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Abstract

Stochastic gradient descent (SGD) and its variants have be-
come more and more popular in machine learning due to
their efficiency and effectiveness. To handle large-scale prob-
lems, researchers have recently proposed several parallel
SGD methods for multicore systems. However, existing par-
allel SGD methods cannot achieve satisfactory performance
in real applications. In this paper, we propose a fast asyn-
chronous parallel SGD method, called AsySVRG, by design-
ing an asynchronous strategy to parallelize the recently pro-
posed SGD variant called stochastic variance reduced gradi-
ent (SVRG). AsySVRG adopts a lock-free strategy which is
more efficient than other strategies with locks. Furthermore,
we theoretically prove that AsySVRG is convergent with a
linear convergence rate. Both theoretical and empirical re-
sults show that AsySVRG can outperform existing state-of-
the-art parallel SGD methods like Hogwild! in terms of con-
vergence rate and computation cost.

Introduction

Assume we have a set of labeled instances
{(xi, yi)|i = 1, . . . , n}, where xi ∈ R

d is the feature
vector for instance i, d is the feature size and yi ∈ {1,−1}
is the class label of xi. In machine learning, we often
need to solve the following regularized empirical risk
minimization problem:

min
w

1

n

n∑
i=1

fi(w), (1)

where w is the parameter to learn, fi(w) is the loss func-
tion defined on instance i which is often with a regulariza-
tion term to avoid overfitting. For example, fi(w) can be
log(1 + e−yix

T
i w) + λ

2 ‖w‖2 which is known as the logistic
loss plus a regularization term, or max

{
0, 1− yix

T
i w

}
+

λ
2 ‖w‖2 which is known as the regularized hinge loss in sup-
port vector machine (SVM). Besides λ

2 ‖w‖2, the regular-
ization term can also be λ ‖w‖1 or some other forms.

Due to their efficiency and effectiveness, stochastic gra-
dient descent (SGD) and its variants (Xiao 2009; Duchi and
Singer 2009; Roux, Schmidt, and Bach 2012; Johnson and
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Zhang 2013; Mairal 2013; Shalev-Shwartz and Zhang 2013;
Liu et al. 2014; Nitanda 2014; Zhang and Kwok 2014) have
recently attracted much attention to solve machine learning
problems like that in (1). Many works have proved that SGD
and its variants can outperform traditional batch learning al-
gorithms such as gradient descent or Newton methods in real
applications.

In many real-world problems, the number of instances
n is typically very large. In this case, the traditional se-
quential SGD methods might not be efficient enough to
find the optimal solution for (1). On the other hand, clus-
ters and multicore systems have become popular in recent
years. Hence, to handle large-scale problems, researchers
have recently proposed several distributed SGD methods
for clusters and parallel SGD methods for multicore sys-
tems. Although distributed SGD methods for clusters like
those in (Zinkevich, Smola, and Langford 2009; Duchi,
Agarwal, and Wainwright 2010; Zinkevich et al. 2010;
Zhang, Zheng, and T. Kwok 2015) are meaningful to han-
dle very large-scale problems, there also exist a lot of prob-
lems which can be solved by a single machine with mul-
tiple cores. Furthermore, even in distributed settings with
clusters, each machine (node) of the cluster typically have
multiple cores. Hence, how to design effective parallel SGD
methods for multicore systems has become a key issue to
solve large-scale learning problems like that in (1).

