ~ SRL models

Probabilistic Representations of Knowledge
and Mappings
To translate knowledge from one schema to another, we

must have a representation of the knowledge and the map-
pings between the two schemas. In many cases, knowl-



edge and mappings are uncertain. For example, the mined
source knowledge could be a probabilistic model, such as
a Bayesian network. Mappings between two schemas may
also be uncertain, either because a perfect alignment of the
concepts does not exist, or because there is uncertainty about
which alignment is the best. Therefore, we propose a prob-
abilistic approach to knowledge translation.

Probabilistic Representations

A log-linear model is a compact way to represent a positive
probability distribution p(X ) over a set of random variables

X = {X1,Xs,...,Xn}. In alog-linear model, the proba-
bility of any configuration x is defined as
1
p(X =)= exp (0T () ,

where ¢(x) is a vector-valued feature function, 6 is a real-
valued feature vector, and Z is a normalization constant.
Probabilistic graphical models, such as Bayesian networks
(Pearl 1988) and Markov random fields (MRFs (Kinder-
mann, Snell, and others 1980)), can be represented as log-
linear models.

The area of statistical relational learning (SRL) (Getoor
and Taskar 2007) explores representation, learning, and in-
ference of probabilistic models in relational domains. One
of the most powerful statistical relational representations
to date is Markov logic (Domingos and Lowd 2009). A
Markov logic network (MLN) consists of a set of weighted
formulas in first-order logic, {(fi, w;)}. Together with a fi-
nite set of constants, an MLN defines a probability distri-
bution over possible worlds (complete assignments of truth
values to atoms) by using the number of true groundings of
each formula as a feature in a log-linear model:

p(X =x)= %exp (Z wlnl(w)>

where n;(x) is the number of times the ith formula is satis-
fied by the possible world . Z is a normalization constant.

Representation of Knowledge

Our approach to knowledge translation requires that the
source and target knowledge are probability distributions
represented as log-linear models. In some cases, the source
knowledge mined from the data may already be represented
as a log-linear model, such as a Bayesian network used
for fault diagnosis or Markov logic network modeling ho-
mophily in a social network. In other cases, we will need to
convert the knowledge into this representation.

For mined knowledge represented as rules, including as-
sociation rules, rule sets, and decision trees (which can be
viewed as a special case of rule sets), we can construct a
feature for each rule, with a weight corresponding to the
confidence or probability of the rule. The rule weight has
a closed-form solution based on the log odds that the rule is
correct:

p(fi)
1—p(fi)

w; = log — log
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where p(f;) is the probability or confidence of the ith rule
or formula and wu(f;) is its probability under a uniform dis-
tribution. Relational rules in an ontology can similarly be
converted to a Markov logic network by attaching weights
representing their relative strengths or confidences.

For linear classifiers, such as linear support vector ma-
chines or perceptrons, we can substitute logistic regression,
a probabilistic linear classifier.

In some cases, the knowledge we wish to translate takes
the form of a conditional probability distribution, p(Y'|X),
or a predictive model that can be converted to a conditional
probability distribution. This includes decision trees, neu-
ral networks, and other classifiers used in data mining and
machine learning. The method we propose will rely on a
full joint probability distribution over all variables. We can
convert a conditional distribution into a joint distribution by
assuming some prior distribution over the evidence, p(X),
such as a uniform distribution.

Representation of Mappings

The relationships between heterogeneous schemas can be
represented as a mapping. We use probabilistic models to
represent mappings. Consistent with the probabilistic repre-
sentation of knowledge in a database schema, the attributes
are considered as random variables for non-relational do-
mains, and the attributes or relations are considered as first-
order random variables for relational domains. Let us denote
the variables in the source as X = {X7, ..., Xy} and those
in the target as X' = {X7, ..., X4, }. A mapping is the con-
ditional distribution p(X'| X).

