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Abstract

In the past decades, Spectral Clustering (SC) has become one
of the most effective clustering approaches. Although it has
been widely used, one significant drawback of SC is its ex-
pensive computation cost. Many efforts have been devoted to
accelerating SC algorithms and promising results have been
achieved. However, most of the existing algorithms rely on
the assumption that data can be stored in the computer mem-
ory. When data cannot fit in the memory, these algorithms
will suffer severe performance degradations. In order to over-
come this issue, we propose a novel sequential SC algorithm
for tackling large-scale clustering with limited computational
resources, e.g., memory. We begin with investigating an ef-
fective way of approximating the graph affinity matrix via
leveraging a bipartite graph. Then we choose a smart graph
construction and optimization strategy to avoid random ac-
cess to data. These efforts lead to an efficient SC algorithm
whose memory usage is independent of the number of in-
put data points. Extensive experiments carried out on large
datasets demonstrate that the proposed sequential SC algo-
rithm is up to a thousand times faster than the state-of-the-
arts.

Introduction

Clustering is one of the most important problems in com-
puter vision and pattern recognition. In the past decades,
spectral clustering methods, e.g., (Shi and Malik 2000;
Von Luxburg 2007; Ng et al. 2002; Zelnik-Manor and Per-
ona 2004; Yu and Shi 2003; Chang et al. 2015), which
are based on eigendecompositions over graph Laplacians of
data, have shown superior performance to traditional meth-
ods like K-Means. The effectiveness of spectral clustering
methods is mainly due to its capability of capturing nonlin-
ear cluster structures, while many other clustering methods
rely on Euclidean geometry and explicit or implicit assump-
tions of convex shapes of clusters (Yan, Huang, and Jor-
dan 2009). However, conventional spectral clustering algo-
rithms are not applicable to large-scale data because of their
quadratic computational complexity. This is mainly due to
the expensive cost of the similarity graph construction and
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the eigendecomposition computation. Given n data points
and each data point represented by a feature vector with d
dimensions, the time complexity of computing a pairwise
similarity matrix is O(n2d) and that of the worst-case eigen-
decomposition of a full graph Laplacian is O(kn2), where
k is the number of classes. Given the rapid growth in the
amount of user-generated data, such a quadratic complexity
makes SC inapplicable in handling big data encountered in
real-world problems.

Many approaches have been proposed to reduce the com-
putational cost of spectral clustering. They can be roughly
divided into two classes. The algorithms of the first class
focus on reducing the computational cost of eigendecompo-
sition. Given a similarity matrix of n data points, these algo-
rithms accelerate the eigendecomposition by faster approx-
imation approaches (Fowlkes et al. 2004; Chen et al. 2006;
Liu et al. 2007; Khoa and Chawla 2012; Liu et al. 2013b;
Zhang and Kwok 2010). Although promising results have
been achieved, the construction of the similarity matrix still
takes quadratic running time, which limits their usage. The
algorithms of the second class try to reduce the computa-
tional cost of graph construction and eigendecomposition
simultaneously by approximating the original graph (Shin-
nou and Sasaki 2008; Sakai and Imiya 2009; Yan, Huang,
and Jordan 2009; Chen and Cai 2011; Li et al. 2015). In
general, algorithms in the second class are more practical
than those in the first class since they reduce the cost of all
stages of spectral clustering. However, these algorithms are
all in-memory algorithms, which assume that all data and
intermediate results can be accessed in main memory. This
assumption significantly limits the scale of data that they can
handle.

