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Abstract

In recent years, matrix completion methods have been suc-
cessfully applied to solve recommender system applications.
Most of them focus on the matrix completion problem in real
number domain, and produce continuous prediction values.
However, these methods are not appropriate in some occa-
sions where the entries of matrix are discrete values, such
as movie ratings prediction, social network relation and in-
teraction prediction, because their continuous outputs are not
probabilities and uninterpretable. In this case, an additional
step to process the continuous results with either heuristic
threshold parameters or complicated mapping is necessary,
while it is inefficient and may diverge from the optimal so-
lution. There are a few matrix completion methods working
on discrete number domain, however, they are not applicable
to sparse and large-scale data set. In this paper, we propose
a novel optimal discrete matrix completion model, which is
able to learn optimal thresholds automatically and also guar-
antees an exact low-rank structure of the target matrix. We
use stochastic gradient descent algorithm with momentum
method to optimize the new objective function and speed up
optimization. In the experiments, it is proved that our method
can predict discrete values with high accuracy, very close to
or even better than these values obtained by carefully tuned
thresholds on Movielens and YouTube data sets. Meanwhile,
our model is able to handle online data and easy to parallelize.

Introduction

In this era of Internet, people spend much more time and
energy on the internet. We watch movies and series online
through YouTube or Netflix, make friends and maintain re-
lationships online through Facebook or Twitter, place orders
and purchase products online through Yelp or Amazon, and
even meet and work online through Skype or Github. Our
traces and preferences performed on the internet are pre-
cious information and resource for these websites to im-
prove user experience and offer customized service. How-
ever, these data are always extremely sparse and new algo-
rithms are needed to process them effectively. For exam-

*To whom all correspondence should be addressed. This work
was partially supported by NSF-IIS 1117965, NSF-IIS 1302675,
NSF-IIS 1344152, NSF-DBI 1356628, NIH RO1 AG049371 at
UTA and NSF-CNS 1548078 at UR.

Copyright (© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1687

ple, in Netflix, only a small part of users tend to rate on
the movies or series they have watched, and each user just
watches and rates a few movies or series compared to the
number of items in the whole video database.

As with the example above, our task is predicting missing
elements based on a little information already known, and
it can be thought as a matrix completion problem. In matrix
completion problem, we need to infill a sparse matrix, when
only a few entries are observed. There are many methods
proposed to solve this problem, including SVD (Billsus and
Pazzani 1998), SVT (Cai, Candes, and Shen 2010), Rank-k
Matrix Recovery (Huang et al. 2013) and so on. All of these
methods hold the same assumption that the approximation
matrix has a low-rank structure.

These low-rank matrix approximation methods can be
used to solve matrix completion problems like Netflix movie
ratings prediction, and their outputs are in real number do-
main. However, continuous outputs are hard to interpret
sometimes, when the inputs of this problem are discrete val-
ues. For example, we want to know whether two users are
connected or not, 1 denotes connected and 0 means not con-
nected. A decimal number between 0 and 1, like 0.6 (which
is not a real probability), can make us confused and is hard
to interpret. The most intuitive way is to find a threshold and
project these continuous values to discrete ones. However,
this method is time consuming and may destroy the low-rank
structure of output matrix. There are methods, e.g. Robust
Discrete Matrix Completion (Huang, Nie, and Huang 2013)
solving matrix completion problem in discrete number do-
main. This method has been proved to be more effective
than those general matrix completion methods in the case
where the entries of the matrix are discrete values. However,
there are still two problems. Firstly, this method needs to go
through all the entries and discrete number domain in each
iteration, which makes it hard to process big data. Secondly,
solution via trace norm minimization may not approximate
the rank minimization well.

In this paper, we propose a new optimal discrete ma-
trix completion algorithm to solve matrix completion prob-
lem in discrete number domain. We introduce new thresh-
old variables such that we can integrate continuous matrix
completion and threshold learning in the same loss function.
We provide a novel error estimation loss for discrete ma-
trix completion to learn optimal thresholds. Instead of min-



imizing trace norm, we recover the matrix with exact rank-
k, and limits the parameter tuning within a set of integers
instead of infinite possible values. We also use stochastic
gradient descent optimization algorithm to solve our pro-
posed new objective function. Our new algorithm can be
used in online applications, and only two feature vectors are
to be updated when a new entry comes. Meanwhile, there are
many parallel stochastic gradient descent algorithms, so our
model is easy to be parallelized. We conduct experiments
on real Movielens and YouTube data sets. The empirical re-
sults show that our method outperforms seven other com-
pared methods in most cases with tuning procedure.

