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Abstract

We present a novel multitask learning framework called
multitask generalized eigenvalue program (MTGEP), which
jointly solves multiple related generalized eigenvalue prob-
lems (GEPs). This framework is quite general and can be
applied to many eigenvalue problems in machine learning
and pattern recognition, ranging from supervised learning to
unsupervised learning, such as principal component analysis
(PCA), Fisher discriminant analysis (FDA), common spatial
pattern (CSP), and so on. The core assumption of our ap-
proach is that the leading eigenvectors of related GEPs lie
in some subspace that can be approximated by a sparse lin-
ear combination of basis vectors. As a result, these GEPs
can be jointly solved by a sparse coding approach. Empiri-
cal evaluation with both synthetic and benchmark real world
datasets validates the efficacy and efficiency of the proposed
techniques, especially for grouped multitask GEPs.

Introduction

The generalized eigenvalue problem (GEP) requires finding
the solution of a system of equations:

Aw = λBw, (1)

with respect to the pair (λ,w), where λ is the generalized
eigenvalue, w ∈ R

d, w �= 0, is the corresponding general-
ized eigenvector, and A,B ∈ R

d×d. The GEP is useful as
it provides an efficient approach to optimize the Rayleigh
quotient

max
w �=0

w�Aw

w�Bw
, (2)

which arises in several pattern recognition and machine
learning tasks. For example, both principal component anal-
ysis (PCA) (Jolliffe 2002) and Fisher discriminant analysis
(FDA) (Bishop 2006), can be formulated as special cases of
this problem. In most machine learning applications, A and
B are estimated from data; in PCA, B = I , the identity ma-
trix, and A is the covariance matrix estimated from data.

Although the GEP has been well studied over the
years (Bie, Cristianini, and Rosipal 2005), to the best of
our knowledge no one has tackled the problem of how to
jointly solve multiple related GEPs, by sharing the common
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knowledge so that learning performance is better than inde-
pendently solving each single GEP. This issue is especially
important when the data for each GEP is insufficient, result-
ing in unreliable estimates of A and B, and therefore a poor
estimate of the eigenvector w . Such a scenario may arise in
many machine learning applications, including but not lim-
ited to:

• Supervised learning: perform multitask classification us-
ing FDA (Bishop 2006).

• Unsupervised learning: find principal components for
multiple related datasets, yet each dataset consists of very
few instances (Jolliffe 2002).

• Spatial filter for signal processing: design subject-
specific spatial filters with a few electroencephalogram
(EEG) data using common spatial pattern (CSP) algo-
rithm (Ramoser, Müller-Gerking, and Pfurtscheller 2000),
which is one of the most popular algorithms in brain-
computer interface (BCI) research (Wolpaw et al. 2002).
More recently, this technique has also been applied for
discriminative feature construction (Karampatziakis and
Mineiro 2014).

Some of these problems can be handled using existing
multitask learning techniques (Caruana 1997). However,
most previous work on multitask learning focuses only on
supervised learning (Evgeniou, Micchelli, and Pontil 2005;
Argyriou, Evgeniou, and Pontil 2008; Xue et al. 2007), has
not been extended to the GEP setting.

On the practical side, our work is motivated by the need
to improve EEG signal classification for Brain-Computer In-
terface (BCI) applications. Let X ∈ R

d×T be a segment of
multichannel EEG signals, where d is the number of chan-
nels and T is the number of sampled time points. The objec-
tive of a CSP algorithm is to design a series of spatial filters
W by simultaneous diagonalization of two covariance ma-
trices of classes of EEG patterns for each subject (task):

W�Σ(+)W = Λ(+), (3)

W�Σ(−)W = Λ(−),

such that Λ(+) and Λ(−) are diagonal matrices and Λ(+) +
Λ(−) = I , where Σ(c) = 1

|Ic|
∑

i∈Ic
XiX

�
i and Ic (c ∈

{+,−}) is the set of indices of two classes of EEG patterns
(e.g., left/right hand motor imagery). It can be shown that
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Eq. 3 can be solved by finding a series of eigenvectors of
Eq. 1, where A = Λ(+) and B = Λ(−) (Blankertz et al.
2008). After designing the spatial filters, the log-variances
of the spatially filtered EEG signals are classified by FDA,
an efficient and popular classifier for BCI (Lotte et al. 2007),
which is also a GEP. In most BCI applications, however, the
EEG signals of each subject are very limited, and therefore
the learned spatial filter w can be unreliable. On the other
hand, the EEG signals of different subjects may have some
common information that can be shared. To address this is-
sue, we propose the multitask generalized eigenvalue pro-
gram (MTGEP) algorithm, which jointly solves K related
GEPs. By leveraging knowledge of other GEPs, we expect
the eigenvectors found by MTGEP is more reliable than the
ones found by solving individual GEPs.