It is a challenging research problem to efficiently han-
dle data beyond the memory capacity. In this context, we
could split the algorithm running time into two parts: 1)
time for processing data in memory; 2) time for transfer-
ring data from/to disk. Most of the previous large-scale
spectral clustering algorithms assume that the transfer time
is negligible, which makes them impractical for big data.
Other researchers try to reduce the second part by devel-
oping algorithms in distributed systems (Chen et al. 2011;
Miao et al. 2008). However, not only is writing programs on
a distributed system a challenging task, but also deploying
and tuning a distributed program require specialized skills.
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This paper aims to develop large-scale spectral cluster-
ing algorithms for ordinary users with only limited comput-
ing resources. We consider the situation that data cannot be
completely stored in memory. Therefore, it is inevitable to
swap data back and forth between memory and disk. The
key idea of our approach is to divide the entire data set into
small blocks and sequentially process each block, which can
keep the memory footprint small and the computational cost
low. Inspired by the current progress of large-scale graph
construction involved in semi-supervised learning (Liu, He,
and Chang 2010; Liu, Wang, and Chang 2012), we propose
a fast and scalable algorithm for spectral clustering named
Sequential Spectral Clustering (SeqSC). Specifically, we ap-
proximate the original similarity graph by a bipartite graph
and use two key components to drastically reduce the com-
putational time and data transfer time. The first component is
a novel sequential K-Means algorithm framework, while the
second component is a sequential eigendecomposition ap-
proach. The proposed SeqSC is able to run in close-to-linear
time with respect to the number of data points without los-
ing the clustering accuracy. This requires scanning the raw
data on disk for only a few passes. To our best knowledge,
this is the first exploration of a large-scale spectral cluster-
ing in the case with limited resources. Extensive experiments
are conducted in a real environment without enough mem-
ory for massive data, where the proposed algorithm is up to
several orders of magnitudes faster than the state-of-the-art
approaches.

Background and Notations
In this section, we will briefly introduce the notations
and the spectral clustering algorithm. Suppose X =
[x1, . . . , xn]

T ∈ R
n×d denotes the data matrix, where n is

the number of data points and d is the dimension of fea-
tures. Each data point xi ∈ R

d belongs to one of K classes
C = {c1, . . . , cK}. Given the whole dataset X , each data
point is represented as a vertex on the graph and each edge
represents the affinity relation of one pair of vertices. In
practice, the k-NN graph is usually used. Specifically, xi

and xj are connected if at least one of them is among the
k nearest neighbors in the given metric (usually Euclidean
distance). The weight of the edge between xi and xj is de-
fined as:

wij =

{
exp

(
−‖xi−xj‖

2σ2

)
, if xi and xj are connected

0, otherwise,
where σ is the bandwidth parameter. Note that while we use
Gaussian Kernel for our example, this approach is also appli-
cable to other types of kernels. Thus, W = {wij} ∈ R

n×n is
the adjacent matrix of the graph and it is a symmetric undi-
rected graph. Let D ∈ R

n×n be the degree matrix, the i-th
diagonal element of which is dii =

∑n
j=1 wij . Let L denotes

the normalize graph Laplacian matrix, then it is defined as:

L = I −D−1/2WD−1/2 (1)
The objective function of normalized spectral clustering (Ng
et al. 2002) is defined as:

min
GTG=I

Tr (GTLG), (2)

where G ∈ R
n×K is the class indicator matrix of all data.

One solution of G in Eq. (2) is the K smallest eigen vec-
tors of L. The whole process takes at least quadratic time in
terms of n, which is impractical for the large-scale problem.

Methodology

In order to address the scalability problem of SC, we pro-
pose Sequential SC (SeqSC) approach by sequentializing
the two key steps of SC: graph construction and eigen-
decomposition.

Graph Construction

As discussed above, the construction of the graph W takes
quadratic space and time because of the computation of pair-
wise distance of data points. This process is easy to sequen-
tialize. Specifically, we can keep only one sample of data
xi in the memory and then load all the other data from the
disk sequentially and compute the distances from xi to all
the other data points. This algorithm is equivalent to sequen-
tially computing each row of W . However, there are still two
problems of this approach. First of all, the time complexity
of this approach is still quadratic. Second, it requires scan-
ning the data for multiple times (usually n divided by some
constant times), which may take even longer than the com-
putation itself for large data set.

