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Abstract

To date, many machine learning applications have multiple
views of features, and different applications require specific
multivariate performance measures, such as the F-score for
retrieval. However, existing multivariate performance mea-
sure optimization methods are limited to single-view data,
while traditional multi-view learning methods cannot opti-
mize multivariate performance measures directly. To fill this
gap, in this paper, we propose the problem of optimizing mul-
tivariate performance measures from multi-view data, and an
effective method to solve it. We propose to learn linear dis-
criminant functions for different views, and combine them to
construct an overall multivariate mapping function for multi-
view data. To learn the parameters of the linear discriminant
functions of different views to optimize a given multivariate
performance measure, we formulate an optimization prob-
lem. In this problem, we propose to minimize the complexity
of the linear discriminant function of each view, promote the
consistency of the responses of different views over the same
data points, and minimize the upper boundary of the corre-
sponding loss of a given multivariate performance measure.
To optimize this problem, we develop an iterative cutting-
plane algorithm. Experiments on four benchmark data sets
show that it not only outperforms traditional single-view
based multivariate performance optimization methods, but
also achieves better results than ordinary multi-view learning
methods.

Introduction

In different machine learning applications, different multi-
variate performance measures are used for the purpose of
performance evaluation. For example, in problems of text
classification, F1-score and precision/recall breakeven point
(PRBEP) are used to compare true class labels against pre-
dicted class labels of a given test text set. In image retrieval
problems, the area under the receiver operating characteris-
tic curve (AUROC) is used to evaluate the performance of a
retrieval system. However, a classifier trained by optimizing
a common loss function over a training set, such as a hinge
loss or a logistic loss, cannot guarantee that an optimal mul-
tivariate performance measure can be obtained over a test
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set, such as an F-score.
To solve this problem, recently, the problem of multi-

variate performance measure optimization was proposed to
learn a classifier by directly optimizing a desired multivari-
ate performance measure, instead of a common loss, over a
training set (Joachims 2005). Since then, a number of state-
of-the-art methods were proposed. For example, Joachims
(2005) proposed a support vector machine (SVM)-based
method, SVMperf , to solve this problem, by training a mul-
tivariate SVM in polynomial time for multivariate perfor-
mance measures by using a cutting-plane method (Kelley
1960). Zhang, Saha, and Vishwanathan (2012) proposed to
improve the convergence rate of the cutting-plane method,
and developed a novel smoothing strategy for the problem
of multivariate performance measure optimization, by us-
ing the Nesterov’s accelerated gradient method. Li, Tsang,
and Zhou (2013) proposed a two-step approach to opti-
mize multivariate performance measures, by first training
a classifier with existing learning methods, and then adapt-
ing it to optimize a specific performance measure. Mao and
Tsang (2013) proposed a novel feature selection method to
optimize multivariate performance measures, by formulat-
ing the problem for high-dimensional data and employing
a two-layer cutting-plane algorithm to solve it. Yang et al.
(2015) proposed a novel multivariate performance optimiza-
tion method based on sparse coding and hyper-predictor
learning, by presenting the tuple of data points to a tuple
of sparse codes and applying a linear function to compare
a sparse code against a given candidate class label. Param-
bath, Usunier, and Grandvalet (2014) proposed to reduce
the optimization of F-measure to a series of cost-sensitive
classification problems. Koyejo et al. (2014) proposed to
learn optimal classifiers for a family of performance mea-
sures, as the sign of the thresholded conditional probability
of the positive class, using performance measure-dependent
thresholds. Narasimhan, Kar, and Jain (2015) proposed an
adaptive linearization approach for two families of perfor-
mance measures which can be expressed as functions of true
positive/negative rates. Recently, Wang and Gao (2015) pro-
posed to optimize multivariate performance measures from
partially labeled data tuple, by learning a classifier and com-
pleting the label tuple simultaneously.