Method

We begin by formulating the multitask GEP (MTGEP), then
present the algorithm for finding the leading eigenvector
(MTGEP-L), followed by an extension that solves the entire
spectrum of Eq. 1.

Problem Formulation

Let S = {(A1, B1), . . . , (AK , BK)} ∈ R
d×d be the matrix

pairs of K related GEPs. In our application, we assume that
{Ak} ∈ S

d
+ and {Bk} ∈ S

d
++, ∀k = {1, . . . ,K}, where

S
d
+ (Sd++) denotes the set of symmetric positive semidefinite

(definite) d× d matrices defined over R. The objective is to
maximize the summation of K Rayleigh quotients:

max
w1,...,wK

1

K

K∑
k=1

w�
k Akwk

w�
k Bkwk

. (4)

As Eq. 4 is decoupled with respect to wk, it can be maxi-
mized by solving K GEPs individually. However if the data
available for each task is small compared to its dimension,
the estimates of A and B will be unreliable. In the PCA
problem for example, where B = I and A is the estimated
covariance matrix, if the number of data points Nk � d for
each task, Ak cannot represent the covariance of each task
properly, it is unlikely that the leading eigenvector solved by
GEP will correctly maximize the variance of the data.

We tackle this problem by assuming that the K GEPs are
related in a way such that their eigenvectors lie in some sub-
space that can be approximated by a sparse linear combi-
nation of a number of basis vectors. More formally, assume
that there is a dictionary D ∈ R

d×M (M < K), and the
leading eigenvector of each task can be represented by a sub-
set of the basis vectors of D. In other words, let γk ∈ R

M

be the sparse representation of the kth task with respect to
D, then the objective function Eq. 4 can be formulated as:

max
D

1

K

K∑
k=1

max
γk

γ�
k D�AkDγk

γ�
k D�BkDγk

− ρ||γk||0, (5)

s.t. ||D||F ≤ μ,

where ||γ||0 is the �0-norm of γ, denoting the number of
nonzero elements of γ, ||D||F = (tr(DD�))1/2 is the

Algorithm 1 MTGEP for Leading Eigenvector (MTGEP-L)
Input: {(A1, B1), . . . , (AK , BK)}, maxIter, # basis vectors M ,
regularization param. ρ
1: Solve each GEP to obtain {w1, . . . , wK}
2: Initialize t = 0, W (0) = [w1; . . . ;wK ]

3: Initialize D(0) to the first M columns of U , where U is the
obtained by singular value decomposition of W (0): W (0) =
USV �.

4: while t < maxIter do
5: for k = 1, . . . ,K do

6: Solve the kth SGEP (Eq. 6) to obtain γ
(t)
k .

7: end for
8: Update D(t) by solving Eq. 8.
9: Normalize D(t) such that ||D(t)||F = M .

10: t = t+ 1
11: if converge then
12: break
13: end if
14: end while

Output: D = D(t), Γ = [γ
(t)
1 , . . . , γ

(t)
K ], W = DΓ

Frobenius norm of matrix D. The �0 regularizer encourages
γ to be sparse so that the knowledge embedded in D can be
selectively shared. The norm constraint on D prevents the
dictionary from being too large and overfitting the available
data.

We see that in Eq. 5 that the K GEPs are coupled via the
dictionary D that is shared across tasks, and therefore the
K GEPs can be jointly learned in the context of multitask
learning.

MTGEP for Leading Eigenvector

The objective function (Eq. 5) is not concave therefore we
adopt the alternating optimization approach to obtain a lo-
cal maximum (Bezdek and Hathaway 2003). We apply the
following two optimization step alternately:

1. Sparse coding: given a fixed dictionary D, update sparse
representation γk for each task.

2. Dictionary update: given fixed Γ = [γ1; . . . ; γK ], update
the dictionary D.

The proposed MTGEP-L for optimizing the leading eigen-
vector according to this approach is outlined in Algorithm 1,
with details of each optimization step described next.