In practice, a mapping is often decomposable to a set of
roughly independent source-to-target correspondences

{p(Cj|C:),i=1,...1}

where C; C X and C; C X' are subsets of source and
target variables respectively. For the credit card company
example, a mapping between the two schemas may include
the correspondences of “age” and “age,” “salary” and “an-
nual income,” etc. Formally, we say correspondences are in-
dependent when each group of target variables is condition-
ally independent from all other variables given the matching
source variables: C; L X, X'\ C}|C;. If the correspon-
dences are independent or approximately independent, then
we can approximate the global mapping with the local cor-
respondences:

p(x'|X) ~ [a(CllC)

We encode each correspondence as weighted proposi-
tional or first-order logical formulas, where the weight can
be estimated with the log-odds. p(X’|X) is then simply a
log-linear model with these formulas as features. For ex-
ample, we define a probabilistic source-to-target correspon-
dence as ¢gs —, g7, where gs and g7 are queries (i.e., log-
ical formulas) of source and target schemas or ontologies,
and —, has probabilistic semantics:

Pr(qrlgs) =p



Example 1 (Class correspondence). If z is a graduate stu-
dent, then x is a student and older than 24 with probability
0.9, and vice versa.
Grad(z) —¢.9 Student(z) A Age(x,y) A (y > 24)
Grad(z) <—g.9 Student(z) A Age(x,y) A (y > 24)

This can be converted to

2.2
2.2

Grad(z) — (Student(z) A Age(x,y) A (y > 24))
Grad(x) < (Student(x) A Age(x,y) A (y > 24))

Dong et al. (2007; 2009) proposed probabilistic schema
mappings to handle the uncertainty in mappings, which is
similar to our method. They define probabilistic mapping
as a set of mapping and probability pairs {o;, Pr(c;)},i =
1,---,1, where 22:1 Pr(o;) = 1. In the by-tuple seman-
tics they defined, different mappings can be applied to dif-
ferent tuples of a table, which is equavalent to the semantics
of our probabilistic mapping representation. Our representa-
tion further extends their method from one-to-one mappings
to arbitrary FOL mappings.

Knowledge Translation

In this section, we formalize the task of knowledge transla-
tion (KT) and propose a solution to this task. In KT, we are
given the source knowledge represented as a probabilistic
model p(X) = p(X3,...,X,,) and a probabilistic mapping
p(X'|X). The probabilistic model in the target schema can
be computed as

p(X') =D p(X)p(X'|1X) = > _p(X) [ p(CiICy)

ey

The goal of KT is to approximate this distribution with a
compact probabilistic model ¢(X') in the target schema
without using any source variables as latent variables. This
requirement helps make the knowledge more efficient to use
and easier to understand.

A straight-forward objective is to minimize the Kullback-
Leibler divergence

¢* = argmin Dx.. [p(X")[|g(X")]
q

= arg min — FE,[log ¢(X)] )
a

Parameter Learning The objective described in Equa-
tion 2 is typically intractable to compute exactly, due to the
expectation over p(X'), but we can approximate it using
samples. To generate a sample from p(X'), we first gen-
erate a sample from p(X) and then generate a sample of
X' from p(X'| X) conditioned on the source sample. In a
relational domain (with Markov logic or other statistical re-
lational models), each sample instance is a database, and we
need to first decide the number of constants and create a set
of ground variables with these constants.

After replacing the expectation in Equation 2 with a
sum over samples, the objective is simply the negative log-

likelihood of the samples S: >, ¢ —logq(X'). If ¢

1719

is represented as a log-linear model, then its parameters
can be optimized using standard weight learning algorithms
(e.g., (Lowd and Domingos 2007)).

Structure Learning The structure of the target knowl-
edge can also be learned from samples via standard structure
learning algorithms for Markov random fields or Markov
logic networks. An alternative approach is to use heuris-
tics to generate the structure first. For deterministic one-
to-one correspondences, the independences in the target
schema (p(X")) are the same as those in the source schema
(p(X)) up to renaming. If the correspondences are non-
deterministic, the summation in Equation 1 may lead to a
distribution p(X") with few or no independences. Repre-
senting this structure exactly with no latent variables would
require an extremely complex model with large cliques.
Nonetheless, in realistic scenarios, the correspondences in
a mapping are usually deterministic or nearly determinis-
tic. Therefore, it is reasonable to treat them as deterministic
while inferring the target structure. In this way we trade off
between the complexity and accuracy of the target knowl-
edge.