Related Work

In this paper, we use M € R™*™ to represent a sparse ma-
trix which contains missing values, and €2 to represent the
positions of entries which are already known. Our task is to
predict unknown entries by making use of its intrinsic struc-
ture and information. Low-rank structure has been widely
used to solve matrix completion problem, and the standard
formulation can be represented as,

H};nrank(X) s.t. Xij :M’LJ’(Z’j) eN. (1)
Even though it is easy to form and understand this formu-
lation, it’s very hard to optimize. This is an NP-hard prob-
lem and any algorithm to compute an exact solution needs
exponential time complexity (Woeginger 2003). To solve
this problem, researchers (Cai, Candes, and Shen 2010;
Candes and Recht 2009) proposed to use trace norm as a
convex approximation of the low-rank structure of a matrix.
It is also proved that under some specific conditions we can
perfectly recover most low-rank matrices from what appears
to be an incomplete set of entries. Thus, the problem (1) is
often alternatively formulated as:

min || Xo — Mol[7 +[1X]|., 2)
where || X||. denotes the trace norm (nuclear norm) of ma-
trix X. || X||. = > 04(X) and 0;(X) is a singular value of

(2
X. 7y denotes the regularization parameter, and it is used to
balance the bias of predicted matrix and its low-rank struc-
ture. An optimal continuous solution can be obtained by op-
timizing problem (2).

In recent years, many algorithms were proposed to solve
the trace norm based matrix completion problems (Srebro,
Rennie, and Jaakkola 2004; Wright et al. 2009; Koltchin-
skii et al. 2011; Ji et al. 2010; Keshavan, Montanari, and
Oh 2009; Nie, Huang, and Ding 2012; Nie et al. 2012;
2014). In (Huang et al. 2013), they proposed to constrain
the rank of the matrix explicitly and to seek a matrix with
an exact rank k. In this way, it is guaranteed that the rank of
matrix is in a specific range. These algorithms can solve con-
tinuous matrix completion problem appropriately. However,
in many applications, we need discrete results. An additional
step is needed to project continuous values to discrete num-
ber domain. Tuning threshold intuitively (especially matrix
completion is an unsupervised learning task) and projecting
continuous values to discrete values may spoil the low-rank
structure and lead to suboptimal results.
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To tackle discrete matrix completion problem, a few
methods were introduced recently. In (Huang, Nie, and
Huang 2013), authors proposed to use the ¢; norm as loss
function and explicitly imposes the discrete constraints on
prediction values in the process of matrix completion. Their
objective function is as follows:

H}}DHXQ—MQHl —l—’yHXH* s.t. XijED, 3)
where D = {cy, ..., ¢, }. However, it has to choose the best
discrete value for each entry one by one during the optimiza-
tion, which makes the time complexity of this method too
large to work on big data. It’s also known that predicted ma-
trix via trace norm is not guaranteed to be good approxima-
tion of rank minimization. To overcome these challenging
problems, we propose a novel optimal discrete matrix com-
pletion model to automatically and explicitly learn thresh-
olds.

Optimal Discrete Matrix Completion

It is difficult to combine continuous matrix completion and
threshold learning in the same loss function. To address this
challenging problem, we introduce new threshold variables.
Without loss of generality, we assume that all entries of the
discrete matrix M come from set {1,2,3,---, s}, where s
is the largest discrete number in a specific application. Be-
cause the thresholds between different two continuous dis-
crete values may not be the same, we assume the thresh-
old variables as d = {do 1,d1,2," - ,ds—1,s, ds s+1 > Where
di++1 denotes the threshold variable between ¢ and ¢ + 1.
Forz € (¢t,t+1),if £ — ¢t < d; 441, then we round z to ¢,
otherwise, ¢t + 1. We are going to design a new matrix com-
pletion model to find the prediction matrix X and optimal
thresholds d.

