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Abstract

In this paper, we present an accelerated numerical method
based on random projection for sparse linear regression. Pre-
vious studies have shown that under appropriate conditions,
gradient-based methods enjoy a geometric convergence rate
when applied to this problem. However, the time complex-
ity of evaluating the gradient is as large as O(nd), where
n is the number of data points and d is the dimensionality,
making those methods inefficient for large-scale and high-
dimensional dataset. To address this limitation, we first uti-
lize random projection to find a rank-k approximator for the
data matrix, and reduce the cost of gradient evaluation to
O(nk + dk), a significant improvement when k is much
smaller than d and n. Then, we solve the sparse linear regres-
sion problem via a proximal gradient method with a homo-
topy strategy to generate sparse intermediate solutions. Theo-
retical analysis shows that our method also achieves a global
geometric convergence rate, and moreover the sparsity of all
the intermediate solutions are well-bounded over the itera-
tions. Finally, we conduct experiments to demonstrate the ef-
ficiency of the proposed method.

Introduction

In this study, we focus on developing an efficient algo-
rithm based on random projection for sparse linear regres-
sion (Huang, Ma, and Zhang 2008), which is closely related
to sparse recovery (Becker, Bobin, and Candès 2011) and
compressed sensing(Candes and Tao 2006). Suppose we ob-
serve the data matrix X = (x1, . . . ,xn) ∈ R

d×n and the
corresponding response vector y = (y1, . . . , yn)

T ∈ R
n,

where each xi ∈ R
d is a vector representation for the i-th

observation and yi is its response value. The goal of sparse
linear regression is to find a sparse linear prediction function
f(x) = xTβ such that each yi can be well approximated by
f(xi), where β ∈ R

d is a sparse vector composed of the
model coefficients. In this work, we are interested in esti-
mating β in a special case when the dimension d of xi is
very high, which can be much larger than the sample size,
i.e. d > n, thus the problem here is under-determined.

One common approach is to learn β by solving a �1-
regularized Least-Square (�1-LS) problem, known as Lasso
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in statistics (Tibshirani 1996),

min
β∈Rd

1

2n
||y −XTβ||22 + λ||β||1 (1)

where λ is the regularization parameter that controls the
sparsity of the model. Here || · ||2 denotes the standard �2
norm for a vector, and ||β||1 =

∑d
i |βi| is the �1 norm.

�1-LS problem has been studied extensively due to its im-
portant applications in machine learning, signal processing
and statistics. Plenty of algorithms (Figueiredo, Nowak, and
Wright 2007; Kim et al. 2007; Nesterov 2013; Xiao and
Zhang 2013) have been developed for efficiently solving the
optimization problem (1). For instance, in (Xiao and Zhang
2013), the authors propose a proximal gradient homotopy
method to solve this problem by solving a sequence of op-
timization problems in form (1) with the regularization pa-
rameter λ decreasing along the sequence. They prove that
under some common assumptions, they can obtain a global
geometric convergence rate and the intermediate solutions
over the iterations are always sparse. However, despite the
provable fast convergence rates, most of these algorithms
need to compute XXTβt for gradient evaluation at each
iteration, where βt is the intermediate solution at the t-th
iteration. It costs O(nd) flops for generic dense matrix X ,
leading to a high computational cost when both n and d are
large.