There have appeared some parallel SGD methods for mul-
ticore systems. The round-robin scheme proposed in (Zinke-
vich, Smola, and Langford 2009) tries to order the proces-
sors and then each processor update the variables in order.
Hogwild! (Recht et al. 2011) is an asynchronous approach
for parallel SGD. Experimental results in (Recht et al. 2011)
have shown that Hogwild! can outperform the round-robin
scheme in (Zinkevich, Smola, and Langford 2009). How-
ever, Hogwild! can only achieve a sub-linear convergence
rate. Hence, Hogwild! is not efficient (fast) enough to
achieve satisfactory performance. PASSCoDe (Hsieh, Yu,
and Dhillon 2015) and CoCoA (Jaggi et al. 2014) are also
asynchronous approaches for parallel SGD. However, both
of them are formulated from the dual coordinate descent (as-
cent) perspective, and hence it can only be used for prob-
lems whose dual functions can be computed. Although some
works, such as Hogwild! and PASSCoDe, have empirically
found that in some cases the lock-free strategies are much
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more efficient than other strategies with locks, no works
have theoretically proved the convergence of the lock-free
strategies. For example, both Hogwild! and PASSCoDe are
proved to be convergent under the assumption that there are
some locks to guarantee that over-writing operation would
never happen. However, both of them have not provided
theoretical guarantee for the convergence under the lock-free
case.

In this paper, we propose a fast asynchronous par-
allel SGD method, called AsySVRG, by designing an
asynchronous strategy to parallelize the recently proposed
SGD variant called stochastic variance reduced gradi-
ent (SVRG) (Johnson and Zhang 2013). The contributions
of AsySVRG can be outlined as follows:

• AsySVRG is a lock-free asynchronous parallel approach,
which means that there is no read lock or update (write)
lock in AsySVRG. Hence, AsySVRG can be expected to
be more efficient than other approaches with locks.

• Although AsySVRG is lock-free, we can still theoreti-
cally prove that it is convergent with a linear convergence
rate1, which is faster than that of Hogwild!.

• The implementation of AsySVRG is simple.

• Empirical results on real datasets show that AsySVRG
can outperform Hogwild! in terms of convergence rate
and computation cost.

Preliminary

We use f(w) to denote the objective function in (1), which
means f(w) = 1

n

∑n
i=1 fi(w). In this paper, we use ‖·‖

to denote the L2-norm ‖·‖2 and w∗ to denote the optimal
solution of the objective function.

Assumption 1. The function fi(·) (i = 1, . . . , n) in (1) is
convex and L-smooth, which means that ∃L > 0, ∀a,b,

fi(a) ≤ fi(b) +∇fi(b)
T (a− b) +

L

2
‖a− b‖2 ,

or equivalently

‖∇fi(a)−∇fi(b)‖ ≤ L ‖a− b‖ ,
where ∇fi(·) denotes the gradient of fi(·).
Assumption 2. The objective function f(·) is μ-strongly
convex, which means that ∃μ > 0, ∀a,b,

f(a) ≥ f(b) +∇f(b)T (a− b) +
μ

2
‖a− b‖2 ,

or equivalently

‖∇f(a)−∇f(b)‖ ≥ μ ‖a− b‖ .
Please note that Assumptions 1 and 2 are often satisfied by

most objective functions in machine learning models, such
as the logistic regression (LR) and linear regression with L2-
norm regularization.

1In our early work, the parallel SVRG algorithms with locks
have been proved to be convergent (Zhao and Li 2015).

Approach

Assume that we have p threads (processors) which can ac-
cess a shared memory, and w is stored in the shared memory.
Furthermore, we assume each thread has access to a shared
data structure for the vector w and has access to randomly
choose any instance i to compute the gradient ∇fi(w).

Our AsySVRG algorithm is presented in Algorithm 1. We
can find that in the tth iteration, each thread completes the
following operations:
• By using a temporary variable u0 to store wt (i.e.,

u0 = wt), all threads parallelly compute the full gradient
∇f(u0) = 1

n

∑n
i=1∇fi(u0) = 1

n

∑n
i=1∇fi(wt). As-

sume the gradients computed by thread a are denoted by
φa which is a subset of {∇fi(wt)|i = 1, . . . , n}. We have
φa

⋂
φb = ∅ if a 	= b, and

⋃p
a=1 φa = {∇fi(wt)|i =

1, . . . , n}.
• Then each thread parallelly runs an inner-loop in each

iteration of which the thread reads the current value of
u, denoted as û, from the shared memory and randomly
chooses an instance indexed by i to compute the vector

v̂ = ∇fi(û)−∇fi(u0) +∇f(u0). (2)

Then update the vector

u← u− ηv̂,

where η > 0 is a step size (or called learning rate).
Here, we use w to denote the parameter in the outer-loop,

and use u to denote the parameter in the inner-loop. Before
running the inner-loops, u will be initialized by the current
value of wt in the shared memory. After all the threads have
completed the inner-loops, we take wt+1 to be the current
value of u in the shared memory.