To reduce the time complexity, one must eliminate the
need of computing pairwise distances. A common way to
achieve this goal is to find a low-rank approximation to W
by using the bipartite graph. The intuition of this approach
is instead of computing direct distance between two points
xi and xj , we construct some local “station” uk within their
neighborhoods and then approximate the distance between
xi and xj by dist(xi, xj) ≈ dist(xi, ui)+dist(ui, xj). This
approximation is the distance of traveling from one point to
another through a nearby transit point uk. The number of sta-
tions should be much smaller than the data size so that the
number of distances that one need to compute is much less
than n2. Therefore, instead of computing W , we employ the
approach of anchor graph (Liu, He, and Chang 2010). Here,
a small set of anchor points U = [u1, . . . , um]T ∈ R

m×d is
used to capture the manifold structure. These anchor points
are usually chosen by running a lightweight clustering algo-
rithms such as K-Means on raw data.

With the generated points, the k-NN graph is constructed
between the raw data and the anchor points. Connections
are only allowed between raw data points and anchor points.
This constraint results in a bipartite graph between raw data
X and anchor points U . The weight of each edge is defined
as

Zij =
K(xi, uj)∑

k∈Φi
K(xi, uk)

, ∀j ∈ Φi, (3)

where K() is a given kernel function and Φi ⊂ {1 . . .m}
denotes the indexes of p nearest neighbours of xi in U .

The affinity matrix becomes W =

[
0 Z
ZT 0

]
∈

R
(n+m)×(n+m). The degree matrix becomes D =
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[
Dr 0
0 Dc

]
∈ R

(n+m)×(n+m) ,where Dr is a diagonal ma-

trix whose diagonal elements are row sums of Z and Dc

is a diagonal matrix whose diagonal elements are the col-
umn sums of Z. Since Z is by definition row normalized,
we have Dr = In, where In is the n by n identity matrix.
Let Ẑ = ZD

−1/2
c . Thus, we have transformed a unstruc-

tured ordinary graph to a bipartite graph.
Although the time complexity of distance computing is

reduced, this approach still need to go through the data set
multiple times for using K-Means to generate the anchor
points. This is still prohibitive for processing large dataset,
which dues to the fact that when the data set is too large
to hold it all in memory, the transfer time will soon occupy
most portion of the total running time.

The Proposed Sequential K-Means

Here, we propose a new approach to construct the graph,
which preserves low computational time and has low mem-
ory footprint. The core of this approach is the sequential K-
Means algorithm.

The proposed Sequential K-Means algorithm (SeqKM) is
given in Alg. 1. The basic idea of SeqKM is that we first
randomly select a small subset of data and run K-Means++
algorithm on it and then sequentially process the whole
data set using stochastic gradient descent (SGD) (Bottou
and Bengio 1995). The K-Means++ (Arthur and Vassilvit-
skii 2007) guarantees the initial centers have relatively good
quality, while the SGD further adjusts the centers by look-
ing at the whole data set. The computation of SeqKM is
O(msd + nd), where m is the number of clusters, s is the
number of samples. This is much lower than ordinary K-
Means. More importantly, it only requires scanning data at
most twice (one for random sampling and one for SGD opti-
mization). In fact, with proper data storage, sub-sampling
can be implemented without scanning the whole dataset,
then only one pass is needed.

Algorithm 1 Sequential K-Means (SeqKM)

1: Input: Number of clusters k, data set X ∈ R
n×d, sam-

ple size s
2: Output: Cluster labels of each data points, centers C

and cluster labels of all anchor points.
3: v = 0 // Per-center count
4: M = Randomly select s samples from X;
5: C = Run K-Means++ algorithm on M and get k centers
6: for i = 1 to n do
7: j = argminj ‖xi − Cj‖2 ∀j ∈ 1, . . . , k
8: v[j] = v[j] + 1
9: η = 1

v[j]

10: Cj = (1− η)Cj + ηxi

11: end for

The SeqKM can find a good balance between the qual-
ity and speed in the graph construction step, which is of
independent interest. With SeqKM, the graph construction
can be easily implemented as a sequential on-disk algo-

rithm, which eliminates the potential bottleneck of introduc-
ing high transfer time.

