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Abstract

Stochastic partition processes for exchangeable graphs pro-
duce axis-aligned blocks on a product space. In relational
modeling, the resulting blocks uncover the underlying inter-
actions between two sets of entities of the relational data. Al-
though some flexible axis-aligned partition processes, such
as the Mondrian process, have been able to capture com-
plex interacting patterns in a hierarchical fashion, they are
still in short of capturing dependence between dimensions.
To overcome this limitation, we propose the Ostomachion
process (OP), which relaxes the cutting direction by allowing
for oblique cuts. The partitions generated by an OP are con-
vex polygons that can capture inter-dimensional dependence.
The OP also exhibits interesting properties: 1) Along the time
line the cutting times can be characterized by a homogeneous
Poisson process, and 2) on the partition space the areas of
the resulting components comply with a Dirichlet distribu-
tion. We can thus control the expected number of cuts and
the expected areas of components through hyper-parameters.
We adapt the reversible-jump MCMC algorithm for inferring
OP partition structures. The experimental results on relational
modeling and decision tree classification have validated the
merit of the OP.

Introduction

Stochastic partition processes for exchangeable graphs have
found broad applications ranging from relational mod-
elling (Kemp et al. 2006; Airoldi et al. 2009), community
detection (Nowicki and Snijders 2001; Karrer and Newman
2011), collaborative filtering (Porteous, Bart, and Welling
2008), to random forests (Lakshminarayanan, Roy, and Teh
2014). Most work on the stochastic partition process only
considers axis-aligned cuts and the resulting partitions form
regular grids (rectangular blocks). In relational modeling,
these blocks are able to capture the underlying interactions
between two sets of entities of the relational data. The recent
advances in irregular grid partitions have introduced more
flexibility, such as the Mondrian process (Roy and Teh 2009)
and the rectangular tiling process (Nakano et al. 2014b).

Despite the success of these stochastic partition processes
in uncovering complex interacting patterns, they are still in
short of capturing the dependence between dimensions due
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to the restriction of axis-aligned cuts. The axis-aligned parti-
tions are based on the assumption that two sets of interacted
entities have the same intensity. This is an over-simplified
assumption in many scenarios. Take relational modeling of
emails in a company for example, a rectangular block im-
plies that the staff involved play an equal role to one an-
other; while in reality staff may play asymmetric roles such
that the partition may exhibit a triangular block (e.g., leaders
may send emails to many staff while interns may only send
emails to her mentor). The limitation of axis-aligned cuts is
more obvious if the partition structure is used as a prior for
a decision tree, where the decision boundaries are usually a
linear combination of multiple dimensions.

In this paper, we relax the axis-aligned partitions by al-
lowing for oblique cuts on a product space (the unit square).
Since the resulting components are convex polygons, which
resemble a dissection puzzle Ostomachion, the proposed
stochastic partition process is named the Ostomachion pro-
cess (OP). Through this relaxation, the two dimensions can
be considered simultaneously to capture more complex par-
tition structures with inter-dimensional dependence (see ex-
ample in Figure 1).

An OP is generated by recursively bi-partitioning the leaf
components (polygons) on the product space with oblique
cuts. For each oblique cut, its slope and position are ran-
dom variables drawn from certain distributions and the OP
can thus have the following properties: 1) The times of the
cutting events along the time line comply with a homoge-
neous Poisson process and 2) the areas of the leaf compo-
nents on the unit square comply with a Dirichlet distribu-
tion. Due to these two properties, we can easily control the
expected number of cuts and the expected areas of compo-
nents through hyper-parameters of the OP process.

We adapt the reversible-jump MCMC algorithm (Green
1995) for inferring the partition structure of an OP with three
types of cutting operations. In addition to “cut-adding” and
“cut-removing”, a new type of proposal “cut-translation” is
introduced which can help alleviate inferior local optima and
reduce the inference variance.

