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Abstract

People believe that depth plays an important role in success
of deep neural networks (DNN). However, this belief lacks
solid theoretical justifications as far as we know. We inves-
tigate role of depth from perspective of margin bound. In
margin bound, expected error is upper bounded by empiri-
cal margin error plus Rademacher Average (RA) based ca-
pacity term. First, we derive an upper bound for RA of DNN,
and show that it increases with increasing depth. This indi-
cates negative impact of depth on test performance. Second,
we show that deeper networks tend to have larger represen-
tation power (measured by Betti numbers based complexity)
than shallower networks in multi-class setting, and thus can
lead to smaller empirical margin error. This implies positive
impact of depth. The combination of these two results shows
that for DNN with restricted number of hidden units, increas-
ing depth is not always good since there is a tradeoff between
positive and negative impacts. These results inspire us to seek
alternative ways to achieve positive impact of depth, e.g., im-
posing margin-based penalty terms to cross entropy loss so
as to reduce empirical margin error without increasing depth.
Our experiments show that in this way, we achieve signifi-
cantly better test performance.

1 Introduction

Deep neural networks (DNN) have achieved great practi-
cal success in many machine learning tasks, such as speech
recognition, image classification, and natural language
processing (Hinton and Salakhutdinov 2006; Krizhevsky,
Sutskever, and Hinton 2012; Hinton et al. 2012; Ciresan,
Meier, and Schmidhuber 2012; Weston et al. 2012). Many
people believe that the depth plays an important role in the
success of DNN (Srivastava, Greff, and Schmidhuber 2015;
Simonyan and Zisserman 2014; Lee et al. 2014; Romero et
al. 2014; He et al. 2015; Szegedy et al. 2014). However, as
far as we know, such belief is still lacking solid theoretical
justification.

On one hand, some researchers have tried to understand
the role of depth in DNN by investigating its generalization
bound. For example, in (Bartlett, Maiorov, and Meir 1998;
Karpinski and Macintyre 1995; Goldberg and Jerrum 1995),
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generalization bounds for multi-layer neural networks were
derived based on Vapnik-Chervonenkis (VC) dimension.
In (Bartlett 1998; Koltchinskii and Panchenko 2002), a mar-
gin bound was given to fully connected neural networks in
the setting of binary classification. In (Neyshabur, Tomioka,
and Srebro 2015), the capacity of different norm-constrained
feed-forward networks was investigated. While these works
shed some lights on the theoretical properties of DNN, they
have limitations in helping us understand the role of depth,
due to the following reasons. First, the number of parameters
in many practical DNN models could be very large, some-
times even larger than the size of training data. This makes
the VC dimension based generalization bound too loose to
use. Second, practical DNN are usually used to perform
multi-class classifications and often contains many convo-
lutional layers, such as the model used in the tasks of Im-
ageNet (Deng et al. 2009). However, most existing bounds
are only regarding binary classification and fully connected
networks. Therefore, the bounds cannot be used to explain
the advantage of using deep neural networks.

On the other hand, in recent years, researchers have tried
to explain the role of depth from other angles, e.g., deeper
neural networks are able to represent more complex func-
tions. In (Hastad 1986; Delalleau and Bengio 2011), authors
showed that there exist families of functions that can be
represented much more efficiently with a deep logic circuit
or sum-product network than with a shallow one, i.e., with
substantially fewer hidden units. In (Bianchini and Scarselli
2014; Montufar et al. 2014), it was demonstrated that deeper
nets could represent more complex functions than shallower
nets in terms of maximal number of linear regions and Betti
numbers. However, these works are apart from the general-
ization of the learning process, and thus they cannot be used
to explain the test performance improvement for DNN.

To reveal the role of depth in DNN, in this paper, we
propose to investigate the margin bound of DNN. Accord-
ing to the margin bound, the expected 0-1 error of a DNN
model is upper bounded by the empirical margin error plus
a Rademacher Average (RA) based capacity term. Then we
first derive an upper bound for the RA-based capacity term,
for both fully-connected and convolutional neural networks
in the multi-class setting. We find that with the increasing
depth, this upper bound of RA will increase, which indi-
cates that depth has its negative impact on the test perfor-
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mance of DNN. Second, for the empirical margin error, we
study the representation power of deeper networks, because
if a deeper net can produce more complex classifiers, it will
be able to fit the training data better w.r.t. any margin co-
efficient. Specifically, we measure the representation power
of a DNN model using the Betti numbers based complex-
ity (Bianchini and Scarselli 2014), and show that, in the
multi-class setting, the Betti numbers based complexity of
deeper nets are indeed much larger than that of shallower
nets. This, on the other hand, implies the positive impact
of depth on the test performance of DNN. By combining
these two results, we can come to the conclusion that for
DNN with restricted number of hidden units, arbitrarily in-
creasing the depth is not always good since there is a clear
tradeoff between its positive and negative impacts. In other
words, with the increasing depth, the test error of DNN may
first decrease, and then increase. This pattern of test error
has been validated by our empirical observations on differ-
ent datasets.