Up to now, all these multivariate performance measure
optimization methods are limited to learning from data with
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a single view. For example, when these methods are applied
to image classification problems, only the features of the
visual view are used as inputs. However, there is another
type of view, i.e., user tags of images. Using only the vi-
sual view, one may not be able to present the data com-
prehensively, while leveraging data of multiple views can
better present the data, due to the complementarity among
different views. Learning from multiple views of data is
referred as multi-view learning, and many methods have
been proposed for this problem (Xu, Tao, and Xu 2013;
Sun 2013). For example, Farquhar et al. (2005) proposed
to learn an SVM classifier for each view, and imposed that
the SVM classification responses of two different views
should be consistent over the same data point. The two-
view SVM was learned by minimizing the dissimilarity be-
tween the two-view responses measured by an �1-norm dis-
tance and optimizing a hinge loss. White et al. (2012) as-
sumed that multi-view presentations of data have a shared
latent representation, and proposed a multi-view subspace
learning method to enforce conditional independence of dif-
ferent views while reducing dimensionality and recovering
the optimal data reconstruction. Li et al. (2012) and Xu et
al. (2015) proposed the co-labeling algorithm for the multi-
view learning problems with uncertain labels, by learning
multi-kernel classifiers and the optimal training labels simul-
taneously. Xu, Tao, and Xu (2015) proposed a multi-view in-
tact space learning algorithm to discover a latent intact rep-
resentation of the data by integrating the encoded comple-
mentary information in multiple views, by using the Cauchy
loss which is robust to outliers. Mao et al. (2015) proposed
a novel multi-kernel learning method to handle multi view
data with partial correspondence and missing labels. How-
ever, to best of our knowledge, all the existing multi-view
learning methods optimize some common loss functions in
the training process, such as a hinge loss function, but ignore
the multivariate performance measure used in the test pro-
cess of a specific application. For example, in the two-view
SVM method, the SVM classifiers are learned by optimizing
the hinge loss (Farquhar et al. 2005), and in the co-labeling
algorithm, the multi-kernel classifiers are learned by opti-
mizing the squared hinge loss (Li et al. 2012). As a result,
the learned classifier is not an optimal classifier for the de-
sired multivariate performance measure.

In many real-world applications, it is necessary to learn
classifiers from multi-view data to optimize multivariate per-
formance measures. For example, in the multi-class image
classification problem on the PASCAL VOC’07 data set,
there are 20 classes, and researchers usually use a one-vs-all
strategy for this multi-class problem. When images of one
class are treated as positive data points, the images of the
remaining nineteen classes are considered as negative data
points, and the number of positive and negative data points
are highly imbalanced, making the problem an imbalanced
classification problem. In this case, we prefer to use some
multivariate performance measures to evaluate the classi-
fication performance, such as the F1-score and AUROC.
However, in many image data sets, the images have features
from multiple views, e.g., images of PASCAL VOC’07 data
set have two views, which are the visual view and the user

tag view. The challenge of this problem lies on the imbal-
anced, noisy, and inconsistent multi-view data. To overcome
this challenge, we propose to optimize the multivariate per-
formance measures directly from multi-view data. The mo-
tivation is based on the observation that multivariate perfor-
mance optimization methods are more sensitive to imbal-
anced and noisy data. Moreover, to solve the problem of
inconsistency of multi-view data, we propose a regularizer,
which uses consistency among different views to handle the
noise. The necessity of imposing the multi-view consistency
to performance measure optimization lies on the observation
that, if the predictions of differen views over the same data
point can lead to an optimal performance measure, these pre-
dictions should be consistent.

The contributions of this paper are of two folds:

1. We propose the problem of optimizing multivariate per-
formance measures from multi-view data. Given a tuple
of data points, each data point is presented by multiple
views, the problem is to learn a multivariate mapping
function to map them to a tuple of class labels, so that
a desired multivariate performance measure can be opti-
mized.