The Proposed Sequential Spectral Clustering

After constructing the normalized bipartite graph matrix
Ẑ ∈ R

n×m, we need to compute the left and right singular
vectors of Ẑ as shown in Eq. (4) in the clustering step. The
solution of SC are the smallest eigenvectors G of L. This is
equivalent to computing largest singular vectors of Ẑ, that
is:

svd(Ẑ) = AΣBT , (4)

where svd(·) denotes the Singular Value Decomposition
(SVD), Σ = diag(σ1, . . . , σm) ∈ R

m×m is a diago-
nal matrix with the singular values of Ẑ on its diagonal,
σ1 ≥ σ2 ≥ . . . ,≥ σm ≥ 0, A ∈ R

n×m is the left sin-
gular vectors, B ∈ R

m×m is the right singular vectors and
G = [AT , BT ]T ∈ R

(n+m)×m. Finally, we can get the clus-
ter labels of each data point by running the K-Means algo-
rithm on G.

The above approach is appealing since it reduces the com-
putational cost of spectral clustering on n data point to close
to a linear function of n. However, when the amount of data
exceeds the capacity of memory, the performance of this ap-
proach will suffer from severe degradation. This is due to the
need of swapping data back and forth between the memory
and the disk.

Fortunately, Z is a tall thin matrix and we can implement
a sequential SVD algorithm by using this fact. Note that the
right singular vectors B is also the eigenvectors of matrix
ẐT Ẑ ∈ R

m×m, which is a simple inner product of matrix
Z and can be computed sequentially as ẐT Ẑ =

∑n
i=1 z

T
i zi.

After obtaining B, A can be computed by A = ẐBΣ−1.
Hence, we can compute A sequentially by the following re-
lation:

ai = ẑiBΣ−1, (5)

where zi is the i-th row of Z and ai is the i-th row of A.

Algorithm 2 Sequential Singular Value Decomposition
(SSVD)

1: Input: Data matrix Z ∈ R
n×m, Number of singular

values/vectors k
2: Output: Singular vectors A ∈ R

n×k, B ∈ R
m×k, and

Singular Values Σ ∈ R
k×k

3: S = 0
4: for i = 1 to n do
5: S = S + zTi zi // Sequentially compute ZTZ
6: end for
7: [BΣ] = eig(S, k) // eig() is eigendecomposition
8: Σ = Σ1/2

9: R = Σ−1B
10: for i = 1 to n do
11: Ai = ziR
12: end for
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We summarize the Sequential Singular Value Decompo-
sition (SSVD) algorithm in Alg. 2. The basic idea is that we
compute the Gram Matrix ZTZ as a form of sum over data
(i.e. ZTZ =

∑
zTi zi) and obtain B and then sequentially

compute each row of A by projection. In our context, we
always have m � n. Therefore, ZTZ and B are both rel-
atively small dimensional matrix, which is time and space
efficient to compute and store.

With SeqKM and SSVD, we propose our Sequential
Spectral Clustering (SeqSC) algorithm in Alg. 3. In SSC, we
also perform the graph construction step and normalization
step sequentially. At each time step, we only need one small
piece (e.g. one row) of data and small amount of intermedi-
ate information, the memory usage can be kept in very low
level even the data set is large. In fact, the memory usage is
independent to the size of the data set.