The above theoretical findings also inspire us to look for
alternative ways to achieve the positive impact of depth, and
avoid its negative impact. For example, it seems feasible to
add a margin-based penalty term to the cross entropy loss
of DNN so as to directly reduce the empirical margin error
on the training data, without increasing the RA of the DNN
model. For ease of reference, we call the algorithm mini-
mizing the penalized cross entropy loss large margin DNN
(LMDNN)1. We have conducted extensive experiments on
benchmark datasets to test the performance of LMDNN. The
results show that LMDNN can achieve significantly better
test performance than standard DNN. In addition, the mod-
els trained by LMDNN have smaller empirical margin error
at almost all the margin coefficients, and thus their perfor-
mance gains can be well explained by our derived theory.

The remaining part of this paper is organized as follows.
In Section 2, we give some preliminaries for DNN. In Sec-
tion 3, we investigate the roles of depth in RA and empiri-
cal margin error respectively. In Section 4, we propose the
large margin DNN algorithms and conduct experiments to
test their performances. In Section 5, we conclude the paper
and discuss some future works.

2 Preliminaries

Given a multi-class classification problem, we denote X =
R

d as the input space, Y = {1, · · · ,K} as the output space,
and P as the joint distribution over X × Y . Here d denotes
the dimension of the input space, and K denotes the num-
ber of categories in the output space. We have a training set
S = {(x1, y1), · · · , (xm, ym)}, which is i.i.d. sampled from
X × Y according to distribution P . The goal is to learn a
prediction model f ∈ F : X × Y → R from the train-
ing set, which produces an output vector (f(x, k); k ∈ Y)
for each instance x ∈ X indicating its likelihood of belong-
ing to category k. Then the final classification is determined
by argmaxk∈Y f(x, k). This naturally leads to the follow-

1One related work is (Li et al. 2015), which combines the gen-
erative deep learning methods (e.g., RBM) with a margin-max pos-
terior. In contrast, our approach aims to enlarge the margin of dis-
criminative deep learning methods like DNN.

ing definition of the margin ρ(f ;x, y) of the model f at a
labeled sample (x, y):

ρ(f ;x, y) = f(x, y)−max
k �=y

f(x, k). (1)

The classification accuracy of the prediction model f is
measured by its expected 0-1 error, i.e.,

errP (f) = Pr
(x,y)∼P

I[argmaxk∈Y f(x,k)�=y] (2)

= Pr
(x,y)∼P

I[ρ(f ;x,y)<0], (3)

where I[·] is the indicator function.
We call the 0-1 error on the training set training error and

that on the test set test error. Since the expected 0-1 error
cannot be obtained due to the unknown distribution P , one
usually uses the test error as its proxy when examining the
classification accuracy.

Now, we consider using neural networks to fulfill the
multi-class classification task. Suppose there are L layers
in a neural network, including L − 1 hidden layers and an
output layer. There are nl units in layer l (l = 1, . . . , L). The
number of units in the output layer is fixed by the classifi-
cation problem, i.e., nL = K. There are weights associated
with the edges between units in adjacent layers of the neural
network. To avoid over fitting, people usually constraint the
size of the weights, e.g., impose a constraint A on the sum
of the weights for each unit. We give a unified formulation
for both fully connected and convolutional neural networks.
Mathematically, we denote the function space of multi-layer
neural networks with depth L, and weight constraint A as
FL

A , i.e.,

FL
A =

{
(x, k) →

nL−1∑
i=1

wifi(x); fi ∈ FL−1
A ,

nL−1∑
i=1

|wi| ≤ A,wi ∈ R

}
; (4)

for l = 1, · · · , L− 1,

F l
A =

{
x → ϕ

(
φ(f1(x)), · · · , φ(fpl(x))