Algorithm 1 will degenerate to stochastic variance re-
duced gradient (SVRG) (Johnson and Zhang 2013) if there
exists only one thread (i.e., p = 1). Hence, Algorithm 1 is a
parallel version of SVRG. Furthermore, in Algorithm 1, all

Algorithm 1 AsySVRG
Initialization: p threads, initialize w0, η;
for t = 0, 1, 2, ... do

u0 = wt;
All threads parallelly compute the full gradient
∇f(u0) =

1
n

∑n
i=1∇fi(u0);

u = wt;
For each thread, do:
for m = 1 to M do

Read current value of u, denoted as û, from the
shared memory. And randomly pick up an i from
{1, . . . , n};
Compute the update vector: v̂ = ∇fi(û) −
∇fi(u0) +∇f(u0);
u← u− ηv̂;

end for
Take wt+1 to be the current value of u in the shared
memory;

end for
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threads read and write the shared memory without any locks.
Hence, Algorithm 1 is a lock-free asynchronous approach to
parallelize SVRG, which is called AsySVRG in this paper.

An Equivalent Synthetic Process

In the lock-free case, we do not use any lock whenever one
thread reads u from the shared memory or updates (writes)
u in the shared memory. Hence, the results of u seem to
be totally disordered, which makes the convergence analysis
very difficult.

In this paper, we find that there exists a synthetic pro-
cess to generate the final value of u after all threads have
completed their updates in the inner-loop of Algorithm 1.
It means that we can generate a sequence of synthetic val-
ues of u with some order to get the final u, based on which
we can prove the convergence of the lock-free AsySVRG in
Algorithm 1.

Synthetic Write (Update) Sequence

The key step in the inner-loop of Algorithm 1 is u← u−ηv̂,
which can be rewritten as follows:

u← u+Δ, (3)

where Δ = −ηv̂ is the update vector computed by each
thread.

Let u = (u(1), u(2), . . . , u(d)) with u(i) denoting the ith
element of u. Since each thread has a local count, we use
Δi,j to denote the jth update vector produced by the ith

thread (i = 1, 2, . . . , p, j = 1, 2, . . . ,M ), t(k)i,j to denote the

time that u(k) is changed by Δ
(k)
i,j . Without loss of general-

ity, we assume all threads will update the elements in u in
the order from u(1) to u(d), which can be easily implemented
by the program. Hence, we have

∀i, j, t
(1)
i,j < t

(2)
i,j < . . . < t

(d)
i,j (4)

∀i, k, l, if m < n, t
(k)
i,m < t

(l)
i,n (5)

and these {t(1)i,j }s are different from each other since u(1)

can be changed by only one thread at an absolute time.
We sort these {t(1)i,j }s in an increasing order and use
Δ0,Δ1, . . . ,Δm, . . . ,ΔM̃−1, where M̃ = p × M , to de-
note the corresponding update vectors. It is more useful that
we sort t(1)i,j than that we sort t(k)i,j (k > 1) because before

t
(1)
i,j , the update vector Δi,j has not been applied to u. Fur-

thermore, we will benefit from such a sort when we discuss
what would be read by one thread. Since we do not use any
lock, over-writing may happen when one thread is perform-
ing the update in (3). The real update vector can be written
as BmΔm, where Bm is a diagonal matrix whose diagonal
entries are 0 or 1. If Bm(k, k) = 0, then Δ

(k)
m is over-written

by other threads. If Bm(k, k) = 1, then u(k) is updated by
Δ

(k)
m successfully without over-writing. However, we do not

know what the exact Bm is. It can be seen as a random vari-
able. Then (3) can be rewritten as

u← u+BmΔm

When all the inner-loops of all threads are completed, we
can get the current u in the shared memory, which can be
presented as

u = u0 +
M̃−1∑
i=0

BiΔi (6)

According to (6) and the definition of Δm, we can define a
synthetic write (update) sequence {um} with u0 = wt, and
for m = 1 : M̃ ,

um = u0 +

m−1∑
i=0

BiΔi (7)

It is easy to see that

um+1 = um +BmΔm.