We demonstrate the advantages of the OP in two appli-
cations. Firstly, we apply the OP as a partition prior for re-
lational modeling. The visualization of the partition results
and the link prediction performance have validated the merit
of oblique cuts in the OP. Secondly, we use the OP partition
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structure to construct a decision tree classifier and demon-
strate its powerful separability against axis-aligned parti-
tion structures. The experimental results in both applications
show that the OP is more flexible and effective compared to
the classical axis-aligned partition processes.

Related Work

Regular-grid stochastic partition processes are constituted
by two separate partition processes on each dimension.
Due to the separate partition processes, the resulting or-
thogonal interactions from two sides will exhibit regular
grids, whose densities represent the intensities of interac-
tions. Typical regular-grid partition models include infinite
relational models (IRM) (Kemp et al. 2006) and mixed-
membership stochastic blockmodels (MMSB) (Airoldi et al.
2009). Regular-grid partition models are widely used in real-
world applications for modeling graph data (Li, Yang, and
Xue 2009; Ishiguro et al. 2010; Ho, Parikh, and Xing 2012;
Schmidt and Morup 2013).

To our knowledge, only the Mondrian process (MP)
(Roy and Teh 2009) and the rectangular tiling process
(RTP) (Nakano et al. 2014b) are able to produce arbitrary
grid partitions. MP is a generative process that recursively
generates axis-aligned cuts in a unit hypercube. In contrast
to stochastic block models, MP can partition the space in a
hierarchical fashion known as kd-trees and result in irregular
block structures. An MP on the unit square (2-dimensional
product space) is started from a random axis-aligned cut
on the perimeter and results in two rectangles, in each of
which a random cut is made in the same way and so forth.
Before cutting on a rectangle, a cost E is drawn from an
exponential distribution Exp(perimeter); if λ − E < 0 (λ
is the budget), the recursive procedure halts; otherwise, a
random cut is made on the half perimeter of the rectangle
and let λ = λ − E. In this way, a larger λ will result in
more cuts. There are some interesting extensions and appli-
cations of the MP, such as metadata dependent Mondrian
Processes (Wang et al. 2015), the ecological network recon-
struction (Aderhold, Husmeier, and Smith 2013) and the hid-
den Markov model (Nakano et al. 2014a). Different from
MP based on kd-tree, RTP generates arbitrary rectangular
partitions based on projective systems.

The Ostomachion Process

In this section, we introduce the generative process of the
Ostomachion process (OP) and show two favorable proper-
ties of the OP: One for characterizing the times of cutting
events (see Property 1) and the other for characterizing the
areas of the leaf components (see Property 2). Note that we
use “components” instead of “blocks” since in the OP they
are convex polygons.

The Generative Process

The Ostomachion process recursively generates oblique cuts
on a unit square1, with the cutting events arriving along the

1The generative process can be straightforwardly extended to a
multi-dimensional product space. For simplicity, we only discuss
the 2-dimensional case in this paper.

time line. An OP is denoted as

O ∼ OP (τ, α, [0, 1]2) (1)

where τ denotes the time limit2, which controls the number
of cuts in an OP; and α is a concentration parameter, which
controls the skewness of the area distribution of the compo-
nents. The first cut is generated on the unit square and the
subsequent cuts are generated in the existing components
(polygons). The cutting process proceeds recursively and fi-
nally produces a hierarchical partition structure on [0, 1]2,
on which each leaf component is a polygon. An example OP
is illustrated in Figure 1.

To generate an oblique cut in an existing component �k

(the first cut is conducted on the unit square), we first uni-
formly sample a variable θk from [0, 2π] to determine the
slope of the cut. Then we sample a beta distributed random
variable γk ∼ Beta(α/2dk , α/2dk), where dk denotes the
depth of �k in the bi-partition tree structure (the root level
dk = 1 is on the unit square). The proposed θk-sloped cut
is placed on �k such that the area ratio of the two resulting
sub-components satisfies γk/(1− γk) (see Figure 2).