)
;

f1, · · · , fpl ∈ F̄ l
A

}
, (5)

F̄ l
A =

{
x →

nl−1∑
i=1

wifi(x); fi ∈ F l−1
A ,

nl−1∑
i=1

|wi| ≤ A,wi ∈ R

}
;

(6)
and,

F0
A =

{
x → x|i; i ∈ {1, · · · , d}

}
; (7)

where wi denotes the weight in the neural network, x|i is the
i-th dimension of input x. The functions ϕ and φ are defined
as follows:

(1) If the l-th layer is a convolutional layer, the out-
puts of the (l − 1)-th layer are mapped to the l-th layer
by means of filter, activation, and then pooling. That is,
in Eqn (6), lots of weights equal 0, and nl is determined
by nl−1 as well as the number and domain size of the fil-
ters. In Eqn (5), pl equals the size of the pooling region
in the l-th layer, and function ϕ : R

pl → R is called
the pooling function. Widely-used pooling functions include
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the max-pooling max(t1, · · · , tpl
) and the average-pooling

(t1 + · · · + tpl
)/pl. Function φ is increasing and usually

called the activation function. Widely-used activation func-
tions include the standard sigmoid function φ(t) = 1

1+e−t ,

the tanh function φ(t) = et−e−t

et+e−t , and the rectifier function
φ(t) = max(0, t). Please note that all these activation func-
tions are 1-Lipschitz.

(2) If the l-th layer is a fully connected layer, the outputs
of the (l − 1)-th layer are mapped to the l-th layer by linear
combination and subsequently activation. That is, in Eqn (5)
pl = 1 and ϕ(x) = x.

Because distribution P is unknown and the 0-1 error is
non-continuous, a common way of learning the weights in
the neural network is to minimize the empirical (surrogate)
loss function. A widely used loss function is the cross en-
tropy loss, which is defined as follows,

C(f ;x, y) = −
K∑

k=1

zk lnσ(x, k), (8)

where zk = 1 if k = y, and zk = 0 otherwise. Here
σ(x, k) = exp(f(x,k))

∑K
j=1 exp(f(x,j))

is the softmax operation that nor-

malizes the outputs of the neural network to a distribution.
Back-propagation algorithm is usually employed to mini-

mize the loss functions, in which the weights are updated by
means of stochastic gradient descent (SGD).

3 The Role of Depth in Deep Neural

Networks

In this section, we analyze the role of depth in DNN,
from the perspective of the margin bound. For this purpose,
we first give the definitions of empirical margin error and
Rademacher Average (RA), and then introduce the margin
bound for multi-class classification.
Definition 1. Suppose f ∈ F : X ×Y → R is a multi-class
prediction model. For ∀γ > 0, the empirical margin error of
f at margin coefficient γ is defined as follows:

errγS(f) =
1

m

m∑
i=1

I[ρ(f ;xi,yi)≤γ]. (9)

Definition 2. Suppose F : X → R is a model space with
a single dimensional output. The Rademacher average (RA)
of F is defined as follows:

Rm(F) = Ex,σ

[
sup
f∈F

∣∣∣ 2
m

m∑
i=1

σif(xi)
∣∣∣], (10)

where x = {x1, · · · , xm} ∼ Pm
x , and {σ1, · · · , σm} are

i.i.d. sampled with P (σi = 1) = 1/2, P (σi = −1) = 1/2.
Theorem 1. (Koltchinskii and Panchenko 2002) Suppose
f ∈ F : X × Y → R is a multi-class prediction model. For
∀δ > 0, with probability at least 1− δ, we have, ∀f ∈ F ,

errP (f) ≤ inf
γ>0

{
errγS(f) +

8K(2K − 1)

γ
Rm(F̃)

+

√
log log2(2γ

−1)

m
+

√
log(2δ−1)

2m

}
. (11)

where F̃ = {x → f(·, k); k ∈ Y, f ∈ F}

According to the margin bound given in Theorem 1, the
expected 0-1 error of a DNN model can be upper bounded
by the sum of two terms, RA and the empirical margin error.
In the next two subsections, we will make discussions on the
role of depth in these two terms, respectively.

3.1 Rademacher Average

In this subsection, we study the role of depth in the RA-
based capacity term.