In this study, we adopt the key idea in randomized ma-
trix algorithms (Mahoney 2011; Zhang et al. 2013; 2014)
to develop a novel efficient algorithm for the sparse lin-
ear regression problem, due to their high efficiency in data
intensive problems. Various of random matrix algorithms
(Drineas et al. 2004; Frieze, Kannan, and Vempala 2004;
Sarlos 2006; Drineas, Kannan, and Mahoney 2006; Drineas,
Mahoney, and Muthukrishnan 2008; Mahoney and Drineas
2009; Drineas et al. 2011; Lu et al. 2013) have been de-
veloped in these years to accelerate the corresponding al-
gorithms in large-scale data analysis. They typically con-
struct a randomized sketch of the input matrix X to down-
size the scale of the original problem. And then they solve
the downsized problem to obtain a approximate solution.
Based on the way they construct the sketch they can be
categorized into two categories roughly, i.e., random sam-
pling based methods and random projection based methods.
In random sampling based methods (Drineas, Mahoney, and
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Muthukrishnan 2008; Mahoney and Drineas 2009; Drineas
et al. 2011), the sketch consists of some columns sampled
from the columns of X according to some specific probabil-
ity distribution. While in random projection based methods,
the columns in the sketch are some linear combinations of
the columns from X . In our method, we adopt the random
projection method instead of the random sampling method,
since our problem is under-determined and sampling would
make it worse. To the best of our knowledge, it is the first at-
tempt to exploit randomization for fast solving sparse linear
regression problems.

To be precise, we develop an efficient two-phase algo-
rithm based on random projection for sparse linear regres-
sion. In phase one, we approximate X with a low rank
matrix X̂ = (QW )T by using random projection, where
Q ∈ R

n×k and W ∈ R
k×d. Thus XXTβt can be ap-

proximated by WTQTQWβt and in this way the comput-
ing cost can be reduced from O(nd) to O(dk + nk). When
k � min{n, d}, this improvement in efficiency would be
significant. If the data matrix X is low rank or approximately
low rank, which is common in real applications, the matrix
X̂ would be a good approximator. In phase two, based on
the approximate matrix X̂ , we update the vector βt in each
iteration by employing a proximal gradient method using a
homotopy strategy, which is similar to the method in (Xiao
and Zhang 2013).

After giving the rough sketch of our method, we would
like to point out the main contributions of this work below:

• We reduce the computing complexity of each iteration
from O(nd) to O(dk + nk), meanwhile the global ge-
ometric convergence rate is preserved.

• Compared to the recent well known method (Xiao and
Zhang 2013), we need to run the composite gradient map-
ping only once for each regularization parameter.

• The sparsity of the intermediate solutions in our approach
is well-bounded. The number of the nonzero entries in βt

is no more than two times of that in β∗.

Related Work

In this section, we briefly review the recent work on the op-
timization methods for �1-LS problem, the random matrix
algorithms for least square problem and low-rank matrix ap-
proximation.

Previous Algorithms for �1-LS Problem

Traditional methods (Daubechies, Defrise, and De Mol
2003; Nesterov 2013; Hale, Yin, and Zhang 2008; Wright,
Nowak, and Figueiredo 2009) developed in the past decades
for problem (1) are always based on composite gradient
mapping (Nesterov 2004) and we call them proximal gra-
dient methods. Given the current solution βt, they update
the solution by using the following rule

βt+1 = argmin
β

{f(βt) +∇f(βt)
T (β − βt)

+
Lt

2
||β − βt||22 + λ||β||1}, (2)

where f(βt) = 1
2n ||XTβt − y||22 and Lt is a parame-

ter chosen at each iteration. The major computational ef-
forts of them are used to compute the gradient ∇f(βt) =
1
nX(XTβt−y), which costs O(nd) flops for generic dense
matrix X .

Since in the under-determined case the object function is
not strongly convex, the convergence rate of the traditional
proximal gradient methods can only be O(1/T ), T is the it-
eration number. Some accelerated algorithms (Bioucas-Dias
and Figueiredo 2007; Wright, Nowak, and Figueiredo 2009;
Wen et al. 2010; Becker, Bobin, and Candès 2011) are then
proposed to improve the convergence rate to O(1/T 2) by
generating several concurrent sequences of iterates.