Meanwhile, the proposed cut is associated with a wait-
ing time tk, which is sampled from an exponential distri-
bution with the rate parameter being the area of the com-
ponent tk ∼ Exp(A(�k)), where A(�k) denotes the area
of �k. If tk exceeds the rest time τ − ∑

j∈pre(k) tj , where
pre(k) denotes all the predecessor components of �k in
the bi-partition tree structure, the recursive cutting process
halts in that branch; otherwise, the proposed cut is accepted
and �k is split into two polygons �k′ and �k′′ . Two sep-
arate cutting processes continue in �k′ and �k′′ respec-
tively: O′ ∼ OP (τ − ∑

j∈pre(k′) tj , α/2
dk′+1,�k′) and

O′′ ∼ OP (τ − ∑
j∈pre(k′′) tj , α/2

dk′′+1,�k′′). The final
partition structure on the unit square is returned when the
cutting processes along all the branches of the bi-partition
tree reach the time limit τ .

Convex Polygon Components In an OP, all the result-
ing components are convex polygons. This can be verified
by investigating the new angles produced by a cut in the
component: All these new angles lie in [0, π] and, conse-
quently, the resulting polygons do not contain angles larger
than π. This feature enables the OP to capture dependence
between two dimensions in individual components and in-
troduces more flexibility in relational modeling compared
to the axis-aligned partition processes (Kemp et al. 2006;
Roy and Teh 2009).

Partition Prior of Exchangeable Graphs Like the
MP (Roy and Teh 2009), the OP can also be a partition prior
for exchangeable graphs. The permutation of rows/columns
of a graph does not affect the joint probability conditioned
on the graphon (Lloyd et al. 2012; Orbanz and Roy 2015)
(graph function) W : [0, 1]2 → [0, 1], which is determined

2The time limit τ is analogous to the budget λ in the MP (Roy
and Teh 2009).
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Figure 1: Recursively generate oblique cuts in an example Ostomachion process.

Figure 2: (Left) Generate a θk-sloped cut on a compo-
nent �k such that the area ratio A(�k′)/A(�k′′) =
γk/(1− γk). (Right) The cutting position C∗

k is determined
by the area ratio function (red curve), which is usually a step-
wise polynomial function describing how the area ratio γk
changes along the cutting position C∗

k .

by an OP O = {�k} and the intensity rates for each compo-
nent in O. The graphon W is a two-dimensional piece-wise
constant function and each intensity rate occupies a convex
polygon �k (see Figure 3).

Property of the Cutting Time

In an OP, each proposal of a cut is associated with a waiting
time tk ∼ Exp(A(�k)). By using the area of the compo-
nent as the parameter of the waiting time distribution, we
can have the following property for the cutting events:
Property 1. In an OP, the times of the cutting events along
the time line can be characterized by a homogeneous Pois-
son process, whose intensity rate is the area of the unit
square A([0, 1]2).

Suppose the current partition structure on the unit square
contains K components (polygons) �1, . . . ,�K . The wait-
ing time for generating a cut in �k is independently dis-

Figure 3: Illustration of graphons for the MP (Roy and Teh
2009) (left) and the OP (right), respectively.

tributed as tk ∼ Exp(A(�k)). The minimum waiting time
t∗ among all the components �1, . . . ,�K follows the dis-
tribution

t∗ = min(t1, . . . , tK) ∼ Exp(A([0, 1]2)) (2)

This is because Pr(t∗ > t) = Pr(t1 > t, . . . , tK >

t) =
∏K

k=1 Pr(tk ≥ t) =
∏K

k=1 exp(−tA(�k)) =

exp
(
−t

∑K
k=1 A(�k)

)
= exp

(−tA([0, 1]2)
)
, which is

the complementary cumulative distribution function of t∗.
That is to say, the waiting time for the next cut in

⋃K
k=1 �k is

also distributed as that for the first cut on the unit square, i.e.,
tnext ∼ Exp(A([0, 1]2)). Thus, the waiting time of each next
cut in an OP is independent to the current partition structure.
The arrival times of cutting events in an OP form a homoge-
neous Poisson process, with the intensity rate being the area
of the unit square.