In the following theorem, we derive an uniform upper
bound of RA for both the fully-connected and convolutional
neural networks.2

Theorem 2. Suppose input space X = [−M,M ]d. In the
deep neural networks, if activation function φ is Lφ- Lips-
chitz and non-negative, pooling function ϕ is max-pooling
or average-pooling, and the size of pooling region in each
layer is bounded, i.e., pl ≤ p, then we have,

Rm(FL
A) ≤ cM

√
ln d

m
(pLφA)L. (12)

where c is a constant.

Proof. According to the definition of FL
A and RA, we have,

Rm(FL
A) = Ex,σ

[
sup

‖w‖1≤A,fj∈FL−1
A

∣∣∣ 2
m

m∑
i=1

σi

nL−1∑
j=1

wjfj(xi)
∣∣∣]

= Ex,σ

[
sup

‖w‖1≤A,fj∈FL−1
A

∣∣∣ 2
m

nL−1∑
j=1

wj

m∑
i=1

σifj(xi)
∣∣∣].

Supposing w = {w1, · · · , wnL−1
} and h =

{∑m
i=1 σif1(xi), · · · ,

∑m
i=1 σifnL−1

(xi)}, the inner prod-
uct 〈w,h〉 is maximized when w is at one of the extreme
points of the l1 ball, which implies:

Rm(FL
A) ≤ AEx,σ

[
sup

f∈FL−1
A

∣∣∣ 2
m

m∑
i=1

σif(xi)
∣∣∣]

= ARm(FL−1
A ). (13)

For function class FL−1
A , if the (L − 1)-th layer is a fully

connected layer, it is clear that Rm(FL−1
A ) ≤ Rm(φ ◦

F̄L−1
A ) holds. If the (L− 1)-th layer is a convolutional layer

with max-pooling or average-pooling, we have,

Rm(FL−1
A )

≤ Ex,σ

[
sup

f1,··· ,fpL−1
∈F̄L−1

A

∣∣∣ 2
m

m∑
i=1

σi

pL−1∑
j=1

φ(fj(xi))
∣∣∣]

= pL−1Rm(φ ◦ F̄L−1
A ). (14)

The inequality (14) holds due to the fact that most widely
used activation functions φ (e.g., standard sigmoid and rec-
tifier) have non-negative outputs.

Therefore, for both fully connected layers and convolu-
tional layers, Rm(FL−1

A ) ≤ pL−1Rm(φ ◦ F̄L−1
A ) uniformly

2To the best of our knowledge, an upper bound of RA for fully
connected neural networks has been derived before (Bartlett and
Mendelson 2003; Neyshabur, Tomioka, and Srebro 2015), but there
is no result available for the convolutional neural networks.
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holds. Further considering the Lipschitz property of φ, we
have,

Rm(FL−1
A ) ≤ 2pL−1LφRm(F̄L−1

A ). (15)

Iteratively using maximization principle of inner product in
(13), property of RA in (14) and Lipschitz property in (15),
considering pl ≤ p, we can obtain the following inequality,

Rm(FL
A) ≤ (2pLφA)L−1Rm(F̄1

A). (16)

According to (Bartlett and Mendelson 2003), Rm(F̄1
A) can

be bounded by:

Rm(F̄1
A) ≤ cAM

√
ln d

m
, (17)

where c is a constant.
Combining (16) and (17), we can obtain the upper bound

on the RA of DNN.

From the above theorem, we can see that with the increas-
ing depth, the upper bound of RA will increase, and thus the
margin bound will become looser. This indicates that depth
has its negative impact on the test performance of DNN.

3.2 Empirical Margin Error

In this subsection, we study the role of depth in empirical
margin error.

To this end, we first discuss representation power of DNN
models. In particular, we use the Betti numbers based com-
plexity (Bianchini and Scarselli 2014) to measure the repre-
sentation power. We generalize the definition of Betti num-
bers based complexity into multi-class setting as follows.

Definition 3. The Betti numbers based complexity of func-
tions implemented by multi-class neural networks FL

A is de-
fined as N(FL

A) =
∑K−1

i=1 B(Si), where B(Si) is the sum
of Betti numbers3 that measures the complexity of the set
Si. Here Si = ∩K

j=1,j �=i{x ∈ R
d | f(x, i) − f(x, j) ≥

0; f(x, ·) ∈ FL
A}, i = 1, . . . ,K − 1.