Recently, a proximal gradient homotopy method (Xiao
and Zhang 2013) is proposed to improve the efficiency of the
existing methods further. Its key idea is to solve a sequence
of �1-LS problem over the stages with the values of the regu-
larization parameter λ decreasing exponentially as the stage
goes on. The main benefit they get from the homotopy strat-
egy is that all the solutions along the homotopy path are
sparse, which makes the objective function strongly convex
along this path. Thus, the convergence rate can be improved
to be geometric. The limitation of this method is that the
times it updates the solution in each intermediate problem
is unknown and always more than once. (Zhang et al. 2015)
adopt this idea to compressive sensing and in their approach
they update the solution only once for each regularization
parameter. However, different from our problem, the sens-
ing matrix X in compressive sensing is pre-designed, like
sub-Gaussian random matrix. Thus, its theoretical analysis
may not be always true in our case. More importantly, the
computational complexity of each iteration is still O(nd) in
all these accelerated algorithms, which would be prohibitive
when both n and d are too large.

Random Algorithms for Least Square Problem and
Low-rank Matrix Approximation

Below we briefly introduce some random matrix algorithms
for Least Square problem and Low-rank Approximation
problem since they are closely related to the key idea of our
method and they are at the center of the recent developments.

To accelerate the existing algorithms for least square
problem

min
β∈Rd

1

2n
||y −XTβ||2, (3)

where X ∈ R
d×n,y ∈ R

n and β ∈ R
d, the researchers

(Drineas et al. 2011; Sarlos 2006) typically find an approxi-
mate solution by solving the following approximate problem

βopt = arg min
β∈Rd

1

2n
||Z(y −XTβ)||2, (4)

where Z ∈ R
l×n is the data dependent matrix, the pa-

rameter l is usually much smaller than n. Since l � n,
problem (4) has much smaller size compared to problem
(3). For random sampling based algorithms (Drineas et al.
2011), Z is a data dependent random sampling matrix con-
structed from an importance sampling distribution to cap-
ture the non-uniformity structure of X , which is defined by
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the statistical leverage scores (Mahoney and Drineas 2009).
And for random projection based algorithms (Drineas et al.
2011), it is a data-independent random projection for con-
structing the sketch and its elements are the coefficients of
the linear combinations. Recently, they show that by us-
ing random algorithm, they can find an approximate solu-
tion β̃opt in O(dn log(d/ε) + d3 log2 n

ε ) time with the er-
ror ||β̃opt − βopt||2 ≤ √

ε
(
κ(X)

√
γ−2 − 1

)||βopt||2, here
κ(X) is the conditional number of X , γ is a parameter defin-
ing the amount of the mass of y inside the column space
of XT . Compared to the cost O(nd2) of the traditional
methods for the least square problem (3), such as Cholesky
decomposition, QR decomposition and Singular Value De-
composition (SVD), they are indeed much more efficient.
Different from our problem, the least square problem they
consider is overconstrained, i.e., n > d. In addition, they do
not care about the sparsity of the solution in their problem.

In Low-rank Matrix Approximation problems, given a
low rank d × n matrix X with rank(X) = r � min{d, n},
the goal is to find a good approximation X̂ to X of rank k
with k ≤ r. As we know, we can obtain the best approxima-
tion X̂ from SVD with respect to the Frobenius norms. To
be precise, if we have the SVD of X , say X = UΣV T ,
where U = (Uk, Uk,⊥) = [u1, u2, ..., ur] ∈ R

d×r and
V = (Vk, Vk,⊥) = [v1, v2, ..., vr] ∈ R

n×r are two col-
umn orthonormal matrices and Σ = diag(Σk,Σk,⊥) =
diag(σ1, ..., σr) ∈ R

r×r, σ1 ≥ σ2 ≥ ... ≥ σr > 0,
then X̂ = UkΣkV

T
k is the best rank-k approximation to

X . Since the computing complexity of SVD is typically
O(d2n + n3), which is prohibitive in high dimensional
and data intensive applications, some random algorithms
(Drineas et al. 2004; Frieze, Kannan, and Vempala 2004;
Drineas, Kannan, and Mahoney 2006) are developed to ac-
celerate this procedure. These methods usually use random
sampling (Drineas, Mahoney, and Muthukrishnan 2008;
Mahoney and Drineas 2009) or random projection to iden-
tify a subspace Ck that captures most of the actions of the
matrix X , then they project X to Ck to obtain the desired
low-rank approximation X̂ . The main steps of these meth-
ods are as follows:

• Generate the random sampling or random projection ma-
trix Z ∈ R

n×(k+p) with p ≥ 0,

• Compute the sketch C of X: C = XZ,

• Obtain the rank-k approximate matrix X̂ by projecting X

onto Ck: X̂ = PCk
X , where Ck is the best rank-k ap-

proximation to the matrix C, P is the projection operator.

In these random algorithms, the relative error bound ||X −
X̂|| ≤ (1+ε)||X−PUk

X|| is often used to evaluate the pre-
cision of the random algorithms, here || · || is the Frobenius
norm or spectral of the matrix. Their computing complexity
can be reduced to O(dnk) or even O(dn log(k)) when Z is
a structured matrix, which is a quite significant improvement
in practice. In addition, compared to the traditional methods,
they are much more robust and can be reorganized to exploit
parallel computing architectures.

Preliminary and Notation

In this section, we present the mathematical setups and a few
notions, which are necessary for the theoretical analysis of
our methods and also widely used in sparse linear regres-
sion, lasso and compressed sensing.

Firstly, we assume that there exists a sparse linear predic-
tion function f∗(x) = xTβ∗, where β∗ is a sparse vector
with ||β∗||0 = s � d, such that each yi can be well ap-
proximated by f∗(xi). To this end, we define ε as the mean
squared regression error made by f∗(·) over the training ex-
amples, i.e.

ε2 :=
1

n

n∑
i=1

(f∗(xi)− yi)
2.

Since f∗(·) is assumed to be an accurate prediction function,
we assume that ε is small. Our goal is to efficiently recover
the sparse vector β∗ and consequentially the sparse linear
prediction function f∗(·).

Then, following the work (Koltchinskii 2011), we intro-
duce a restricted eigenvalue condition and a restricted cor-
relation (Bickel, Ritov, and Tsybakov 2009) for the feature
matrix X .

Definition 1 (Restricted Eigenvalue) Given an integer s >
0, we say that a matrix X satisfies the restricted eigenvalue
condition at sparsity level s if there exist positive constants
γ� and γu such that

γ� := inf

{
1√
n
||XTu||2 : ||u||2 = 1, ||u||0 ≤ s

}
γu := sup

{
1√
n
||XTu||2 : ||u||2 = 1, ||u||0 ≤ 2s

}
.

Definition 2 (Restricted Correlation) We denote S(β) as
the support set of β, which is composed of the nonzero com-
ponents of β. Given an integer s > 0, we define the re-
stricted correlation of the data matrix X as

ρ := max
{ |βTXXTβ′|
|XTβ|2|XTβ′|2 : ||β||0 ≤ 2s,

||β′||0 ≤ s and S(β) ∩ S(β′) = ∅
}
.

At last, we assume our data matrix X in the sequence
satisfies the restricted eigenvalue and restricted correlation
conditions with parameters γ�, γu and ρ respectively.

Accelerated Sparse Linear Regression via

Random Projection

As described in the introduction section, our method is com-
posed of two steps. It computes the approximation X̂ for the
data matrix X at first. And then, using the homotopy strat-
egy, it recovers the optimal pattern β∗ by solving a sequence
of subproblems in form (5). In this section, we will discuss
the key ideas and the detail steps (Algorithm 1) of our ap-
proach below.