Algorithm 3 Sequential Spectral Clustering (SeqSC)

1: Input: Data matrix X ∈ R
n×d, Cluster number k, An-

chor points number m.
2: Output: Cluster labels of each data points, all anchor

points U and cluster labels of all anchor points.
3: Generate m anchor points U using SeqKM (Alg. 1);
4: D = 0
5: for i = 1 to n do
6: Compute zi Xi and U using Eq. (3)
7: D = D + zi
8: end for
9: D = diag(D) // Convert D to diagonal matrix

10: for i = 1 to n do
11: ẑi = ziD

−1/2 // Compute Ẑ sequentially
12: end for
13: Compute [A,Σ, B] = SSV D(Ẑ, k) // Alg. 2
14: Apply SeqKM (Alg. 1) on A to get the cluster labels

Computational Complexity and Memory Use. The pro-
posed SeqSC consists three steps: 1) Generating the anchor
points U by SeqKM clustering; 2) Constructing bipartite
graph Z; 3) Running spectral clustering. Generating the an-
chor points takes O(ksd + nmd) time. The construction of
an bipartite graph takes O(nmd) time. In the third step, the
singular decomposition takes O(nm2) time. The total run-
ning time will be O(nm2). (In fact, this complexity could be
further reduced by sub-selection technique (Li et al. 2014;
Li, Chen, and Huang 2014). We will leave this improvement
to the future work.) For memory usage, the first call of Se-
qKM in Algorithm 3 takes O((s + m)d) ≈ O(sd) space,
while the second call takes O((s + k)m) ≈ O(sm). The
graph construction and graph normalization take O(m2 +
md) space, while the SSVD step takes O(mk) space. There-
fore, the overall space complexity is O((m + d)m)). It is
obvious that the time complexity of the proposed algorithm
is much lower than the quadratic time of original spectral
clustering and comparable to other SC algorithms based on
bipartite graph, e.g. (Chen and Cai 2011), (Liu et al. 2013a).
Furthermore, the space complexity of existing SC algo-
rithms is at least O(n ∗ max(m, d)). For very large n, this
will cause performance problem because of disk swapping.

In contrast, the space complexity of the proposed method
is irrelevant to n, which can avoid the swapping problem.
These advantages will be validated in the experimental sec-
tion.

Experiments

In this section, we evaluate the proposed Sequential Spectral
Clustering (SeqSC) approach on three benchmarks datasets.
All our experiments are conducted on a desktop computer
with a 3.0GHz Intel Pentium 4 CPU and 1GB RAM, MatLab
7.14 (32bit).

Datasets and Experimental Environment

We conduct experiments on three data sets MNIST, Cov-
Type and MNIST8m. They all have ground truth for mea-
suring clustering quality.

MNIST1. This dataset consists of 70,000 images of hand-
written digits from 0 to 9. We use 784 dimension original
pixel values to represent each image.

CovType. This dataset consists of 581,012 for predicting
the forest cover type from cartographic variables. Each sam-
ple belongs to one of seven types (classes).

MNIST8m2. This data set consists of 8,100,000 images
of handwritten digits from 0 to 9 (Loosli, Canu, and Bottou
2007). The feature is the same as MNIST dataset: 784 di-
mension original pixel values. We randomly select a subset
of 500,000 samples.

Experimental Protocols

We conduct three parts of experiments to evaluate the effec-
tiveness and efficiency of our proposed algorithms. We com-
pare the SeqSC to several state-of-the-art SC algorithms. For
all compared algorithms, we download code from the au-
thors’ website and follow the parameter settings in their pa-
pers. All the code are written in MatLab. And we use the
code from (Chen et al. 2011) to sequentially generate k-NN
(k = 50) so that the out-of-memory exception will not be
triggered during the graph construction phase. For parame-
ters of our algorithm, we fix m = 200 and construct 5-NN
anchor graph. For the first part, we compare the following
algorithms:

• SC is the spectral clustering on normalized Laplacian (Ng
et al. 2002). We use the implementation that is available
online (Chen et al. 2011)3.

• KASP is proposed in (Yan, Huang, and Jordan 2009) and
is an approximate spectral clustering algorithm based on
K-Means. We implement this algorithm using MatLab for
fair comparison.

• Nyström (Fowlkes et al. 2004) uses Nyström transform to
approximate the eigenfunction problem. We use the im-
plementation that is available online (Chen et al. 2011)4.