2. We proposed to learn linear discriminant functions for dif-
ferent views and combine them to construct an overall
multivariate mapping function to predict the class label
tuple for a tuple of data points. To learn the linear dis-
criminant function parameters of different views, we for-
mulate a constrained minimization problem. In this prob-
lem, we proposed to minimize the complexity of each lin-
ear discriminant function parameters by minimizing its
squared �2-norm. We introduce a regularization to pro-
mote consistency among different views, by minimizing
the squared �2-norm distances between responses of lin-
ear discriminant functions of each pair of different views
over each data point. We also minimize the loss func-
tion corresponding to a specific multivariate performance
measure. The minimization problem is optimized by a
cutting-plane method in an alterative algorithm.

Proposed Method

Problem formulation

Assume we have a training data set of m views of n data
points, presented as m data tuples, xj |mj=1, where xj =

(xj
1, · · · , xjn) is the data tuple of the j-th view of the n data

points, and x
j
i ∈ R

dj is the dj-dimensional feature vector
of the j-th view of the i-th data point. The class label tu-
ple of the n data points are given as y = (y1, · · · , yn),
where yi ∈ {+1,−1} is the binary class label of the i-
th data point. We propose to learn a multivariate mapping
function to predict a class label tuple for the multi-view data
tuple xj |mj=1, which is denote as y∗ = (y∗1 , · · · , y∗n), where
y∗i ∈ {+1,−1} is the predicted label of the i-th data point.
To measure the performance of the prediction, we use a mul-
tivariate loss function Δ(y∗, y), which corresponds to a de-
sired multivariate performance measure, to compare the pre-
dicted label tuple, y∗, with the true label tuple, y. The multi-
variate performance measure optimization is to learn an op-
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timal multivariate mapping function so that the multivariate
loss function Δ(y∗, y) can be minimized.

To implement this multivariate mapping function, we use
a linear discriminant function fj(x

j , y′) to match the data
tuple of the j-th view, xj , with a candidate class label tuple
y′ = (y′1, · · · , y′n),

fj(x
j , y′) = w�

j Ψ(xj , y′), (1)

whereΨ(xj , y) =
∑n

i=1 y
′
ix

j
i ∈ R

dj is a function which
returns a dj-dimensional vector to describe the match be-
tween xj and y′, and wj ∈ R

dj is a parameter vector for
the linear discriminant function of the j-th view. We obtain
a multi-view discriminant function by a linear combination
of the discriminant functions of all the m views, and use it
to match the multi-view data tuple against a candidate label
tuple. The label tuple which maximizes the multi-view dis-
criminant function is obtained as the predicted optimal label
tuple,

y∗ = argmax
y′∈Y

⎧⎨
⎩

m∑
j=1

fj(x
j , y′) =

m∑
j=1

w�
j Ψ(xj , y′)

⎫⎬
⎭ ,

(2)
where Y = {+1,−1}n is the set of all admissible label tu-
ples. To simplify the denotation, we define an extended pa-
rameter vector, w = [w1

�, · · · ,wm
�]� ∈ R

d, by concate-
nating the m parameter vectors of the m views to one single
vector, where d =

∑m
j=1 dj . For the j-th view, the param-

eter vector wj can be recovered by a view indicator matrix
Θj ,

wj = Θjw, (3)

where Θj ∈ {1, 0}dj×d is a dj ×d matrix of ones and zeros,
and its (k, k′)-th element [Θj ]kk′ = 1 if the k′-th element
of w is the k-th element of wj , and 0 otherwise. To learn
the parameter vectors wj |mj=1 for the m views, i.e., w, we
consider the following three problems.

1. Reducing the complexity of each linear discriminative
function: To prevent over-fitting, we propose to reduce
the complexity of the linear discriminative function of
each view by minimizing the squared �2-norm of its pa-
rameter,

min
w

⎧⎨
⎩1

2

m∑
j=1

‖wj‖22 =
1

2

m∑
j=1

w�Θ�
j Θjw

=
1

2
w�

⎛
⎝ m∑

j=1

Θ�
j Θj

⎞
⎠w =

1

2
w�w

⎫⎬
⎭ .