As can be seen from the above definition, the Betti num-
bers based complexity considers classification output and
merge those regions corresponding to the same classification
output (thus is more accurate than the linear region number
complexity (Montufar et al. 2014) in measuring the repre-
sentation power). As far as we know, only for binary clas-
sification and fully connected networks, the bounds of the
Betti numbers based complexity was derived (Bianchini and
Scarselli 2014), and there is no result for the setting of multi-
class classification and convolutional networks. In the fol-
lowing, we give our own theorem to fill in this gap.

Theorem 3. For neural networks FL
A that has h hidden

units. If activation function φ is a Pfaffian function with com-
plexity (α, β, η), pooling function ϕ is average-pooling and

3For any subset S ⊂ R
d, there exist d Betti numbers, denoted

as bj(S), 0 ≤ j ≤ d − 1. Therefore, the sum of Betti numbers is
denoted as B(S) =

∑d−1
j=0 bj(S). Intuitively, the first Betti num-

ber b0(S) is the number of connected components of the set S,
while the j-th Betti number bj(S) counts the number of (j + 1)-
dimension holes in S (Bianchini and Scarselli 2014).

d ≤ hη, then

N(FL
A) ≤ (K − 1)d+12hη(hη−1)/2

×O
(
(d ((α+ β − 1 + αβ) (L− 1) + β (α+ 1)))d+hη

)
(18)

Proof. We first show that the functions f(x, ·) ∈ FL
A are

Pfaffian functions with complexity ((α+ β − 1 + αβ)(L−
1)+αβ, β, hη), where FL

A can contain both fully-connected
layers and convolutional layers. Assume the Pfaffian chain
which defines activation function φ(t) is (φ1(t), . . . , φη(t)),
and then sl is constructed by applying all φi, 1 ≤ i ≤ η
on all the neurons up to layer l − 1, i.e., f l ∈ F̄ l

A, l ∈
{1, . . . , L − 1}. As the first step, we need to get the degree
of f l in the chain sl. Since f l = 1

pl−1

∑nl−1

k=1 wk(φ(f
l−1
k,1 ) +

· · ·+φ(f l−1
k,pl−1

)) and φ is a Pfaffian function, f l is a polyno-
mial of degree β in the chain sl. Then, it remains to show
that the derivative of each function in sl, i.e., ∂φj(f

l)
∂x|i

=

dφj(f
l)

df l
∂f l

∂x|i
, can be defined as a polynomial in the functions

of the chain and the input. For average pooling, by iteratively
using chain rule, we can obtain that the highest degree terms
of ∂f l

∂x|i
are in the form of

∏l−1
i=1

dφ(fi)
dfi . Following the lemma

2 in (Bianchini and Scarselli 2014), we obtain the complex-
ity of f(x, ·) ∈ FL

A .
Furthermore, the sum of two Pfaffian functions

f1 and f2 defined by the same Pffaffian chain of
length η with complexity (α1, β1, η) and (α2, β2, η)
respectively is a Pfaffian function with complexity
(max(α1, α2),max(β1, β2), η) (Gabrielov and Vorobjov
2004). Therefore, f(x, i)− f(x, j), i �= j is a Pfaffian func-
tion with complexity ((α+β−1+αβ)(L−1)+αβ, β, hη).

According to (Zell 1999), since Si is defined by K −
1 sign conditions (inequalities or equalities) on Pfaffian
functions, and all the functions defining Si have com-
plexity at most ((α + β + αβ)(L − 1) + αβ, β, hη),
B(Si) can be upper bounded by (K − 1)d2hη(hη−1)/2 ×
O((d ((α+ β − 1 + αβ) (L− 1) + β (α+ 1)))

d+hη
).

Summing over all i ∈ {1, . . . ,K − 1}, we get the results
stated in Theorem 3.

Theorem 3 upper bounds the Betti numbers based com-
plexity for general activation functions. For specific active
functions, we can get the following results: when φ =
arctan(·) and d ≤ 2h, since arctan is of complexity
(3, 1, 2), we have N(FL

A) ≤ (K−1)d+12h(2h−1)O((d(L−
1) + d)d+2h); when φ = tanh(·) and n ≤ h, since
tanh is of complexity (2, 1, 1), we have N(FL

A) ≤ (K −
1)d+12h(h−1)/2O((d(L− 1) + d)d+h).