Firstly, we define a new penalty term of estimation error
between element M;; and predicted value X;; as:

f(Xij) = max(X;j — Mij — dn;; m;54+1,0)3
+ max(—Xi; + My; — (1 — dasy;—1,01,,),0)2
“)

If Xi; € [Mj; — 1+ dag,;—1,0m, Mij + dag,, v, 41, both
terms are O so that final penalty f(X;;) = 0. If X;; €
(—oo,M;; — 1 + dag,;—1,0,,), the first term is O and
F(Xij) = (= X5+ Mij—1+dag,-1,0,,) 3 i Xij € (Myj+
dar;, M., +1,+00), the second term is 0 and f(X;;) =
(X35 — My, — dMiijin)Q. Thus, our new penalty term
can calculate the estimation error between observed value
and predicted value.

Based on our new penalty loss, we propose the following
objective function for discrete matrix completion:

[?1‘}1(11 % Z maX(UiTVj — M;; — dMiijij+17O)2
e (i,5)€Q
+max(—U'V; + My; — 1+ dr,;—1,0m,,,0)?
S
+37(1011% + IVIIE) + %77;0 |1 — 317
st.  UeR™™ V eR™ r < min(m,n),

0<do1,di2,...,ds—1,6,dss41 < 1.

®)



In our new objective function , U € R"*™ and V' € R"*™
make final predicted matrix X = UV to be a low-rank ma-
trix with rank 7, and U;, V;; are column vectors of U and V
respectively. Thus, our new objective function utilizes rank-
k minimization to approximate rank minimization problem.
Compared to trace norm, the rank-k minimization explicitly
imposes low-rank structure can approximate rank minimiza-
tion better. The regularization term 1~(||U||% + [|[V|[%) is
used to avoid overfitting by penalizing the magnitudes of the
S

parameters. The regularization term 21 > |dy 441 — 3% is
=0

used to constrain d; ;41 around %, which is considered as the
prior of variables d; ;1. Therefore, our new discrete matrix
completion model can predict missing values and learn op-
timal thresholds simultaneously.

Optimization Algorithm

In order to solve the large-scale discrete matrix completion
problem, we use stochastic gradient descent algorithm to op-
timize our new objective function in problem (5). It receives
one entry every step, and updates corresponding vector in U
and V/, so that our algorithm is applicable to handle big data,
such as Netflix data or Yahoo Music data (Dror et al. 2012).
The number of variables is just (m + n)r + s + 1 much
smaller than mn + s + 1, thus this formulation can handle
large-scale data easily. Meanwhile, stochastic gradient de-
scent algorithm is also easy to parallelize (Recht et al. 2011;
Zhuang et al. 2013). For every entry M;;, problem (5) be-
comes:

Join, 3 max(U]'V; = Mij —da,; 541, 0)?
WV, )
+5 max (“UTV; + Mi; — 1+ dnr;_y ay,0)
i 1
+3MUlE + 57V51% )
1 1 1 1
31 (dary 41— 5) "+ 51 (dary—1,00; — 3)
st 0 <dn;,M+1,dM-1,0m; <1

(6)
According to the stochastic gradient descent strategy, for ev-
ery entry M;;, we update corresponding U;, V;, dy ¢4 re-
spectively.

olU;) (V)
U, =U,; — V=V — i ;
ol dat,; M,

A0ty Miy+1 = A,y Mo+ — NM ®)
adMij JMi+1
ol dnt,,—1,M,

dMijil’M"’j = dMij*l,]Wu’ B Mg ©)]
Qdrg,;—1,M,

where p is learning rate. The first order derivatives over each
term are as follows:

AU = max(UTVj — Myj — dag,; my50,0)Vi—
max(~UJ'Vj + M;j — 1+ dat;y_y, M55 0)Vs + Ui
(10)
al(V;
B(V;) = maX(UzTVj - M;; — d]\/[ijaMij+170)Ui_
max(=U'Vj + Myj — 1+ dar;_y v, 00 Ui +Vj
(11)
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olldng. . M,
M —maX(UiTV]- — M;j; —dy

5 = i Mi;+150)
M;j,M;;+1

1

)

3 12)

+n(dn,;, M 5+1 —

ol(dr,;;—1,M;,;)