We can also find that um is the value which can be got af-
ter the update vectors Δ0, . . . ,Δm−1 have been completely
applied to u in the shared memory.

Please note that the sequence {um} is synthetic and the
whole um = (u

(1)
m , u

(2)
m , . . . , u

(d)
m ) may never occur in the

shared memory, which means that we cannot obtain any
um (m = 1, 2, . . . , M̃ − 1) or the average sum of these
um during the running of the inner-loop. What we can get is
only the final value of uM̃ after all threads have completed
their updates in the inner-loop of Algorithm 1. Hence, we
can find an equivalent synthetic update process with some
order to generate the same value as that of the disordered
lock-free update process.

Read Sequence

We use ûm to denote the parameter read from the shared
memory which is used to compute Δm by a thread. Based
on the synthetic write sequence {um}, ûm can be writ-
ten as ûm = ua(m) +

∑b(m)
i=a(m) Pm,i−a(m)Δi. Here,

a(m) < m denotes some time point when the update vec-
tors Δ0, . . . ,Δa(m)−1 have been completely applied to u
in the shared memory. {Pm,i−a(m)} are diagonal matrices
whose diagonal entries are 0 or 1. b(m) ≥ a(m) denotes
another time point.

∑b(m)
i=a(m) Pm,i−a(m)Δi means that be-

sides ua(m), ûm also includes some other new update vec-
tors from time point a(m) to b(m). According to the defini-
tion of Δi, all {Δi} (i ≥ m) have not been applied to u at
the time point when one thread gets ûm. Then, we can set
b(m) < m. Hence, we can reformulate ûm as

ûm = ua(m) +

m−1∑
i=a(m)

Pm,i−a(m)Δi. (8)

The matrix Pm,i−a(m) means that ûm may read some
components of these new {Δi} (a(m) ≤ i < m), including
those which might be over-written by some other threads. It
can also be seen as a random variable. Pm,i−a(m) and Bi

are not necessary to be equal to each other.
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An Illustrative Example

We give a lock-free example to illustrate the above synthetic
process. Assume u = (1, 1) is stored in the shared mem-
ory. There are three threads which we use Ta, Tb and Tc to
denote. The task of Ta is to add 1 on each component of u,
the task of Tb is to add 0.1 on each component of u, and the
task of Tc is to read u from the shared memory. If the final
result of u = (2, 2.1), one of the possible update sequences
of u can be presented as follows:

Time u
Time 0 (1, 1)
Time 1 (1.1, 1)
Time 2 (2, 1)
Time 3 (2, 2)
Time 4 (2, 2.1)

It is easy to see that over-writing happens at Time 2. At
Time 1, Tb is faster then Ta. At Time 3, Ta is faster than Tb.
Then we can define

u0 = (1, 1)

u1 = u0 +B0Δ0 = (1, 1.1)

u2 = u1 +B1Δ1 = (2, 2.1)

where
Δ0 = (0.1, 0.1)T , Δ1 = (1, 1)T ,

and

B0 =

(
0 0
0 1

)
, B1 =

(
1 0
0 1

)
.

We can find that the whole u1 = (1, 1.1) never occurs in
the shared memory, which means that it is synthetic. The
result of Tc can be any u at Time 0, Time 1, . . ., Time 4,
and even some other value such as (1.1, 2.1). The u at Time
1 can also be read by Tc although the u(0) written by Tb
at Time 1 was over-written by Ta. It is easy to verify that
any result of Tc can be presented as the format of (8). For
example, if Tc reads the u = (1.1, 2.1), then the read value
can be written as:

(1.1, 2.1) = u0 +P0Δ0 +P1Δ1

where

P0 =

(
1 0
0 1

)
, P1 =

(
0 0
0 1

)
.