(4)

Note here that
∑m

j=1 Θ
�
j Θj = Id×d.

2. Promoting consistency among different views: Given
the two views, x

j
i and x

j′
i , of the i-th data point, their

responses of the discriminative functions are w�
j x

j
i and

w�
j′x

j′
i , respectively. If the predictions of both views can

lead to the same optimal desired multivariate perfor-
mance, their responses should be consistent. This obser-
vation is inspired by multi-view consistency assumption

proposed by White et al. (2012). Based on this observa-
tion, to promote the consistency of different views, we
proposed to minimize the squared �2-norm distances of
responses of the linear discriminative functions of each
pair of views over the same data point,

min
wj |mj=1

⎧⎨
⎩1

2

n∑
i=1

⎛
⎝ ∑

j,j′:j<j′
‖w�

j x
j
i − w�

j′x
j′
i ‖22

⎞
⎠
⎫⎬
⎭ ,

(5)
By substituting (3) to (5), we have

min
w

⎧⎨
⎩1

2

n∑
i=1

⎛
⎝ ∑

j,j′:j<j′
‖w�Θ�

j x
j
i − w�Θ�

j′x
j′
i ‖22

⎞
⎠

=
1

2

n∑
i=1

⎛
⎝ ∑

j,j′:j<j′
w�

(
Θ�

j x
j
i −Θ�

j′x
j′
i

)(
Θ�

j

x
j
i −Θ�

j′x
j′
i

)�
w

)
=

1

2
w�Λw

}
,

(6)
where

Λ =

n∑
i=1

∑
j,j′:j<j′

(
Θ�

j x
j
i −Θ�

j′x
j′
i

)(
Θ�

j x
j
i−

Θ�
j′x

j′
i

)�
∈ R

d×d.

(7)

In this way, we formulate the problem of view consistency
as a minimization problem of a quadratic function of w.

3. Minimizing multivariate loss: To optimize a specific
multivariate performance measure, inspired by Joachims
(2005), we propose to minimize a loss function Δ(y∗, y)
corresponding to this multivariate performance measure,

min
wj |mj=1

Δ(y∗, y). (8)

Due to the complexity of the loss function, Δ(y∗, y), in-
stead of optimizing Δ(y∗, y) directly, we seek its upper
bound and optimize the upper bound. According to (2),
the upper bound is obtained as follows,

m∑
j=1

w�
j Ψ(xj , y∗) ≥

m∑
j=1

w�
j Ψ(xj , y) ⇒ Δ(y∗, y) ≤

m∑
j=1

w�
j

(
Ψ(xj , y∗)−Ψ(xj , y)

)
+Δ(y∗, y) ≤

max
y′∈Y/y

⎡
⎣ m∑
j=1

w�
j

(
Ψ(xj , y′)−Ψ(xj , y)

)
+Δ(y′, y)

⎤
⎦ .

(9)

Substituting the definition of Ψ(xj , y) and (3) to (9), we
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can rewrite it as

Δ(y∗, y) ≤ max
y′∈Y/y

⎡
⎣w�

⎛
⎝ m∑

j=1

n∑
i=1

(y′i − yi)Θ
�
j x

j
i

⎞
⎠

+Δ(y′, y) = Δ(y′, y)− w�πy′

]
,

(10)
where

πy′ =

m∑
j=1

n∑
i=1

(yi − y′i)Θ
�
j x

j
i ∈ R

d, (11)

and the right hand side of (10) is an upper bound of
Δ(y∗, y). We further introduce a slack variable ξ ≥ 0
to present the maximum value of the right hand side of
(10), and minimize it to obtain an optimal performance
measure,

min
w,ξ

ξ,

s.t. ∀y′ ∈ Y/y : ξ ≥ Δ(y′, y)− w�πy′ , ξ ≥ 0.
(12)