= max(UI'V; — Myj —1+dn,.—1.0,,,0)
8d]\/1,;j—l,lwij V) ) i i
1

+n(dr;—1,0m,; — 5)- 13)

Because d; 141 € [0, 1], dy+41 is projected as:

1 if dt,t+1 >1
digr1 = dee41 if 0<deyr <1 (14)
0 it dpr <0

In the optimization procedure of stochastic gradient de-
scent, there exists a trade-off between quick convergence
and descent step size, and it is determined by learning rate
. If learning rate p is very small, the convergence of ob-
jective function value is guaranteed, while it is going to take
a long time to converge. On the other hand, if u is large,
the objective function value is very likely to diverge. In this
experiment, we use 1 = {2, where i is learned through
small data set (Bottou 2010), and & means the number of
iterations, o = 0.1 in the experiment. Besides, the stochas-
tic gradient descent algorithm is easy to converge to a local
optimum. In our experiments, we use momentum method to
avoid the local optimum, which is a commonly used imple-
mentation.

To sum up, the whole procedure to solve problem (5) is
described in Algorithm (1). It is easy to observe that for
each step, time complexity of our algorithm is just O(r).
Considering the iteration numbers k, the total time complex-
ity is O(kr). As we know, the time complexity of SVD is
O(nm?). When matrix is large-scale, our algorithm is much
faster than SVD. Moreover, because we only need one en-
try for every iteration, our algorithm can be naturally used
in online occasion. There are also many methods to par-
allelize stochastic gradient descent algorithms, e.g. HOG-
WILD! (Recht et al. 2011) and parallelized stochastic gradi-
ent descent (Zinkevich et al. 2010).

Algorithm 1 Optimal Discrete Matrix Completion

Input: M,Q € R"*™
Output: U e Rrxn, Ve Rrxm’ dt,t+1
Set: Regularization parameters: v, 77, Learning rate:
for (i,j) € 1 do
Update U; via Egs. (7) and (10).
Update V; via Eqs. (7) and (11).
Update d; ;41 via Egs. (9), (12), (13) and (14).
end for

Experimental Results

In this section, we apply our optimal discrete matrix com-
pletion method (ODMC) to two real world data sets: Movie-
Lens and YouTube data sets. Both of these two data sets are



MovieLens 100k

MovieLens 1M

Methods RMSE MAE Methods RMSE MAE
SVD 1.0134 £ 0.0039 | 0.7122 4 0.0045 SVD 0.9905 £ 0.0011 | 0.6869 £ 0.0011
SVT 1.0540 + 0.0047 | 0.7411 4+ 0.0039 SVT 0.9997 + 0.0013 | 0.6866 + 0.0013
IALM 0.9881 £ 0.0051 | 0.7042 + 0.0043 IALM 0.9571 £0.0011 | 0.6799 £ 0.0007
GROUSE 0.9998 £ 0.0096 | 0.7055 £ 0.0084 GROUSE - -
RankK 1.0037 + 0.0039 | 0.7055 4+ 0.0043 RankK 0.9442 + 0.0024 | 0.6559 + 0.0019
OPTSPACE | 0.9622 £ 0.0052 | 0.6794 + 0.0045 OPTSPACE | 0.9402 £ 0.0012 | 0.6645 4+ 0.0009
RDMC 0.9709 + 0.0075 | 0.7119 4+ 0.0082 RDMC 0.9870 £+ 0.0016 | 0.6702 £+ 0.0016
ODMC 0.9679 + 0.0076 | 0.7033 + 0.0051 ODMC 0.9371 + 0.0012 | 0.6583 + 0.0014
Table 1: MovieLens Data Set
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(a) Movielens 100k

(b) Movielens 1M

Figure 1: Movielens Data Rating Prediction.

in discrete domain. In the experiment, there are seven other
compared methods in total, including SVD, Singular Value
Thresholding (SVT) (Cai, Candes, and Shen 2010), Inex-
act Augmented Lagrange Multiplier method (IALM) (Lin,
Chen, and Ma 2010), Grassmannian Rank-One Update Sub-
space Estimation (GROUSE) (Balzano, Nowak, and Recht
2010), OPTSPACE (Keshavan and Oh 2009), Rank-k Ma-
trix Recovery (RankK) (Huang et al. 2013) and Robust Dis-
crete Matrix Completion (RDMC) (Huang, Nie, and Huang
2013).