Convergence Analysis

In this section, we will focus on the convergence analysis for
the lock-free AsySVRG. Let v̂i,j denote the jth stochastic
gradient produced by the ith thread (i = 1, 2, . . . , p, j =
1, 2, . . . ,M ), then Δi,j = −ηv̂i,j . We can also give an
order of these v̂i,j and define a synthetic sequence {um}
according to the discussion in the above section:

u0 = wt,

um+1 = um − ηBmv̂m. (9)

In (9), the stochastic gradient v̂m = ∇fim(ûm) −
∇fim(u0)+∇f(u0), where ûm is got from the shared mem-
ory by the thread which computes v̂m and im is the random

index of the instance chosen by this thread. Bm is a diagonal
matrix whose diagonal entries are 0 or 1.

To get our convergence result, we give some assumptions
and definitions.

Assumption 3. (Bound delay assumption)
0 ≤ m− a(m) ≤ τ .

Assumption 4. The conditional expectation of Bm on um

and ûm is strictly positive definite, i.e., E[Bm|um, ûm] =
B � 0 with the minimum eigenvalue α > 0.

Assumption 5. (Dependence assumption) Bm and im are
conditional independent on um and ûm, where im is the
index of the randomly chosen instance.

Assumption 3 means that when one thread gets the ûm,
at least Δ0,Δ1, . . . ,Δm−τ−1 have been completely ap-
plied (updated) to u. The τ is a parameter for bound delay.
In real applications, we cannot control the bound delay since
we do not have any lock. In our experiments of logistic re-
gression, we find that we do not need the bound delay. The
phenomenon can be explained as that our threads are stable
and the process of computing full gradient can be seen as a
“delay”, although such a “delay” is relatively large.

According to the definition of um and ûm, both of them
are determined by these random variables Bl,Δl, il (l ≤
m − 1) and {Pm,j} (0 ≤ j < m − a(m)). So we can take
conditional expectation about Bm on um and ûm, which is
E[Bm|um, ûm] = B in Assumption 4. Since Bm is a diago-
nal positive semi-definite matrix, then the expectation of Bm

is still a diagonal positive semi-definite matrix. Assump-
tion 4 only needs B to be a strictly positive definite matrix,
which means that the minimum eigenvalue of B is strictly
positive. According to Assumption 4, for each thread, after
it has got a û from the shared memory, the probability that
over-writing happens when updating on the kth component
of u is 1 − B(k, k). If one of the eigenvalues of B is zero,
it means that over-writing always happens on that compo-
nent of u, which is not common. Hence, Assumption 4 is
reasonable.

In most modern hardware, B(k, k) is close to 1. More-
over, if we use atomic operation or update lock, B(k, k) =
1. So Assumption 5 is also reasonable since the Bm is
highly affected by the hardware but im is independent of
the hardware.

Definition 1.

pi(x) = ∇fi(x)−∇fi(u0) +∇f(u0) (10)

q(x) =
1

n

n∑
i=1

‖pi(x)‖2 (11)

According to (10) and (11), it is easy to prove that
Ei[‖pi(x)‖2] = q(x) and v̂m = pim(ûm).

In the following content, we will prove the convergence
of our algorithm. All the proofs can be found at the supple-
mentary material2.

2The supplementary material can be downloaded from http://cs.
nju.edu.cn/lwj/paper/AsySVRG sup.pdf.
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Lemma 1. ∀x,y, r > 0, i, we have

‖pi(x)‖2 − ‖pi(y)‖2 ≤ 1

r
‖pi(x)‖2 + rL2 ‖x− y‖2 .