We present the pseudocode of our heuristic structure
translation in Algorithm 1. For Markov random fields, the
structure can be described as a set of cliques. For Markov
logic, we use first-order cliques instead of formulas as the
source structure, so that it is consistent with the proposi-
tional case. The first step (Line 1-8) is to remove the vari-
ables that do not have a correspondence in the target schema.
In standard variable elimination (Koller and Friedman 2009;
Poole 2003), we can remove a variable from a network
structure by merging all of its neighboring cliques into a
new clique. (Since we are only concerned with structure,
we do not need to compute the parameters of the modi-
fied network.) However, this procedure may create very
large cliques, especially in Markov logic in the relational
domains. Therefore, we approximate it by only merging
two cliques at a time. For the relational case, the merg-
ing involves a first-order unification operation (Russell and
Norvig 2003; Poole 2003). When multiple most general uni-
fiers exist, we simply include all the resulting new cliques.
In the second step (Line 9-15), we replace each variable
with the corresponding variable in the target schema. This
also involves first-order unification in the relational case. If
there are many-to-many correspondences, we may generate
multiple target cliques from one source clique.

Example 2. Given the source Markov logic network:
Grad(x) — AgeOver25(x)
AgeOver25(x) — GoodCredit(x)
and the mapping:
2.2
3.0

We first eliminate AgeOver25(x) from the source structure
because it does not occur in the mapping, and we get a new
(first-order) clique:

{Grad(z), GoodCredit(x)}

Grad(z) V Undergrad(z) ¢+ Student(x)
GoodCredit(x) <> HighCreditScore(x)



Algorithm 1 Structure Translation (MRFs or MLNs)
Input: The source schema &, source structure (proposi-
tional or first-order cliques) ® = {¢;}, and mapping M.
Output: The target structure &’ ;.
1: for each variable (or first-order predicate) P € S that
does not appear in M do

2: ®p « the set of cliques containing P

3: Remove ® p from &

4: for each pair of cliques in ®p do

5 Merge the two cliques and remove P
6: Insert the resulting clique back to ®
7: end for

8: end for

9: for each clique ¢ € ® do

10: for each variable P (or first-order atom) in ¢ do

11: Let P}, be all possible correspondences of P

12: end for

13:  Let ¢/, denote the correspondences of ¢: ¢y,
Cartesian product of all P}

14: Add ¢/, to @',

15: end for

Then we translate the clique based on the mapping, which
gives:
{Student (1‘), HighCreditScore(x)}

Experiments

To evaluate our methods, we created two knowledge trans-
lation tasks: one on a non-relational domain (NBA) and
one on a relational domain (University). In each knowledge
translation task, we have 2 different database schemas as the
source and target schemas and a dataset for each schema.
The input of a knowledge translation system is the source
knowledge and the mapping between the source and target
schema. The output of a knowledge translation system is
the target knowledge (i.e., a probabilistic model in the target
schema).

We obtained the source knowledge (i.e., a probabilistic
model in the source) by performing standard learning algo-
rithms on the source datasets, and created the probabilistic
schema mappings manually. Our approach can potentially
use automatically discovered mappings (e.g., (Rahm and
Bernstein 2001)) as well, but we use manually created map-
pings in the experiments for two reasons: first, our method
strongly relies on the quality of the mapping, so we want
to use more accurate mappings for a quantitative analysis
of the method itself; second, we use schemas with plenty
of semantic heterogeneity to make the translation problem
non-trivial, which is a difficult scenario for automatic tools
and the quality of discovered mappings is not guaranteed.

Methods and Baselines

We evaluate three different versions of our proposed proba-
bilistic knowledge translation approach described in the pre-
vious section. All of them use the source knowledge and
probabilistic mapping to generate a sampled approximation
of the distribution in the target schema, and all of them use
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these samples to learn an explicit distribution in the target
schema. The difference between them is their approach to
knowledge structure. LS-Kg (“learned structure”) learns
the structure directly from the samples, which is the most
flexible approach. TS-Kg (“translated structure”) uses a
heuristic translation of the structure from the source knowl-
edge base. ES-K g (“empty structure”) is a baseline in which
the target knowledge base is limited to a marginal distribu-
tion.