Basically, Theorem 3 indicates that in the multi-class set-
ting, the Betti numbers based complexity grows with the in-
creasing depth L. As a result, deeper nets will have larger
representation power than shallower nets, which makes
deeper nets fit better to the training data and achieve smaller
empirical margin error. This indicates that depth has its pos-
itive impact on the test performance of DNN.
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(a) MNIST (b) CIFAR-10

Figure 1: The influence of depth on empirical margin error.

Actually, above discussions about impact of depth on rep-
resentation power are consistent with our empirical findings.
We conducted experiments on two datasets, MNIST (LeCun
et al. 1998) and CIFAR-10 (Krizhevsky 2009). To inves-
tigate the influence of network depth L, we trained fully-
connected DNN with different depths and restricted number
of hidden units. The experimental results are shown in Fig-
ure 1 and indicate that no matter on which dataset, deeper
networks have smaller empirical margin errors than shal-
lower networks for most of the margin coefficients.

3.3 Discussions

Based on discussions in previous two subsections, we can
see that when the depth L of DNN increases, (1) the RA term
in margin bound will increase (according to Theorem 2); (2)
the empirical margin error in margin bound will decrease
since deeper nets have larger representation power (accord-
ing to Theorem 3). As a consequence, we can come to the
conclusion that, for DNN with restricted number of hidden
units, arbitrarily increasing depth is not always good since
there is a clear tradeoff between its positive and negative im-
pacts on test error. In other words, with the increasing depth,
the test error of DNN may first decrease, and then increase.

Actually this theoretical pattern is consistent with our em-
pirical observations on different datasets. We used the same
experimental setting as that in the subsection 3.2 and re-
peated the training of DNN (with different random initializa-
tions) for 5 times. Figure 2 reports the average and minimum
test error of 5 learned models. We can observe that as the
depth increases, the test error first decreases (probably be-
cause increased representation power overwhelms increased
RA capacity); and then increase (probably because RA ca-
pacity increases so quickly that representation power cannot
compensate for negative impact of increased capacity).

4 Large Margin Deep Neural Networks

From the discussions in Section 3, we can see that one may
have to pay the cost of larger RA capacity when trying to
obtain better representation power by increasing the depth
of DNN (not to mention that the effective training of very
deep neural networks is highly non-trivial (Glorot and Ben-
gio 2010; Srivastava, Greff, and Schmidhuber 2015)). Then
a nature question is whether we can avoid this tradeoff, and
achieve good test performance in an alternative way.

(a) MNIST (b) CIFAR-10

Figure 2: The influence of depth on test error.

To this end, let us revisit the positive impact of depth:
it actually lies in that deeper neural networks tend to have
larger representation power and thus smaller empirical mar-
gin error. Then the question is: can we directly minimize em-
pirical margin error? Our answer to this question is yes, and
our proposal is to add a margin-based penalty term to current
loss function. In this way, we should be able to effectively
tighten margin bound without manipulating the depth.

One may argue that widely used loss functions (e.g., cross
entropy loss and hinge loss) in DNN are convex surrogates
of margin error by themselves, and it might be unnecessary
to introduce an additional margin-based penalty term. How-
ever, we would like to point out that unlike hinge loss for
SVM or exponential loss for Adaboost, which have theoreti-
cal guarantee for convergence to margin maximizing separa-
tors as the regularization vanishes (Rosset, Zhu, and Hastie
2003), there is no optimization consistency guarantee for
these losses used in DNN since neural networks are highly
non-convex. Therefore, it makes sense to explicitly add a
margin-based penalty term to loss function, in order to fur-
ther reduce empirical margin error during training process.

4.1 Algorithm Description

We propose adding two kinds of margin-based penalty terms
to the original cross entropy loss4. The first penalty term is
the gap between the upper bound of margin (i.e., 1)5 and the
margin of the sample (i.e., ρ(f ;x, y)). The second one is the
average gap between upper bound of margin and the differ-
ence between the predicted output for the true category and
those for all the wrong categories. It can be easily verified
that the second penalty term is an upper bound of the first
penalty term. Mathematically, the penalized loss functions
can be described as follows (for ease of reference, we call
them C1 and C2 respectively): for model f , sample x, y,

C1(f ;x, y) =C(f ;x, y) + λ
(
1− ρ(f ;x, y)

)2

,

C2(f ;x, y) =C(f ;x, y)

+
λ

K − 1

∑
k �=y

(
1− (f(x, y)− f(x, k))

)2

.