The overall optimization function is obtained by combin-
ing the problems in (4), (6), and (12),

min
w,ξ

{
1

2
w�w +

C1

2
w�Λw + C2ξ

}
,

s.t. ∀y′ ∈ Y/y : ξ ≥ Δ(y′, y)− w�πy′ , ξ ≥ 0,

(13)

where C1 and C2 are the tradeoff parameters. In the objec-
tive of this problem, the first term is to reduce the complex-
ity of the parameter vector of each view, the second term is
to encourage the consistency of the responses of different
views, and the third term is a slack variable to represent the
upper boundary of the loss of the multivariate performance
measure.

Problem optimization

To solve this problem, we employ the cutting-plane algo-
rithm. Instead of using all the constraints in Y/y to construct
the optimization problem in (13), we only use an active set
of constraints, W , which contains a limited number of con-
straints in Y/y. In this algorithm, W and w are updated al-
ternately.

Updating w When we have a given active set of constrain
W ⊆ Y/y, we replace Y/y by W in (13), and obtain the
following problem with regard to w and ξ,

min
w,ξ

{
1

2
w�w +

C1

2
w�Λw + C2ξ

}
,

s.t. ∀y′ ∈ W : ξ ≥ Δ(y′, y)− w�πy′ , ξ ≥ 0.

(14)

The dual form of (14) is

max
αy′ |y′:y′∈W

⎧⎨
⎩−1

2

∑
y′,y′′:y′,y′′∈W

αy′αy′′
(
π�

y′ (I + C1Λ)
−1

πy′′
)
+

∑
y′:y′∈W

αy′Δ(y′, y)

⎫⎬
⎭ ,

s.t. ∀y′ ∈ W : αy′ ≥ 0, C2 ≥
∑

y′:y′∈W
αy′

(15)
where αy′ |y′:y′∈W are the Lagrange multipliers of the con-
strains in W . This problem can be solved as a linear con-
strained quadratic programming problem. After the optimal
αy′ |y′:y′∈W is solved, the optimal w can be recovered by

w = (I + C1Λ)
−1

(∑
y′:y′∈W αy′πy′

)
.

Updating W With an updated w, to approximate the upper
bound of Δ(y∗, y) in (10), we seek a y′ to maximize the
objective function of (10),

y′ = arg max
y′′∈Y

{
Δ(y′′, y)− w�πy′′

}
, (16)

which is defined as the most violated constraint, and add
it to the active label tuple set, W ← W ∪ {y′}. We use
the method introduced in (Joachims 2005) to find the most
violated constraint. The time complexity of this process for
both F1-score and PRBEP is O(n2), and that of AUROC is
O(n log n).

Iterative algorithm The proposed iterative algorithm is
given in Algorithm 1. The convergence condition of this
algorithm is reached when the most violated y′ makes
Δ(y′, y)−w�πy′ ≤ ξ+ε, where ξ is the most current upper
bound of the loss function, and ε is a convergence thresh-
old. In most cases of our experiments, the convergence is
reached within a maximum number of iterations (100 itera-
tions in our experiments). For example, over a training set of
the Handwritten digit data set, in 100 times of running of the
algorithm with randomly initialized w, a convergence rate of
92% is reported, indicating its convergence power. To scale
this algorithm to large data sets, we can parallelize the steps
relevant to the size of the data set, including the processes of
calculating Λ, πy′ , and finding the constraint to maximize
the objective of (16).

When updating w, we solve a quadratic programming
problem with the same number of variables as the stan-
dard SVMperf , which is the number of current constraints.
Compared to SVMperf , the only complexity increase is
from the increment of dimensionality when multi-view fea-
tures are concatenated. However, if users concatenate the
features from multi-views as one single-view and input it
to SVMperf , they will have the same complexity for its
cutting-plane algorithm as our algorithm. Therefore, our al-
gorithm shares the same complexity as SVMperf .