In the first step, we utilize the randomized matrix algo-
rithms to get a low-rank approximation for X efficiently. As
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Algorithm 1 Accelerated Sparse Linear Regression via Ran-
dom Projection (SLRviaRP)

1: Input: the data matrix X,y, λ0, λmin, γ, k, η

2: // Compute the approximation X̂:
3: Sample a d× k random matrix Z with Zij ∼ N (0, 1)
4: Compute the QR decomposition of XTZ, i.e., XTZ =

QR

5: Approximate X by X̂ = (XQ)QT = WTQT

6: // Recover the sparse vector β:
7: Initialize β0 = 0
8: for t = 0 to T − 1 do
9: Update:

βt+1 = min
β∈Rd

{
− 1

n
(β − βt)

T X̂(y − X̂Tβt)

+λt|β|1 + γ

2
|β − βt|22

}
where λt = max(λmin, λ0η

t).
10: end for
11: Return: βT

our problem is highly under-determined since n < d, ran-
dom sampling will make it worse. Thus, we adopt random
projection instead of random sampling based method to ap-
proximate X with a low rank matrix X̂ (see Algorithm 4.1
in (Halko, Martinsson, and Tropp 2011)). We first compute
a Gaussian random matrix Z ∈ R

d×k, where k � d and
each entry Zi,j is sampled independently from an Gaussian
distribution N (0, 1). We then compute the QR decomposi-
tion of XTZ, i.e. XTZ = QR, where Q ∈ R

n×k is an
orthogonormal matrix of rank k and R ∈ R

k×k is an up-
per triangle matrix. Actually, Q is composed of some or-
thogonal basis of XT . We finally approximate X by pro-
jecting XT to the space spanned by the columns of Q, i.e.,
X̂ = XQQT = WTQT , where W = (XQ)T ∈ R

k×d.
At last, we should note here that the QR decomposition for
XTZ can be computed in 2nk2 floating-point calculations,
which is acceptable when k is relatively small. And in many
real applications, the data matrix X is always a low-rank or
approximately low-rank matrix, so X̂ is still an accurate ap-
proximator for X even when we set k to be a small integer.
We will certify this phenomenon in Theorem 1.

In the second step, given the approximate low rank ma-
trix X̂ returned by the first step, we recover the sparse linear
model β∗ by a simple first order method with a homotopy
strategy. At iteration t, given the current solution βt, we up-
date it by solving the following optimization problem

βt+1 = min
β∈Rd

{− 1

n
(β − βt)

T X̂(y − X̂Tβt)

+λt|β|1 + γ

2
|β − βt|22} (5)

where γ is a constant whose value will be discussed later,
and λt = λ0η

t is an adaptive regularization parameter that
usually declines over the iterations, where η ∈ (0, 1) con-
trols the shrinkage speed of λt.

We will show that with appropriate choice of the param-
eters, we can accurately recover the true sparse solution β∗.
And furthermore, the sparsity of the intermediate solutions
is well bounded, which leads to an additional improvement
on the computation besides the low rank matrix X̂ .

Main Results

In this subsection, we present the theoretical results about
the convergence rate and the sparsity bound for our method.
For the space limitation, we postpone the detailed proofs to
the supplementary materials.

Firstly, we need the following theorem from (Halko, Mar-
tinsson, and Tropp 2011) to bound the difference between
the data matrix X and its approximator X̂ .
Theorem 1 (Corollary 10.9 (Halko, Martinsson, and Tropp
2011)) Assume p = k − k0 ≥ 4, then it holds with failure
probability no more than 3e−p that

||X − X̂|| ≤ 17

√
1 +

k0
p+ 1

σk0+1 +
8
√
k

p+ 1

( ∑
j>k0

σ2
j

)1/2
,

where || · || stands for the spectral norm of matrix, σ1 ≥
σ2 ≥ . . . are the singular values of matrix X .

The theorem above shows that if X is low-rank or approx-
imate low-rank that is most of the σis are 0 or close to 0, X̂
would be a good approximator for X even we choose a small
integer k.