Experiment Setup

For SVT, RDMC, RankK, RDMC methods, we use a list of
{0.01,0.1,1,10, 100} to tune the best parameters. For SVD,
GROUSE, OPTSPACE and ODMC, an exact low-rank value
should be set, and we use {5, 10, 15, 20, 25} to tune the best
rank approximation value for different matrix in the exper-
iments. At first, we randomly hide most of ground truth
data in the experiments, so that no more than 10% data are
known. In the experiments, all the entries of experiment data
sets are discrete values, so after fitting process, for meth-
ods SVD, SVT, RankK, TALM, GROUSE, OPTSPACE,
an additional threshold tuning process is needed. We tune
thresholds 6 from {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9},
and select one with best performance. For each method, we
run the same process 5 times and take the average as final
results. In the experiment, two widely used metrics are used
to evaluate these methods, namely Root Mean Square Error
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(RMSE) and Mean Absolute Error (MAE).

Rating Prediction on MovieLens Data Sets

MovieLens rating data are collected from MovieLens web-
site: https://movielens.org/. This data set are collected over
various periods of time, depending on the size of the set.
In the experiments, we use two data sets, MovieLens 100k
and MovieLens 1M, respectively. For MovieLens 100k data
set, it consists 100,000 ratings from 943 users and 1,682
movies and each user has rated at least 20 movies. In
this data set, every entry is from discrete number domain
{1,2,3,4,5}. This data set was collected through Movie-
Lens website during the seven-month period from Septem-
ber 19th, 1997 through April 22nd, 1998. MovieLens 1M
data set contains 1,000,209 anonymous ratings of approx-
imately 3,900 movies made by 6,040 MovieLens users
who joined MovieLens in 2000. Each entry is in discrete
number domain {1, 2,3, 4,5}. Please check more details at
http://grouplens.org/.

In MovieLens 100k data set, about 6% entries of the ma-
trix are rated, and 4% rated entries in Movielens 1M. We
run the same procedure 5 times and take the average as fi-
nal performance. Every time, we hold 75% of rated entries
as observed training data, and the other 25% data as testing
data.

From Table 1, we can observe that our ODMC method
works best on RMSE metric in MovieLens 1M, and is very
close to the best method on MAE metric. The accuracies of
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Figure 2: YouTube Data Relation Prediction

compared methods often degenerate after we tune thresholds
and project these outputs to discrete number domain. How-
ever, our ODMC combines the threshold tuning process and
low-rank matrix approximation process, and guarantees that
our objective function value converges to a local optimum.
In this table, it is also obvious that our model works bet-
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ter than other continuous matrix completion method except
OPTSPACE or RankK in some cases.

Figure 1 presents the RMSE metric performance of all
these methods on two MovieLens data sets. It is easy to
observe that our ODMC method is reliable in the Movie-
Lens rating prediction problem in Figure 1. Different from



the performance of continuous matrix completion methods
that fluctuate greatly when we use different thresholds, our
method’s result is consistent all the time (our method needn’t
tune the thresholds) and outperforms RDMC, the other dis-
crete matrix completion method. There are two straight lines
in this figure, which represent the outputs of RDMC and
ODMC methods. Both of them are discrete matrix comple-
tion methods, so that their outputs are consistent under dif-
ferent thresholds. From Figure 1a, we can see that the per-
formance of these two methods are nearly the same, while
in Figure 1b, our ODMC method has significant superiority

over RDMC method.