The above result implies that each new cut would be as-
signed to one of the existing components with a probabil-
ity proportional to its area; furthermore, the cutting events
in each component �k individually forms a Poisson process
with the intensity rate being its own area. The expected num-
ber of cuts N(�k) in �k equals to the intensity rate along
the time line E[N(�k)] = (τ −∑

j∈pre(k) tj)A(�k); thus
the expected number of cuts in an OP on the unit square is
E[N([0, 1]2)] = τA([0, 1]2) = τ .

Figure 4 illustrates the Poisson process of the cutting
events along the time line. In the right panel, the solid black
lines denote the waiting time intervals of the cutting events
and the points on the time line denote the arrival times
of the three cutting events. In this example, the intensity
rate of the Poisson process is consistent at any time point:
ν1(t ∈ [O,A]) = ν2(t ∈ [A,B])+ν3(t ∈ [A,B]) = ν4(t ∈
[B,C]) + ν5(t ∈ [B,C]) + ν3(t ∈ [B,C]) = 1, which is

Figure 4: (Left) The cutting events of an OP comply with a
homogeneous Poisson process along the time line. (Right)
Each cut’s waiting time is exponentially distributed with pa-
rameter being the area of the unit square A([0, 1]2).
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the area of the unit square. It is worth noting that each of the
branches of the bi-partition tree structure is also a Poisson
process.

Property of the Partition Structure

Although the components {�k} of an OP are generated in a
recursive bi-partition fashion, the resulting leaf components
have the following interesting property:
Property 2. In an OP, the areas of the leaf components
{A(�1), · · · , A(�K)} comply with a Dirichlet distribution

[A(�1), · · · , A(�K)] ∼ Dir(α1, · · · , αk) (3)

where αk denotes the concentration parameter for the k-th
component and

∑
k αk = α.

Given α, the first cut partitions the unit square into
two polygons whose areas follow Dir(α2 ,

α
2 ) (because γ ∼

Beta(α2 ,
α
2 ) and A([0, 1]2) = 1). W.l.o.g. assuming the

next cut occurs in the first polygon, the cut ratio γ1 ∼
Beta(α1

2 , α1

2 ), where α1 = α
2 by definition. Let s1,1, s1,2, s2

denote the areas of the three leaf components in the current
partition structure, their joint distribution follows

p(s1,1, s1,2, s2) = p(s1, s2)p(γ1) ·
∣∣∣∣

∂(s1, γ1)

∂(s1,1, s1,2)

∣∣∣∣

=
Γ(α2 β1 +

α
2 β2 +

α
2 )

Γ(α2 β1)Γ(
α
2 β2)Γ(

α
2 )

s
α
2 β1−1
1,1 s

α
2 β2−1
1,2 s

α
2 −1
2

(4)

where β1 + β2 = 1. We can see that Eq. (4) is a Dirich-
let distribution Dir(α2 β1,

α
2 β2,

α
2 ). Thus Property 2 can be

verified if we recursively apply the above operation to each
subsequent cutting event.

For simplicity we let β1 = β2 = 1
2 , which are suf-

ficient for generating flexible partitions. Consequently, we
only have one hyper-parameter α to control the expected
partition structure: A larger concentration parameter α will
result in more evenly distributed areas of the leaf compo-
nents.

The above construction resembles the stick-breaking con-
struction of the Dirichlet process (Sethuraman 1994), which
is to break the unit stick into “left”-biased infinite segments
(keeps the left part unchanged and break the right part recur-
sively); while the stick-breaking construction of the OP is to
recursively break the stick into two parts.