4Although we take the most widely-used cross entropy loss as
example, these margin-based penalty terms can also be added to
other loss functions.

5Please note that, after softmax operation, the outputs are nor-
malized to [0, 1]
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MNIST CIFAR-10
DNN-C (%) 0.899± 0.038 18.339± 0.336

LMDNN-C1 (%) 0.734± 0.046 17.598± 0.274
LMDNN-C2 (%) 0.736± 0.041 17.728± 0.283

Table 1: Test error (%) of DNN-C and LMDNNs.

(a) MNIST (b) CIFAR-10

Figure 3: Empirical margin error of LMDNNs.

We call the algorithms that minimize the above new
loss functions large margin DNN algorithms (LMDNN).
For ease of reference, we denote LMDNN minimizing C1

and C2 as LMDNN-C1 and LMDNN-C2 respectively, and
the standard DNN algorithms minimizing C as DNN-C.
To train LMDNN, we also employ the back propagation
method.

4.2 Experimental Results

Now we compare the performances of LMDNNs with DNN-
C. We used well-tuned network structures in the Caffe (Jia
et al. 2014) tutorial (i.e., LeNet6 for MNIST and AlexNet7
for CIFAR-10) and all the tuned hyper parameters on the
validation set.

Each model was trained for 10 times with different initial-
izations. Table 1 shows mean and standard deviation of test
error over the 10 learned models for DNN-C and LMDNNs
after tuning margin penalty coefficient λ. We can observe
that, on both MNIST and CIFAR-10, LMDNNs achieve
significant performance gains over DNN-C. In particular,
LMDNN-C1 reduce test error from 0.899% to 0.734%
on MNIST and from 18.399% to 17.598% on CIFAR-10;
LMDNN-C2 reduce test error from 0.899% to 0.736% on
MNIST and from 18.399% to 17.728% on CIFAR-10.

To further understand the effect of adding margin-based
penalty terms, we plot empirical margin errors of DNN-C
and LMDNNs in Figure 3. We can see that by introduc-
ing margin-based penalty terms, LMDNNs indeed achieve
smaller empirical margin errors than DNN-C. Furthermore,
the models with smaller empirical margin errors really
have better test performances. For example, LMDNN-C1

achieved both smaller empirical margin error and better test
performance than LMDNN-C2. This is consistent with The-
orem 3, and in return indicates reasonability of our theorem.

6http://caffe.berkeleyvision.org/gathered/examples/mnist.html
7http://caffe.berkeleyvision.org/gathered/examples/cifar10.

html

(a) MNIST (b) CIFAR-10

Figure 4: Test error of LMDNNs with different λ.

We also report mean test error of LMDNNs with differ-
ent margin penalty coefficient λ (see Figure 4). In the figure,
we use dashed line to represent mean test error of DNN-C
(corresponding to λ = 0). From the figure, we can see that
on both MNIST and CIFAR-10, (1) there is a range of λ
where LMDNNs outperform DNN-C; (2) although the best
test performance of LMDNN-C2 is not as good as that of
LMDNN-C1, the former has a broader range of λ that can
outperform DNN-C in terms of the test error. This indicates
the value of using LMDNN-C2: it eases the tuning of hyper
parameter λ; (3) with increasing λ, test error of LMDNNs
will first decrease, and then increase. When λ is in a reason-
able range, LMDNNs can leverage both good the optimiza-
tion property of cross entropy loss in training process and the
effectiveness of margin-based penalty term, and thus achieve
good test performance. When λ becomes too large, margin-
based penalty term dominates cross entropy loss. Consider-
ing that margin-based penalty term may not have good opti-
mization property as cross entropy loss in the training pro-
cess, the drop of test error is understandable.

5 Conclusion and Future Work

In this work, we have investigated the role of depth in DNN
from the perspective of margin bound. We find that while the
RA term in margin bound is increasing w.r.t. depth, the em-
pirical margin error is decreasing instead. Therefore, arbi-
trarily increasing the depth might not be always good, since
there is a tradeoff between the positive and negative impacts
of depth on test performance of DNN. Inspired by our the-
ory, we propose two large margin DNN algorithms, which
achieve significant performance gains over standard DNN
algorithm. In the future, we plan to study how other factors
influence the test performance of DNN, such as unit allo-
cations across layers and regularization tricks. We will also
work on the design of effective algorithms that can further
boost the performance of DNN.
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