Lemma 2. For any constant ρ > 1, we have Eq(ûm) <
ρEq(ûm+1) if we choose r and η to satisfy that

1

1− 1
r − 9r(τ + 1)L2η2

< ρ

1

1− 1
r − 9r(τ+1)L2η2(ρτ+1−1)

ρ−1

< ρ.

Lemma 3. With the assumption in Lemma 2 about r, ρ, η,
we have Eq(ûm) < ρEq(um).

Theorem 1. With Assumption 1, 2, 3, 4, 5, and taking wt+1

to be the last one of {um}, we have

Ef(wt+1)− f(w∗) ≤ (cM̃1 +
c2

1− c1
)(Ef(wt)− f(w∗)),

where c1 = 1 − αημ + c2 and c2 = η2( 8τL
3ηρ2(ρτ−1)
ρ−1 +

2L2ρ), M̃ = p ×M is the total number of iterations of the
inner-loop.

In Theorem 1, the constant c2 = O(η2). We can choose
η such that c2

1−c1
= O(η) < 1 and c1 < 1. Hence, our algo-

rithm gets a linear convergence rate with a lock-free strategy.

Experiment

We choose logistic regression (LR) with a L2-norm regular-
ization term to evaluate our AsySVRG. Hence, the f(w) is
defined as follows:

f(w) =
1

n

n∑
i=1

[
log(1 + e−yix

T
i w) +

λ

2
‖w‖2

]
.

The experiments are conducted on a server with 12 Intel
cores and 64G memory.

Dataset

Four datasets are used for evaluation. They are rcv1, real-
sim, news20, and epsilon, which can be downloaded from
the LibSVM website3. Detailed information is shown in Ta-
ble 1, where sparse means the features have many zeroes and
dense means the features have few zeroes. Since we only
consider the speedup and convergence rate on the training
data, we simply set the hyper-parameter λ = 10−4 in f(w)
for all the experiments.

Table 1: Dataset
dataset instances features memory type

rcv1 20,242 47,236 36M sparse
real-sim 72,309 20,958 90M sparse
news20 19,996 1,355,191 140M sparse
epsilon 400,000 2,000 11G dense

3http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

Baselines

Hogwild! and our AsySVRG are formulated from the pri-
mal perspective, but PASSCoDe and CoCoA are formulated
from the dual perspective. Hence, the most related work for
our AsySVRG is Hogwild!, which is chosen as the baseline
for comparison.

In particular, we compare AsySVRG with the following
four variants:
• Hogwild!-lock: The lock version of Hogwild!, which

need a lock (write-lock) when each thread is going to up-
date (write) the parameter.

• Hogwild!: The lock-free version of Hogwild!, which does
not use any lock during the whole algorithm.

• AsySVRG-lock: The lock version of AsySVRG, which
need a lock (write-lock) when each thread is going to up-
date (write) the parameter.

• AsySVRG: The lock-free version of AsySVRG, which
does not use any lock during the whole algorithm.
Please note that we do not use any lock (read-lock) when

each thread is reading parameter from the shared memory
for AsySVRG and other baselines, which means all the
threads perform inconsistent read.

We set M in Algorithm 1 to be 2n
p , where n is the number

of training instances and p is number of threads. When p =
1, the setting about M is the same as that in SVRG (John-
son and Zhang 2013). According to our theorems, the step
size should be small. However, we can also get good per-
formance with a relatively large step size in practice. For
Hogwild!, in each epoch, each thread runs n

p iterations. We
use a constant step size γ, and we set γ ← 0.9γ after every
epoch. These settings are the same as those in the experi-
ments of Hogwild! (Recht et al. 2011).

Result

Convergence Rate We get a suboptimal solution by stop-
ping the algorithms when the gap between the training loss
and the optimal solution min {f(w)} is less than 10−4. For
each epoch, our algorithm visits the whole dataset three
times and Hogwild! visits the whole dataset only once. To
make a fair comparison about the convergence rate, we study
the change of objective function value versus the number of
effective passes. One effective pass of the dataset means the
whole dataset is visited once.