Inference

In the following, an approximate inference algorithm based
on reversible-jump MCMC (Green 1995) is introduced for
inferring OP partition structures. We define three types of
cutting operations, which can be proposed by the algorithm
to change the state space of the partition structure.

Cutting Operations

An OP partition structure on the unit square can be repre-
sented by a set of cuts {tj , θj , C∗

j }j , where tj denotes the
waiting time to generate the jth cut, θj and C∗

j denote the
slope and the location of the cut, respectively.

To infer the partition structure generated by an OP, we
need to define the state transition operations between any

pair of partition states, such that a partition can be trans-
formed to another in the inference procedure. We propose
the following three cutting operations:
• Cut-adding ψadd adds a cut (tj′ , θj′ , C∗

j′) in a uniformly
sampled component. This operation can be written as
ψadd({tj , θj , C∗

j }j , j′) = {tj , θj , C∗
j }j ∪ (tj′ , θj′ , C

∗
j′).

• Cut-removing ψrem deletes a leaf cut (tj′ , θj′ , C∗
j′) (“leaf

cuts” refer to the cuts generating two leaf components)
from the existing partition. As a result, the two corre-
sponding sibling components are merged and returned to
their parent component. This operation can be written as
ψrem({tj , θj , C∗

j }j , j′) = {tj , θj , C∗
j }j �=j′ .

• Cut-translation ψtra adjusts an existing leaf cut
(tj′ , θj′ , C

∗
j′) by resampling θj′ and γj′ (thus C∗

j′ ). This
operation can be written as ψtra({tj , θj , C∗

j }j , j′) =
{tj , θj , C∗

j }j �=j′ ∪ (tj′ , θj′ , C
∗
j′). This operation can make

the best use of the existing cuts.
By applying a combination of cutting operations, any

two partition structures, O = {tj , θj , C∗
j }j and O′ =

{tj′ , θj′ , C∗
j′}j′ , can be transformed to each other by sequen-

tially performing the three types of cutting operations
{tj′ , θj′ , C∗

j′}j′ =
ψadd(ψtra(ψrem({tj , θj , C∗

j }j ,Srem),Stra),Sadd)

where Srem, Stra, and Sadd denote the sets of removed
cuts, translated cuts, and added cuts, respectively. The opti-
mal sets that minimize the number of cutting operations can
be determined by the intersection of the two partition struc-
tures: Srem = {j|j ∈ O∧j /∈ O′}, Stra = {j|j ∈ O∩O′∧
(θj , C

∗
j ) 
= (θj′ , C

∗
j′)}, and Sadd = {j|j /∈ O ∧ j ∈ O′}.

An example of partition structure transform is illustrated in
Figure 5(a–d).

Figure 5: (Left) A partition structure transform via two cut-
removing, two cut-translation, and two cut-adding opera-
tions in sequence. (Right) An example illustrates the neces-
sity of the cut-translation operation. Since the likelihood ra-
tio for removing the actual cut is very small (9.3×10−14), it
has very low probability to accept the cut-removing proposal
such that the improper cut could be hardly rectified.

Reversible-Jump MCMC

We adopt the reversible-jump MCMC (Green 1995) algo-
rithm for inferring OP partition structures with three types of
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Figure 6: Partition results of the OP on (from left to right) Foodweb, Dolphin, Lazega, Polbooks, Train, Reality, and Wikitalk.

state-transition proposals, which correspond to three types
of cutting operations. From the state of the current partition
structure Ot, one of the three types of cutting operations is
uniformly selected to perform on Ot, with acceptance ratio ρ
the partition structure is transformed to the next state Ot+1.

The inference procedure is briefed in Algorithm 1. In
the algorithm, Ot denotes the current partition structure, ζt

denotes the parameter set of the current state, u(1:3) refer
to the three new generated variables {tk, θk, γk}, | · | de-
notes the Jacobian matrix; p(Ot+1|τ), L(Y |Ot+1, ξ, η, φ),
and Q(Ot+1|Ot) denote the prior probability, the likelihood
function, and the proposal probability, respectively.