For the sake of convenience in the theoretical analysis be-
low, we denote δ as δ = ||X̂−X||/√n. From Theorem 1, we
know, in the cases where the data matrix X has a low-rank
or approximate row-rank structure, which is very common
in real applications, δ would always be a small number, i.e.,
δ = o( 1√

n
).

The following theorem demonstrates the sparsity of βt

over the iterations.
Theorem 2 Assume |S(βt) \ S(β∗)| ≤ s, and λt ≥
2√
s
max

(
(γu+ δ)(ε+ δ||β∗||2),Λ||β∗−βt||2

)
, where Λ =[

(2γu+ δ)δ+ργ2
u+max(|γ−γ2

u|, |γ−γ2
� |)

]
. Then we can

have
|S(βt+1) \ S(β∗)| ≤ s

In Theorem 2, the assumption |S(βt) \ S(β∗)| ≤ s when
t = 0 can be satisfied by initializing β0 as 0. Then by induc-
tion and choosing appropriate λt over the iterations, we can
have |S(βt+1) \ S(β∗)| ≤ s for all t ∈ N. Thus the number
of non-zero elements in the intermediate solution βt is no
more than two times of that in β∗ and the sparsity of βt is
consequentially well-bounded.

At last, we present the convergence rate of our method in
the theorem below.
Theorem 3 Suppose ||βt − β∗||2 ≤ max (e0, θt) and η =
4
√
s

γ Λ < 1, we let

λt = 2max
(
(γu + δ)(ε+ δ||β∗||2),Λmax (e0, θt)

)
,

where e0 = 4
√
s(γu+ δ)(ε+ δ||β∗||2)/γ and Λ is inherited

from the theorem above. Then we have
||βt+1 − β∗||2 ≤ max

(
e0, θt+1

)
with θt+1 = ηθt.
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Theorem 3 shows that by appropriately choosing the value
of λt according to this theorem, we can get ||βt − β∗||2 ≤
max (e0, θt) = max (e0, η

tθ0). Furthermore, from the def-
inition of Λ, it is clear that we can make 0 < η < 1 if ap-
propriate γ is chosen. Thus a global geometric convergence
rate is obtained until we get ||βt+1 − β∗||2 ≤ e0. From the
definition of e0, we can see that since both δ and ε are small
numbers, we can recover β∗ accurately.

At last, we notice the fact that λt can be rewritten
as λt = 2max

(
max ((γu + δ)(ε+ δ||β∗||2),Λe0) ,Λθt

)
.

Hence we can let λt = max(λmin, λ0η
t) with λmin =

2max ((γu + δ)(ε+ δ||β∗||2),Λe0), just as we set in the
Algorithm 1.

At the end of this section, we would like to conclude some
properties of our approach. 1) We only need O(dk + nk)
flops at each iteration to update the βt instead of O(dn)
in traditional methods. It is a significant improvement when
both d and n are much larger than k. 2) A global geometric
convergence rate is achieved. 3) The sparsity of intermedi-
ate solution βt is well bounded, that is the number of the
nonzero entries in βt is no more than two times of that in
β∗. 4) Compared to (Xiao and Zhang 2013), we only need
to update βt only once a for each λt.

Experiment Study

Having analysed the performance of the proposed method
in the theoretical perspective, now we turn to the empirical
study that how the proposed method behaves.

We follow the work (Xiao and Zhang 2013) and evaluate
the performance of our method mainly on two aspects: (i)
The speed of the learned vector βt converging to the optimal
solution β∗. (ii) The sparsity of the learned vector βT . And
two baseline algorithms below will be used in our study.

• ADG ((Nesterov 2013), Algorithm 4.9): Nesterov’s accel-
erated dual gradient method.

• PGH (Xiao and Zhang 2013): a state-of-art algorithm
yields a global geometric convergence rate.

• SLviaRP: the proposed method in our study.