Experiments

Here, we evaluate the proposed algorithm on four bench-
mark multi-view data sets for the problem of multivariate

2155



Algorithm 1 Iterative multi-view learning algorithm for
multivariate performance measure optimization (MVPO).

Input: Multi-view training data tuple xj |mj=1 and class la-
bel tuple y;
Input: The desired multivariate loss function Δ(y′, y).
Input: Tradeoff parameters C1, C2.
Initialize W = ∅, w, and calculate Λ as in (7);
repeat

Find the most violated constraint y′ by fixing w accord-
ing to (16), and add y′ to the active set, W ← W∪{y′};
Update w by fixing W and solving the problem in (14);

until A maximum iteration number is reached or conver-
gency.
Output: w.

performance measure optimization.

Data sets

The four benchmark data sets used include the handwritten
digit data set (Van Breukelen et al. 1998), the CiteSeer sci-
entific publication data set (Sen et al. 2008), the PASCAL
VOC’07 image data set (Everingham et al. 2007), and the
WebKB web page data set (Craven et al. 1998). The statis-
tics of these data sets are given in Table 1. The six views
of the digit images of the handwritten digit data set are six
types of visual features, including Fourier coefficients of the
character shapes, profile correlations, Karhunen-Love coef-
ficients, pixel averages in 2× 3 windows, Zernike moments,
and morphological features. The three views of the publi-
cations in the CiteSeer data set are the textual view, and the
two link views of inbound and outbound references. The two
views of the images of the PASCAL VOC’07 data set are
the visual view presented by the bag-of-words histogram of
SIFT local features, and the textual features of user tags. The
two views of the webpages of the WebKB data set are the
textual view and the link view. These four data sets are use-
ful to demonstrate the performance of the proposed problem
setting, because the data of these data sets are both imbal-
anced and of multiple views. Therefore, the ideal classifiers
on these data sets should be learned from multi-view data
and evaluated by multivariate performance measures.

Table 1: The statistics of the four data sets.
Data set #data points #classes #views
Handwritten digit 2,000 10 6
CiteSeer 3,312 6 3
PASCAL VOC’07 9,963 20 2
WebKB 1,051 2 2

Experimental protocol

To conduct the experiment, we equally split a data set to
two subsets randomly, and used them as training and test
sets respectively. Given a desired multivariate performance
measure, we performed the proposed algorithm MVOP over
the training data tuple and learned a classifier to optimize

Figure 1: The mean macro-average multivariate perfor-
mance comparison of multivariate performance optimiza-
tion methods.

its corresponding multivariate loss function. Then we used
the trained classifier to predict the class label tuple of the
test data, and evaluated the prediction results using the de-
sired multivariate performance measure. The desired mul-
tivariate performance measures are F1-score, PRBEP, and
AUROC. The random splitting are repeated 10 times, and
the mean macro-averages of the corresponding multivariate
performance measure over all classes on the test set are re-
ported as the results.

Comparison with multivariate performance
optimization methods

We compared the proposed MVOP algorithm against four
state-of-the-art single-view based multivariate performance
optimization methods, including a SVM method for multi-
variate performance measures, SVMperf (Joachims 2005), a
feature selection method for multivariate performance mea-
sures, FSmulti (Mao and Tsang 2013), a classifier adapta-
tion method for multivariate performance measures, CAOP
(Li, Tsang, and Zhou 2013), and a smoothing method for
multivariate scores, SMS (Zhang, Saha, and Vishwanathan
2012). The choice of the view among multiple views and
other parameters for baseline single-view methods is de-
termined by cross-validation over the training sets, to op-
timize the performance of each method. The mean macro-
average multivariate performance over the test sets of dif-
ferent methods is given in Figure 1. From this figure, we
can see that in most cases, the proposed multi-view based
performance optimization algorithm outperforms the single-
view based methods. The only two exceptions are the AU-
ROC performance over the PASCAL VOC’07 data set, and
the F1-score performance over the WebKB data set, where
FSmulti outperforms MVOP slightly. The most significant
improvements are made on the F1-score of the Handwritten
digit data set, where only the average F1-score optimized by
MVOP is higher than 0.5, while all other single-view based
methods fail to exceed 0.5. This is a strong evidence for the
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Figure 2: The mean macro-average multivariate perfor-
mance comparisons of multi-view learning methods.