Algorithm 1 RJMCMC for the Ostomachion process
Input: Initial partition [0, 1]2, time limit τ , concentration

parameter α, observed data Y , iteration number T
Output: An OP partition structure O

Generate the parameter φk of the likelihood distribution
for each component �k in O0

for t = 1 : T do
Uniformly propose one of the following actions with
the acceptance ratio min(1, ρ)

• Cut-adding: ρ = p(Ot+1|τ)L(Y |Ot+1,ξ,η,φ)
p(Ot|τ)L(Y |Ot,ξ,η,φ)

×
Q(Ot|Ot+1)q(u

(1:3))
Q(Ot+1|Ot)

×
∣∣∣ ∂〈ζt+1〉
∂〈ζt,u

(1:3)〉

∣∣∣
• Cut-removing: ρ = p(Ot+1|τ)L(Y |Ot+1,ξ,η,φ)

p(Ot|τ)L(Y |Ot,ξ,η,φ)
×

Q(Ot|Ot+1)

Q(Ot+1|Ot)q(u(1:3))
×
∣∣∣∣
∂〈ζt+1,u

(1:3)〉
∂〈ζt〉

∣∣∣∣
• Cut-translation: ρ = p(Ot+1|τ)L(Y |Ot+1,ξ,η,φ)

p(Ot|τ)L(Y |Ot,ξ,η,φ)

Update the parameter φk of the likelihood distribution
for each component �k in Ot.

end for

It is worth noting that a cut-translation operation in Algo-
rithm 1 is not a simple combination of cut-removing and cut-
adding. As an example shown in Figure 5(Right), the pro-
posal of cut-removing has a probability of almost 0 (which
happens, for example, when a cut only partially separates the
same class of data from the whole data). In contrast, a cut-
translation operation can propose to rectify the improper cut,
instead of removing, and determines if accepting the rectifi-
cation based on the ratio of their posterior probabilities. In
this way, improper cuts are very likely to be adjusted and
the issue of local optimum partition structures can also be
largely alleviated.

Inference Complexity The OP retains the same inference
complexity as that of the MP (Wang et al. 2011). Each pro-
posal in the MP requires to sample two variables for cost and
cut location; while the OP requires to sample three variables
for time limit, cut slope and area ratio. Since the complexity
of ratio computation is the same for both in each iteration,
the computation complexity of the OP is 3/2 times of that of
the MP given the same number of iterations.

Applications

We apply the proposed Ostomachion process to two appli-
cations: 1) Relational modelling and 2) Decision tree-style
classification. We adopt MCMC inference algorithms for all
the compared methods. In particular, we let RJMCMC-2 de-
note the inference algorithm used in (Wang et al. 2011),
which only involves two types of operations (cut-adding and
cut-removing); and let RJMCMC-3 denote Algorithm 1 in-
troduced above.

In our experiments, we set the time limit τ = 5 (meaning
that the expected number of cuts is 5) and the concentration
parameter α = 10. We set T = 200 (200 iterations) for both
RJMCMC-2 and RJMCMC-3. The performance of the two
applications is evaluated by averaging the prediction on 10
randomly selected (in a ratio of 1/10) hold-out test sets.

The Ostomachion Relational Model

We apply the OP to relational modeling. The generative pro-
cess of the Ostomachion relational model (ORM) is as fol-
lows

O ∼ OP(5, 10, [0, 1]2); φk ∼ Beta(1, 1);
ξi, ηj ∼ Uniform[0, 1]; Yij ∼ Bernoulli(φ�(ξi,ηj))

(5)

for k ∈ {1, 2, · · · }, i, j ∈ {1, · · · , n}, where Y denotes the
n× n graph data and Yij ∈ {0, 1} denotes the link between
nodes i and j; φk denotes the parameter of the beta distri-
bution in the kth component on O, and �(ξi, ηj) denotes
the mapping function from sending and receiving indices
(ξi, ηj) to the corresponding component index.