Experiments on the Synthesized Datasets

Dataset We generate the data matrix X , the response vector
y and the optimal solution β∗ in the following way:

1) For the data matrix X , we generate it by adding a Gaus-
sian noise eX to a low rank matrix X0, i.e. X = X0 + eX ,
where eX ∈ R

d×N , [eX ]ij ∼ N(0, σ2
eX ). For generating

the matrix X0, we first construct a random matrix U ∈
R

d×N , each Uij is sampled from an uniform distribution
U[−1,1]. Then, we calculate a QR factorization for U , i.e.
U = QR,Q ∈ R

d×N , R ∈ R
N×N . We extract the first

k columns from Q to form a new matrix Q̂. At last, we
get the low rank matrix X0 by projecting U onto Q̂, i.e.,
X0 = Q̂Q̂TU .

2) For the sparse vector β∗ ∈ R
d, we select s components

from its d coordinates randomly and set them to 1. Then we
set all the rest components to 0.

3) The response vector is sampled from the prediction
model y = XTβ∗ + ey, where ey ∈ R

N is a random noise
vector sampled from a normal distribution N(0, σ2

eyIN×N ).
Parameter setting For the training data, we set d =
10000, N = 5000, k = 500, s = 25 and vary the noise
level eX , ey in [0.01, 0.02, ..., 0.05]. In ADG, Ψ(x) =
0.001||β||1, γμ = γd = 1.5, μ = 0 and L0 = 0.001. In
PGH, we set λtgt = 0.001, ε = 10−6, Lmin = 10−6, η =
0.7, δ = 0.2 and γdec = γinc = 2. At last, for our method
SLviaRP, we let γ = λ0 = 0.3, η = 0.94 and λmin = 0.002.
Goal To recover the optimal sparse vector β∗ from the train-
ing data X and y both accurately and efficiently. And also,
the solutions we obtain should be as sparse as possible.
Evalation metrics To evaluate the property of the learning
βT , we measure the error ||βt − β∗||2 and its sparsity over
the iterations and the running time (second). The sparsity
here is computed as density = 1

d

∑d
i=1 I([βT ]i = 0). And

we also measure the recovery of the support set of βT by
SSR(βT ) = 2|S(βT )∩S(β∗)|/|S(βT )|+ |S(β∗)|. We run
each experiment 100 times, and report the averaged results.
Experimental results Figures 1 and 2 show the perfor-
mances of different algorithms when the noise level eX =
eY = 0.01. From the left panels of both Figure 1 and 2,
we observe that our method converges to the optimal so-
lution β∗ as fast as the recent algorithm PGH, thus their
convergence rates are comparable. The right panels give us
a deep impression that we can improve run-time efficiency
significantly due to the lower computing complexity at each
iteration. In addition, it shows that ADG is not good at
dealing with such under-determined problem, since its er-
ror ||βt − β∗||2 decreases slowly over the iterations. It may
result from the fact that its solution path is not sparse (Table
1) over the iterations (Xiao and Zhang 2013).
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Figure 1: The error log(||βt−β∗||2) over the iterations (left)
and running time (right) with eX = eY = 0.05.

Table 1 summarizes the evaluation results for final so-
lutions output from different algorithms after 100 itera-
tions under different noise levels eX and eY . For PGH and
SLRviaRP, we observe that they have similar performances
at convergence and sparsity preserving, since the values of
the metrics, like the residual, the error, density and SSR are
all comparable. More importantly, it is confirmed by the time
cost of each method that our method is much more efficient
than others (roughly 70 times faster in this case).
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Figure 2: The residual log(||y −Xβt||22/2N) over the iter-
ations (left) and running time (right) with eX = eY = 0.05.

Figure 3 shows the performance of our method under dif-
ferent shrinkage rates η ∈ [0.91, 0.92, ..., 0.95]. It reflects
the insensitivity of our method to the parameter.
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Figure 3: The error log(||βt − β∗||2) (left) and the residual
log(||y −Xβt||22/2N) (right) of our method over the itera-
tions with different shrinkage rate η and eX = eY = 0.05.