1http://yann.lecun.com/exdb/mnist/
2http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

multiclass.html
3http://alumni.cs.ucsb.edu/∼wychen/sc.html
4http://alumni.cs.ucsb.edu/∼wychen/sc.html
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• LSC (Chen and Cai 2011) is a Landmark-based spectral
clustering algorithm. We download the MatLab code from
the authors’ website5.

• ESCG (Liu et al. 2013a) uses shortest path algorithm to
generate bipartite graph. We download the Matlab code
from the authors’ website6.

• SeqSC is the proposed algorithm described in Alg. 3.

The second part of experiments aims to evaluate the per-
formance of proposed SeqKM algorithm as a component of
SeqSC. That is we replace SeqKM with other alternatives to
evaluate the effects on the clustering accuracy and the run-
ning time. 1) SeqSC(RS) is the variation of the proposed Se-
qSC that uses random sampling to generating anchor points
instead of SeqKM. 2) SeqSC(KK) is the variation of the
proposed SeqSC that uses only the results of K-Means++ on
sub-sampling data. That means we only use traditional K-
Means on subsampling data to compute the cluster centers
and assign each data point to the closest centers (We call it
SubKM below). 3) SeqSC(SK) is the variation of the pro-
posed SeqSC that uses SeqKM to generate anchor points and
SubKM to compute the cluster labels. 4) SeqSC(KS) is the
variation of the proposed SeqSC that uses SubKM to gener-
ate anchor points and SeqKM to compute the cluster labels.
5) SeqSC(SS) is the full version of the proposed SeqSC al-
gorithm.

For data access, we split data into blocks so that we can
check the performance of transferring data. For all experi-
ments, we fix each block to contain 5000 data points. Note
that the number 5000 here is not critical as long as it con-
tains data larger than the hard disk transfer block size and
less than the memory capacity, which is a wide range. For
all batch algorithms, i.e. all of the compared algorithms, we
load all of the testing data into memory before the algorithm
is run, while for the SeqSC and all its variations, we sequen-
tially load each block when we need to compute it. We mea-
sure the clustering quality by the accuracy (Chen and Cai
2011), which compares the clustering labels generated by
the algorithms to the labels given by the data set. We also
report the running time of each algorithm using wall-clock
time. We evaluate the accuracy (Chen and Cai 2011) and
running time of all the algorithms.

Clustering Quality

The first part of our experiments is to compare our algorithm
with other state-of-the-art algorithms. We conduct this part
of experiments on two datasets: MNIST and CovType. The
results are shown in Figure 1 to Figure 3b. Since the run-
ning time of different algorithms may vary greatly, they are
shown in log-scale.

Figure 1 and Figure 2 show the compared results of all
the algorithms on MNIST dataset in terms of accuracy and
running time respectively. In Figure 1, we can observe that
LSC and SC are roughly the best among all the baseline al-
gorithms. These results are consistent with previous works

5http://www.cad.zju.edu.cn/home/dengcai/Data/
ReproduceExp.html

6http://jialu.cs.illinois.edu/
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Figure 1: Clustering accuracy comparison on MNIST
dataset. Accuracy vs #Blocks.
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Figure 2: Running time comparison on MNIST dataset. Run-
ning Time vs. #Blocks.