In the scenario of social network analysis, Eq. (5) can be
interpreted as: An OP partitions the unit square into a num-
ber of components; each component �k represents a com-
munity in the social network with the intensity of interaction
being φk, which is independently generated from a beta dis-
tribution. Then, sending and receiving indices (ξi, ηj) are
uniformly generated from [0, 1]. For each pair of nodes i
and j, it is first mapped to the corresponding component
by �(ξi, ηj) and a link Yij is generated according to the
Bernoulli distribution whose parameter is φ�(ξi,ηj).
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Table 1: Relational modeling results in AUC (standard deviation)

Data N.1 L.1 IRM Mondrian Relational Model Ostomachion Relational Model
RJMCMC-2 RJMCMC-3 RJMCMC-2 RJMCMC-3

Foodweb (Lichman 2013) 35 160 0.816(0.026) 0.841(0.021) 0.834(0.021) 0.823(0.024) 0.845(0.031)
Dolphin (Lichman 2013) 62 318 0.737(0.021) 0.767(0.029) 0.785(0.021) 0.757(0.020) 0.789(0.051)
Lazega (Lichman 2013) 71 680 0.746(0.017) 0.743(0.032) 0.776(0.094) 0.746(0.019) 0.782(0.029)
Polbooks (Lichman 2013) 105 882 0.752(0.009) 0.702(0.053) 0.692(0.046) 0.772(0.023) 0.801(0.022)
Train (Lichman 2013) 70 486 0.767(0.012) 0.734(0.048) 0.738(0.045) 0.746(0.016) 0.822(0.039)
Reality (Leskovec et al. 2010) 94 600 0.879(0.018) 0.884(0.031) 0.885(0.085) 0.875(0.013) 0.894(0.016)
Wikitalk (Ho et al. 2012) 70 463 0.761(0.005) 0.787(0.084) 0.793(0.061) 0.776(0.034) 0.842(0.024)
1 “N.” denotes number of nodes; “L.” denotes number of links in the relational data.

Table 2: Decision tree classification results in accuracy (standard deviation)

Data N.1 F.1 C.1 CART Mondrian Decision Tree Ostomachion Decision Tree
RJMCMC-2 RJMCMC-3 RJMCMC-2 RJMCMC-3

Seeds (Lichman 2013) 210 7 3 0.818(0.09) 0.695(0.14) 0.813(0.10) 0.749(0.06) 0.841(0.04)
Column3c (Lichman 2013) 309 6 2 0.944(0.05) 0.838(0.13) 0.932(0.04) 0.781(0.07) 0.949(0.03)
Ecoli (Lichman 2013) 336 7 8 0.704(0.06) 0.579(0.11) 0.665(0.08) 0.571(0.08) 0.723(0.08)
Iris (Lichman 2013) 150 4 3 0.869(0.07) 0.709(0.14) 0.844(0.14) 0.632(0.12) 0.901(0.07)
Wdbc (Lichman 2013) 567 30 2 0.874(0.04) 0.756(0.11) 0.879(0.07) 0.765(0.07) 0.890(0.03)
Wine (Lichman 2013) 178 13 2 0.910(0.06) 0.847(0.11) 0.902(0.07) 0.823(0.07) 0.921(0.06)
Banana (Lichman 2013) 5300 2 2 0.704(0.02) 0.586(0.04) 0.720(0.06) 0.591(0.05) 0.731(0.04)
Twonorm (Lichman 2013) 7400 20 2 0.926(0.03) 0.829(0.14) 0.943(0.07) 0.823(0.14) 0.971(0.04)
1 “N.” denotes number of data; “F.” denotes number of feature dimensions; “C.” denotes number of classes.