Experiments on Real-word Dataset

Experiment design To demonstrate the efficiency of our
methods further, we conduct a regression experiment on the
well-known dataset MNIST, comprised of the gray images
of scanned handwritten digits. It has roughly 60000 training
samples and 10000 testing samples. The dimension of each
sample is 28 × 28. We randomly sample 10,000 examples
from the training set and get a data matrix X ∈ R

10,000×784.
At last, we obtain the response vector y ∈ R

784 by sampling
an image from the testing set. Our goal is to find a sparse
vector β which can approximate y with XTβ accurately.
Parameter setting In ADG, Ψ(x) = 0.0005||β||1, γμ =
γd = 1.2, μ = 0 and L0 = 0.001. In PGH, we set λtgt =
0.005, ε = 0.001, Lmin = 0.005, η = 0.7, δ = 0.7 and
γdec = γinc = 2. For our method SLviaRP, we let k =
100, γ = 10, λ0 = 0.2, η = 0.97 and λmin = 0.005. At
last, we run 100 trials and report the averaged performance
of each method after 1000 iterations.
Evalation metrics Since the optimal solution β∗ is un-
known, we use the metrics like residual, sparsity and run-
ning time to evaluate the performance of our method. And
summarize the numerical results in Table 2.

Table 1: Results with d = 10000, N = 5000, k = 500.
eX = 0.01, eY = 0.01

Method Res Error density SSR time
ADG 0.026 24.566 0.7363 0.007 138.2
PGH 0.001 0.107 0.0025 0.996 134.7

SLRviaRP 0.001 0.111 0.0025 0.995 2.4

eX = 0.02, eY = 0.02
Method Res Error density SSR time
ADG 0.066 22.132 0.7400 0.007 143.7
PGH 0.001 0.108 0.0025 0.997 147.3

SLRviaRP 0.001 0.115 0.0025 0.994 2.3

eX = 0.03, eY = 0.03
Method Res Error density SSR time
ADG 0.091 20.718 0.7524 0.007 148.9
PGH 0.001 0.107 0.0025 0.993 157.5

SLRviaRP 0.001 0.119 0.0026 0.989 1.9

eX = 0.04, eY = 0.04
Method Res Error density SSR time
ADG 0.098 20.13 0.7700 0.006 146.2
PGH 0.001 0.106 0.0025 0.991 149.1

SLRviaRP 0.001 0.124 0.0027 0.971 1.9

eX = 0.05, eY = 0.05
Method Res Error density SSR time
ADG 0.104 20.478 0.7942 0.006 148
PGH 0.002 0.106 0.0026 0.988 153.8

SLRviaRP 0.002 0.127 0.0027 0.97 2.1

Experimental Result According to Table 2, it is obvious
that our method has great superiority in efficiency over the
baseline algorithms. And compared to PGH, our method has
comparable sparse learning ability. The relatively big resid-
ual and the bad sparsity of ADG show that it is not good
at dealing with such under-determined problem, which con-
sists with the result in the last experiment.

Table 2: Numerical results on MNIST.
Method Res density time
ADG 0.022 0.9982 48.3
PGH 0.004 0.0046 63.8

SLRviaRP 0.005 0.0036 0.7

Conclusion

In this paper, we propose a novel sparse linear regression
method based on random projection. In our method, we re-
duce the complexity for evaluating the gradient at each itera-
tion from O(nd) to O(nk+dk) by using random projection.
And then,we adopt a proximal gradient method to solve the
sparse linear regression problem with a homotopy strategy.
We verify, both theoretically and experimentally, that our
method achieves a geometric convergence and can signifi-
cantly improve the time-efficiency of the existing methods
for sparse linear regression. In addition, the sparsity of our
intermediate solutions is well-bounded.
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