Shared Subscribers Network

Methods RMSE MAE
SVD 1.9612 + 0.1283 | 0.8966 + 0.0262
SVT 1.9266 + 0.0254 | 0.8742 + 0.0032
TALM 3.0813 = 0.0039 | 1.2094 + 0.0042
GROUSE 2.4682 +0.1777 | 1.0972 £ 0.0624
RankK 1.6137 £+ 0.0250 | 0.7206 + 0.0017
OPTSPACE | 2.1190 £ 0.1035 | 0.9309 4 0.0529
RDMC 1.6248 + 0.0248 | 0.7884 + 0.0023
ODMC 1.6206 £ 0.0155 | 0.7368 + 0.0018

Shared Favorite Videos Network

Methods RMSE MAE
SVD 2.3024 + 0.0245 | 1.5417 £ 0.0100
SVT 2.4505 +0.0047 | 1.7411 £ 0.0039
IALM 3.5360 = 0.0016 | 2.2498 + 0.0020
GROUSE 2.2716 +0.0235 | 1.7183 £ 0.0113
RankK 2.1328 + 0.0066 | 1.4071 & 0.0013
OPTSPACE | 2.5997 + 0.0061 | 1.7079 £ 0.0016
RDMC 2.2244 + 0.0019 | 1.4939 &+ 0.0037
ODMC 2.1463 £+ 0.0073 | 1.4233 £ 0.0022

Shared Subscriptions Network

Methods RMSE MAE
SVD 1.5074 + 0.0391 | 0.6777 £ 0.0143
SVT 1.5884 +0.1113 | 0.6186 £ 0.0239
TALM 2.0053 = 0.0015 | 1.0204 + 0.0014
GROUSE 1.3994 4+ 0.0375 | 0.6835 =+ 0.0059
RankK 1.1006 £ 0.0101 | 0.5055 + 0.0006
OPTSPACE | 1.6014 £ 0.0222 | 0.7522 £ 0.0046
RDMC 1.1106 & 0.0111 | 0.5916 £ 0.0017
ODMC 1.1085 £ 0.0061 | 0.5257 + 0.0032

Table 2: YouTube Data Set

Relation Prediction on YouTube Data Sets

YouTube is a video sharing site where various interactions
occur among different users. This YouTube data set (Za-
farani and Liu 2009), is crawled from YouTube website on
2008, and there are 15,088 user profiles in total and 5 differ-
ent interactions between these users, including contact net-
work, number of shared friends between two users, number
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of shared subscriptions between two users, number of shared
subscribers between two users and the number of shared fa-
vorite videos. In the experiment, we use shared subscibers
network, shared favorite videos network, and shared sub-
scriptions network. For each network data, we select 2,000
most active users, so the size of data is 2,000 x 2,000. In
shared subscribers network data, entry value is in discrete
domain ranges from 1 to 326, in shared favorite videos net-
work data, the entry value ranges from 1 to 116, and in
shared subscriptions network data, the entry value ranges
from 1 to 174. In the experiments, for each data set, we as-
sume 10% of links are known as training data and the others
are treated as testing data.

In Table 2, it is easy to see that the outputs of our ODMC
method are nearly the same as the best outputs of RankK.
Our ODMC method performs better than other continuous
matrix completion methods. However, for RankK method,
a tedious procedure to tune the threshold is needed. Mean-
while, our model outperforms the other discrete matrix com-
pletion model RDMC on both RMSE and MAE metrics.

In Figure 2, the performance of all methods under dif-
ferent thresholds are shown clearly. For SVD, SVT, IALM,
GROUSE, RankK and OPTSPACE methods, an additive
threshold tuning procedure is required to output discrete val-
ues. Different thresholds have significant influence on the
final performance of these methods. Obviously, the predic-
tion results of our ODMC method are similar or even better
than the best prediction results of these methods which need
tedious tuning. In real-world applications, we usually have
no enough data to tune these methods to achieve the best re-
sults. Thus, our new ODMC method is more suitable for real
discrete matrix completion problems.

Two straight lines in Figure 2 represent the outputs of
RDMC and ODMC methods, both of them are discrete ma-
trix completion methods. It is clear that our ODMC method
outperforms RDMC method consistently.

Conclusion

In this paper, we propose a novel optimal discrete matrix
completion method. In this method, we explicitly introduce
threshold variables in objective function, so that we can
learn optimal threshold variable between any two discrete
values automatically. In the optimization, we use stochastic
gradient descent algorithm, and for each entry, computation
complexity is only O(r). Thus, our method is able to handle
online data and large-scale data. Moreover, stochastic gradi-
ent descent algorithm is easy to be parallelized. We perform
experiments on Movielens data sets and YouTube data sets.
Empirical results show that our method outperforms seven
other compared methods with threshold tuning procedure in
most cases.
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