We also compare to several baselines that make use of ad-
ditional data. When there is data Dg in the source schema,
we can use the probabilistic mapping to translate it to the tar-
get schema and learn models from the translated source data.
LS-Dg and MS-Dg learn models from translated source
data, using learned and manually specified structures, re-
spectively. When there is data D in the target schema, we
can learn from this data directly. LS-D7 and MS-D7 learn
models from target data with learned and manually specified
structures respectively. These methods represent an unreal-
istic “best case” since they use data that is typically unavail-
able in knowledge translation tasks.

We evaluate our knowledge translation methods accord-
ing to two criteria: the pseudo-log-likelihood (PLL) on the
held-out target data, and PLL on the held-out franslated
source data. The advantage of the second measure is that
it controls for differences between the source and target dis-
tributions. For relational domains, we use weighted pseudo-
log-likelihood (WPLL), where for each predicate r, the PLL
of each of its groundings is weighted by the ¢, = 1/g,,
where g, is the number of its groundings.

Non-Relational Domain (NBA)

We collected information on basketball players in the Na-
tional Basketball Association (NBA) from two websites, the
NBA official website nba (as the source schema) and the
Yahoo NBA website yahoo (as the target schema). The
schemas of these two datasets both have the name, height,
weight, position and team of each player. In these schemas,
the values of position have a different granularity. Also,
in nba, we discretize height and weight into 5 equal-width
ranges. In yahoo, we discretize them into 5 equal-frequency
ranges (in order to make the mapping more challenging).
The correspondences of these attributes are originally unit
conversion formulas, e.g., h’ = h x 39.37. After we dis-
cretize these attributes, we calculate the correspondence dis-
tribution of the ranges by making a simple assumption that
each value range is uniformly distributed, e.g.,

p(K € (73.5,76.5)|h € (1.858,1.966]) = 0.706

We used the Libra Toolkit' (Lowd and Rooshenas 2015)
for creating the source knowledge and for performing the
learning and inference subroutines required by the different
knowledge translation approaches. We first left out 1/5 of
the data instances in the source and target dataset as the test-
ing sets. For the remaining source dataset, we used the deci-
sion tree structure learning (DTSL) (Lowd and Davis 2014)
to learn a Markov random field as the source knowledge.

"http://libra.cs.uoregon.edu/
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Figure 1: PLL for KT methods and baselines on target data
(left) and translated source data (right) in the NBA domain.

We used standard 4-fold cross-validation to determine the
parameters of the learning algorithm. The parameters in-
clude &, prior, and mincount for decision tree learning, and
I, for weight learning. The final source MRF have about 100
conjunctive features, with the maximum length of 7.

We use Gibbs sampling for the sampling algorithm in the
knowledge translation approaches. For LS-K g and TS-Kg,
we draw NN samples from the source knowledge probability
distribution. We then use the probabilistic mapping to draw
1 target sample for each source sample. For LS-Dg, sup-
pose we have Ng instances in the source dataset. We use
the probabilistic mapping to draw N/Ng target samples for
each source instance, such that the total number of target
instances is also V.

LS-Kg and TS-Kg both perform weight learning with
an [y prior. For structure translation with TS-Kg, we only
translate features for which the absolute value of the weight
is greater than a threshold 6. These two parameters are tuned
with cross-validation over a partition of the samples.

Figures 1 shows learning curves comparing our methods
to the baselines. We see that translated knowledge (LS-Kg
and TS-Kg) is as accurate as knowledge learned from trans-
lated source data (LS-Dg) on both the target data and the
translated source data. This confirms that KT can be as ac-
curate as data translation, but with the advantage of not re-
quiring any data. We do not see a large difference between
learning the structure (LS-Kg) and heuristically translating
the structure (TS-Kg). As expected, the model learned di-
rectly on the target data (LS-Dy) has the best PLL on the
target data, since it observes the target distribution directly.