Figure 1 shows the convergence rate with respect to ef-
fective passes on four datasets. Here, AsySVRG-lock-10
denotes AsySVRG-lock with 10 threads. Similar notations
are used for other variants of AsySVRG and Hogwild!. In
particular, AsySVRG-1 is actually the original non-parallel
version of SVRG (Johnson and Zhang 2013). We can find
that the convergence rate of AsySVRG and its variants is
almost linear (please note that the vertical axis is in a log
scale), which is much faster than that of Hogwild! and its
variants. Hence, the empirical results successfully verify the
correctness of our theoretical results.

There also exists another interesting phenomenon that the
curves of AsySVRG-1, AsySVRG-lock-10 and AsySVRG-
10 are close to each other. The number of effective passes
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actually measures the computation cost. Hence, these curves
mean that the corresponding methods need almost the same
computation cost to get the same objective function value.
For example, AsySVRG-1 and AsySVRG-10 need the same
computation cost on news20 dataset according to the re-
sults in Figure 1. Hence, if there does not exist any other
cost, AsySVRG-10 can be expected to be 10 times faster
than AsySVRG-1 because AsySVRG-10 has 10 threads to
parallelly (simultaneously) perform computation. However,
AsySVRG-10 typically cannot achieve the speed of 10 times
faster than AsySVRG-1 because there also exist other costs,
such as inter-thread communication cost, for multiple-thread
cases. Similarly, AsySVRG-lock-10 and AsySVRG-10 can-
not have the same speed because AsySVRG-lock-10 need
extra lock cost compared with AsySVRG-10. This will be
verified in the next section about speedup.

As mentioned above, besides the computation cost mainly
reflected by the number of effective passes, there are other
costs like communication cost and lock cost to affect the
total CPU time in the multiple-thread case. We also com-
pare the total CPU time between AsySVRG and Hogwild!
both of which are with 10 threads. Since different hard-
ware would lead to different CPU time, we use relative time
for comparison. More specifically, we assume the time that
Hogwild!-10 takes to get a sub-optimal solution with er-
ror f(w) − f(w∗) < 0.01 to be one (unit). Here, we
use f(w) − f(w∗) < 0.01 rather than f(w) − f(w∗) <
10−4 because Hogwild!-10 cannot achieve the accuracy of
f(w) − f(w∗) < 10−4 in some datasets. The convergence
result with respect to total CPU time is shown in Figure 2. It
is easy to see that AsySVRG has almost linear convergence
rate, which is much faster than Hogwild!.
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(d) epsilon

Figure 1: Convergence rate with respect to the number of
effective passes (the vertical axis is in a log scale). Please
note that in (a) and (b), the curves of AsySVRG-lock-10 and
AsySVRG-10 overlap with each other.
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(d) epsilon

Figure 2: Convergence rate with respect to CPU time (the
vertical axis is in a log scale, and the horizonal axis is the
ratio to the CPU time of Hogwild!-10 with the stopping con-
dition f(w)− f(w∗) < 0.01).

Speedup We compare between AsySVRG-lock and the
lock-free AsySVRG in terms of speedup to demonstrate the
advantage of lock-free strategy. The definition of speedup is
as follows:

speedup =
CPU time with 1 thread

CPU time with p threads
.

Here, the stopping condition is f(w) − f(w∗) < 10−4.
The speedup results are shown in Figure 3, where we can
find that our lock-free AsySVRG achieves almost a linear
speedup. However, the speedup of AsySVRG-lock is much
worse than AsySVRG. The main reason is that besides the
computation cost, AsySVRG-lock need extra lock cost com-
pared with AsySVRG.

Conclusion

In this paper, we have proposed a novel asynchronous paral-
lel SGD method with a lock-free strategy, called AsySVRG,
for multicore systems. Both theoretical and empirical results
show that AsySVRG can outperform other state-of-the-art
methods.

Future work will design asynchronous distributed SVRG
methods on clusters of multiple machines by using similar
techniques in AsySVRG.
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Figure 3: Speedup results.
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