effectiveness of the proposed algorithm, and it also reveals
the necessity of exploring multiple views other than a single
view to optimize the multivariate performance measures.

Comparison with multi-view learning methods

We also compared the proposed MVOP algorithm with three
state-of-the-art multi-view learning algorithms, including a
two view learning algorithm of SVM, SVM-2K (Farquhar
et al. 2005), a multi-kernel learning based co-labeling algo-
rithm for multi-view learning, Co-Labeling (Li et al. 2012),
and a multi-view subspace learning algorithm, MSL (White
et al. 2012). MSL is an unsupervised data representation al-
gorithm. To run MSL, we first mapped the multi-view data to
a shared sub space, and trained an SVM in the shared space
for the purpose of classification. The mean macro-average
multivariate performance of different multi-view learning
methods is reported in Figure 2. Not surprisingly, all the
compared traditional multi-view learning algorithms, which
optimize the hinge or the squared hinge loss, cannot com-
pete with the proposed MVOP algorithm which optimizes
the target performance directly. This leads to our conclusion
that using multi-view data does not lead to an optimal spe-
cific multivariate performance measure naturally, and learn-
ing performance-specific multi-view classifiers is important
for the optimization of multivariate performance measures.

Sensitivity analysis of parameters

We analyzed the sensitivity of the proposed algorithm to the
two tradeoff parameters, C1 and C2. The three optimized
performance measures were plotted against different values
of C1 and C2 on the Handwritten digit data set and the Cite-
Seer data set in Figure 3. The proposed algorithm, MVOP,
is robust to the changes of both C1 and C2 values. In par-
ticular, the performance measures of PRBEP and AUROC
are especially stable to C1 and C2 on the Handwritten digit
data set, whereas the F1-score seems more sensitive to these
parameters.

Figure 3: Performance curves of different values of tradeoff
parameters on the Handwritten digit and the CiteSeer data
sets.

Figure 4: Training time (in seconds) of the proposed algo-
rithm on the Handwritten digit data set and the CiteSeer data
set.

Training time analysis

We plot the training time of the proposed algorithm with dif-
ferent values of parameters C1 and C2 in Figure 4. As we can
see from the figure, F1-score is the most time-consuming
performance to optimize. It usually takes more than 600 sec-
onds to perform the proposed algorithm to optimize the F1-
score. Meanwhile, AUROC is the least time-consuming per-
formance to optimize. This difference of training time is due
to the difference in the process of finding the most validated
constraint in each iteration. Moreover, we also observed that
the training time is stable to the changes of the parameters,
and an exception is the training time of optimizing F1-score
with a small value of C1, where about 900 seconds are con-
sumed.
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Conclusion

In this paper, we proposed the problem of multivariate per-
formance optimization from multi-view data, and proposed
a novel algorithm to solve it. Our algorithm learns and com-
bines linear discriminant functions for different views to
construct an overall multivariate mapping function for multi-
view data. The learning problem is modeled as a minimiza-
tion problem, where the function complexity is reduced, the
view consistency is encouraged, and the upper bound of the
multivariate loss is minimized. This problem is optimized by
a cutting-plane algorithm. Experiments on four benchmark
data sets demonstrate its advantages over the traditional mul-
tivariate performance measure optimization methods and the
multi-view learning methods.
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