Relational Domain (University)

We use the UW-CSE dataset’ and the UO dataset which we
collected from the Department of Computer Science of the
University of Oregon. The UW-CSE dataset was introduced
by Richardson and Domingos (Richardson and Domingos
2006) and is widely used in statistical relational learning re-
search. In this University domain, we have concepts such as
persons, courses, and publications; attributes such as PhD
student stage and course level; and relations such as ad-
vise, teach, and author. The schemas of the two databases
differ in their granularities of concepts and attribute val-
ues. For example, UW-CSE graduate courses are marked
as level 500, while U0 has both graduate courses at level
600 and combined undergraduate/graduate courses at level

*http://alchemy.cs.washington.edu/data/uw-cse/.
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Table 2: Evaluation on the target dataset (left) and translated
source dataset (right) for the university domain. N/A means
that structure learning takes more than 1 day.

Method WPLL on target WPLL on source

# Samples 1 2 5 1 2 5
ES-Ks -3.77  -3.76  -3.83 || -3.54 344 -3.39
LS-Kg | -12.07 -3.82 -348 || -9.19 -3.72 -1.51
TS-Kg -2.51 280 -1.79 || -2.05 -2.10 -0.97
LS-Dg -3.70  -3.01 N/A | -1.23 -123 N/A
MS-Dg -1.94  -191 -1.76 || -1.22 -093 -0.61
LS-Dr -1.33
MS-Dr -1.18

4/500. Our methods in this relational domain are similar to
those in the non-relational domain. We use Alchemy? for
learning and inference in Markov logic networks. We obtain
the source knowledge by manually creating formulas in the
source schema and then using the source data to learn the
weights. We have about 100 formulas and most of them are
clauses with 2 literals.

We use MC-SAT (Poon and Domingos 2006) as the sam-
pling algorithm for these experiments. Since the behavior of
a Markov logic network is highly sensitive to the number of
constants, we want to keep the number of constants similar
to the original dataset from which the model is learned. We
set the number of constants of each type to be the average
number over all training databases, multiplied by a scalar
% for more efficient inference. For methods based on Kg,
we draw N samples from the source distribution and 1 tar-
get sample from each source sample and the mapping. For
methods based on Dg, we draw N samples based on the
mapping. Here N does not have to be large, because each
sample instance of a relational domain is itself a database.
We set N to 1, 2 and 5 in our experiments. We set the [y
prior for weight learning to 10, based on cross-validation
over samples.

The results are shown in Table 2. In general, learning
MLN structure (LS-Kg and LS-Dg) did not work as well
as their counterparts with translated or manually specified
structures (TS-Kg and MS-Dg). From a single sample, the
translated source data and manually specified structure (MS-
Dg) were more effective than knowledge translation with
translated structure (TS-Kg). However, as we increase the
number of samples, the performance of TS-Kg improves
substantially. With 5 samples, the performance of TS-Kg
becomes competitive with that of MS-Dg, again demon-
strating that knowledge translation can achieve comparable
results to data translation but without data. When evaluated
on translated source data, TS-Kg shows the same trend of
improving with the number of samples, but its performance
with 5 relational samples is slightly worse than MS-Dyg.

Conclusion

Knowledge translation is an important task towards knowl-
edge reuse where the knowledge in the source schema

*http://alchemy.cs.washington.edu/alchemy1.html



needs to be translated to a semantically heterogeneous tar-
get schema. Different from data integration and transfer
learning, knowledge translation focuses on the scenario that
the data may not be available in both the source and tar-
get. We propose a novel probabilistic approach for knowl-
edge translation by combining probabilistic graphical mod-
els with schema mappings. We have implemented an exper-
imental knowledge translation system and evaluated it on
two real datasets for different prediction tasks. The results
and comparison with baselines show that our approach can
obtain comparable accuracy without data.

The proposed log-linear models, such as Markov random
fields and Markov logic networks, already cover most of
common types of knowledge used in data mining. In the
future work, we will extend our approach to the knowledge
types which are harder to represent as log-linear models,
such as SVMs and nearest neighbor classifiers. It might re-
quire a specialized probabilistic representation.
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