We test our ORM on seven benchmark data sets: Food-
web, Dolphin, Lazega, Polbooks, Train, Reality, Wikitalk.
We implement the infinite relational model (IRM) (Kemp et
al. 2006) and the Mondrian relational model (MRM) (Roy
and Teh 2009) as the baseline methods. The link prediction
results are reported in Table 1. From the results, we can see
that the proposed ORM+RJMCMC-3 achieves the best per-
formance among all the compared methods while keeping
competitive small variance at the same time. An interest-
ing observation is that ORM+RJMCMC-2 does not perform
well, which may be caused by the high flexibility of the OP.
This observation implies that the proposed RJMCMC-3 al-
gorithm is essential for the OP to avoid inferior local max-
ima due to high flexibility.

Figure 6 visualizes the partition (relational modeling) re-
sults of the OP on the seven data sets. The black points de-
note the observed links and the red lines denote the cuts
on the inferred OP partition structures. In general, the con-
vex polygonal components have successfully discovered the
underlying asymmetric interactions between the nodes. For
example, there are large irregular areas of sparse interac-
tions on Foodweb, Dolphin, Polbooks, Reality and there are
compact irregular areas of dense interactions on Dolphin,
Lazega, Train, Reality, Wikitalk.

The Ostomachion Decision Tree

Another interesting application of the OP is decision tree
based classification, where the OP partition structure plays
the role of decision tree. We refer to this as the Ostomachion
decision tree (ODT). The generative process of an ODT is
similar to that of an ORM, except that the ODT does not
require the generation of indices ξ and η which are actually

the 2-D features of the data.

O ∼ OP(5, 10, [0, 1]2); φk ∼ Dir(1, · · · , 1);
Yi ∼ Discrete(φ�(ξi,ηi))

(6)

for i ∈ {1, · · · , n}, where (ξi, ηi) are the two features of
the ith data point. In our experiments, we first use princi-
ple component analysis (PCA) to project the data onto a 2-
dimensional feature space with the largest eigenvalues. We
further normalize the projected data to be in the range of the
unit square [0, 1]2.

We test our ODT on eight benchmark data sets: Seeds,
Column3c, Ecoli, Iris, Wdbc, Wine, Banana, Twonorm, com-
pared to the classical decision tree CART (Quinlan 1986)
and the Mondrian decision tree (MDT, by replacing OP in
Eq. (6) with MP). For fair comparison, we restrict CART to
generate a maximum of 3-level decision tree and it usually
results in 6 ∼ 7 leaf components. This number is compara-
ble to the expected number of leaf components in ODT and
MDT E[N([0, 1]2)] + 1 = τ + 1 = 6.

Table 2 reports the classification results on the eight
benchmark data sets. In general, our ODT+RJMCMC-3 out-
performs the compared methods in accuracy on all the data
sets; the superiority of ODT+RJMCMC-3 is particularly ob-
vious on those small-size data sets. This observation implies
that irregular components in the OP are more effective in
separating sparse data and describing their geometry. An-
other observation is that, in both ODT and MDT, RJMCMC-
3 outperforms RJMCMC-2 with an average improvement
around 0.17 in classification accuracy. This has validated the
effectiveness of the proposed cut-translation operation.
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Conclusion

In this paper, we propose a stochastic partition process,
named the Ostomachion process (OP), which allows for
oblique cuts to produce polygonal partitions on the unit
square. The two favorable properties of the OP enable ones
to easily control the expected number of components and the
distribution of areas through a homogeneous Poisson pro-
cess and a Dirichlet distribution, respectively. Compared to
the existing axis-aligned partition processes, the OP is able
to capture inter-dimensional dependence and we demon-
strate this ability in two applications: relational modeling
and decision tree classification. The experimental results
show that the OP outperforms the compared methods in both
link prediction, by uncovering clear irregular interaction pat-
terns, and decision tree based classification.
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