(Chen and Cai 2011; Liu et al. 2013a). The proposed SeqSC
has consistently outperformed all the competitors in various
data size from 1 block (n = 5000) to 14 blocks (n = 70000).
The comparison results of the running time are shown in Fig.
2. We can observe that the proposed method is the fastest of
all. We can observe that SC and ESCG take almost the same
amount of time. This is due to the fact that most of the run-
ning time is used to construct the k-NN graph. And since the
resulted graph is very sparse, the time for the eigendecom-
position in SC is relatively short (Liu et al. 2013a). The fol-
lowing ones are KASP and LSC, whose running time grows
fast as the data size grows. The running time of the Nyström
algorithm is very close to the proposed SeqSC, which are
among the fastest algorithms of all. However, as the size of
data grows, the running time Nyström increase more rapidly.
Note that although the running time of the Nyström algo-
rithm is comparable to the proposed algorithm, their accu-
racy is not, which has already been shown in Figure 1. This
is due to the fact that although running time is reduced when
Nyström uses random subset of data points to approximate
the large-scale singular value decomposition, the sampled
data points are not effective in preserving the neighboring
information of the data set. This information loss results
in the performance degradation of the Nyström algorithm.
All these results demonstrate the benefit of the proposed
method.

Figure 3a and 3b show the results on CovType dataset,
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Figure 3: Clustering Accuracy (Acc) and running time. . (a) Compared with Nyström (b) Compared with LSC and KASP.
(c)-(d) Compare different K-Means approaches; (e)-(f) Compare different number of anchor points.

which is much larger than the MNIST dataset. We omit the
results of SC and ESCG because they are too slow to be
run on dataset of this scale. In these figures, we can observe
that the proposed SeqSC still outperforms the baseline al-
gorithms. The LSC and the KASP only produce results for
part of the data due to the out-of-memory error. Although
the Nyström algorithm can produce results for all the data,
its accuracy is lower while its running time grows faster than
the proposed algorithm (Figure 3a and 3b). These results
again validate the performance and scalability of the pro-
posed algorithm.

Influence of the SeqKM

We further evaluate the performance of different variations
of the proposed algorithm on MNIST8m dataset. The results
are shown in Figure 3c. We can observe several things from
Figure 3c. Firstly, the quality of the generated anchor points
is important. The algorithms that are based on K-Means gen-
erated anchor points are much better than those based on
random generated anchor points. Secondly, SeqKM also out-
performs the SubKM in the stage of generating cluster la-
bels. This is due to the fact that SeqKM finds a good balance
between the clustering quality and performance of the pro-
posed algorithm. The SeqKM algorithm tries to find better
initialization from local data and use one pass on the whole
data set to adjust the final results, which avoid being trapped
in the local solution.

Figure 3d shows the running time comparison of different
variations of SeqSC. This result shows that under the frame-

work of our sequential clustering, the running time of every
version of SeqSC grows linearly with respect to the amount
of data. This result again validates the scalability of the pro-
posed algorithms.

Parameter Selection

The third part of our experiment evaluates the performance
of the proposed algorithm under different parameters. The
most important parameter is the number of anchor points
p, which controls the quality of the bipartite graph. We con-
duct experiments on CovType dataset of SeqSC with p varies
from 200 to 800. We can see from Figure 3e that the accu-
racy increases which p increases. Note that although the run-
ning time increases along with p, it is still linear with respect
to n. The optimal balance between running time and accu-
racy depends on computational resources at hand. Still and
all, promising results have been achieved by the proposed
algorithm even with moderate choice of parameters.

Conclusion

In this paper, we proposed a sequential spectral clustering
algorithm, named by SeqSC, for coping with large-scale
clustering. The SeqSC algorithm counts on two key compo-
nents: the proposed Sequential K-Means (SeqKM) and Se-
quential Singular Value Decomposition (SSVD) algorithms.
The benefits of the proposed SeqSC are three-fold: (1) The
proposed SeqKM algorithm extends the previous online K-
Means algorithm by adopting a better initialization, which
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can discover high-quality cluster centers in one pass; (2) the
proposed SeqKM algorithm enables the graph construction
to be executed in a sequential manner; (3) by employing
SSVD, clustering can be performed sequentially and the en-
tire time complexity is nearly linear in the number of input
data points. Such benefits make our SeqSC algorithm ac-
curate and scalable enough to tackle massive datasets. The
experimental results on three public datasets demonstrated
that the proposed SeqSC algorithm outperforms the state-
of-the-arts in large-scale clustering with up to 1000 times
acceleration.
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