Sparse Coding Given a fixed dictionary D, Eq. 5 is de-
coupled and can be optimized by solving K individual
GEPs:

γk = argmax
γ

γ�Pkγ

γ�Qkγ
− ρ||γ||0, (6)

where Pk = D�AkD and Qk = D�BkD. Eq. 6 is
called a sparse generalized eigenvalue problem (SGEP) and
has been studied in (Moghaddam, Weiss, and Avidan 2006;
Sriperumbudur, Torres, and Lanckriet 2007; Song, Babu,
and Palomar 2014). In this work, we adopt the bi-directional
search (Moghaddam, Weiss, and Avidan 2006) and iter-
atively reweighed quadratic minorization (IRQM) algo-
rithm (Song, Babu, and Palomar 2014) to solve Eq. 6, and
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the better empirical results between these two are reported
in our experimental section.

Dictionary Update We initialize D using the approach
proposed by (Kumar and Daumé III 2012). We first solve
each GEP individually to obtain K leading eigenvectors
{w1, . . . , wK}, one for each task. Then the dictionary D
is initialized as the first M left singular vectors of W (0) ∈
R

d×K , where W (0) is constructed by {w1, . . . , wK}, one
for each column.

Given a fixed Γ = [γ1, . . . , γK ], the optimization problem
(Eq. 5) becomes

D(t) = argmax
D

K∑
k=1

γ
(t)�
k D�AkDγ

(t)
k

γ
(t)�
k D�BkDγ

(t)
k

. (7)

By applying the property of vectorization operator that
γ�D�ΣDγ = vec(D)�(Σ ⊗ γγ�)vec(D) to Eq. 7, we have
the following equivalent objective function:

D(t) = argmax
D

K∑
k=1

vec(D)�
(
Ak ⊗ γ

(t)
k γ

(t)�
k

)
vec(D)

vec(D)�
(
Bk ⊗ γ

(t)
k γ

(t)�
k

)
vec(D)

,

(8)
where vec(·) is the vectorization operator and ⊗ is Kro-
necker product. Eq. 8 is a nonconave unconstrained opti-
mization problem, but a local maximum can be found by
standard gradient based algorithm, using D(t−1) as a warm
start for computing D(t). As the Rayleigh quotient is in-
variant with respect to its argument scaling, we simply nor-
malize D after each update step such that ||D||F = μ with
μ = M : vec(D) = Mvec(D)

||D||F .

Convergence Analysis

Let L(D,Γ) = 1
K

∑K
k=1

γ�
k D�AkDγk

γ�
k

D�BkDγk
−ρ||γk||0, the following

lemma states the convergence of Algorithm 1.

Lemma 1. Updating Γ and D by optimizing Eq. 6 using
IRQM and Eq. 8 will monotonically increase the value of
L(D,Γ), hence Algorithm 1 converges.

Proof. By the convergence property of IRQM, the value
sequence generated by IRQM is non-decreasing and con-
verges to a stationary point of a equivalent problem of
Eq. 6 (Song, Babu, and Palomar 2014). Therefore, we
have L(D(t),Γ(t)) ≤ L(D(t),Γ(t+1)). In addition, when
using D(t) as a warm start for each dictionary update
step, we have L(D(t),Γ(t+1)) ≤ L(D(t+1),Γ(t+1)), hence
L(D(t),Γ(t)) ≤ L(D(t+1),Γ(t+1)). As we also assume that
{Bk} ∈ S

d
++, ∀k = {1, . . . ,K}, then L(D,Γ) is upper

bounded, and the lemma holds.

MTGEP for Entire Spectrum

The algorithm presented in above section only finds the
largest eigenvalues (one per task) and corresponding eigen-
vectors. In this section, we show how to apply a deflation
method based on the Lagrange multiplier algorithm (Bert-
sekas 1982) to solve the entire spectrum of multitask GEP.

Algorithm 2 Multitask Generalized Eigenvalue Program
(MTGEP)
Input: {(A1, B1), . . . , (AK , BK)}, number of generalized eigen-
vectors r,
1: A

(1)
k = Ak, ∀k = {1, . . . ,K}

2: for i = 1, . . . , r do

3: Solve D(i), Γ(i) and W (i) for
{(A(i)

1 , B1), . . . , (A
(i)
K , BK)} using MTGEP-L algo-

rithm.
4: Deflate {A(i)

1 , . . . , A
(i)
K } using Eq. 11.

5: end for

Output: D = {D(1), . . . , D(r)}, Γ = {Γ(1), . . . ,Γ(r)} and
W = {W (1), . . . ,W (r)}.

Suppose we have already obtained r − 1 eigenvectors
{w1, . . . , wr−1}, then the rth eigenvector of Eq. 1 can be
obtained by solving the following constrained optimization
problem:

wr = argmax
w

w�Aw (9)

s.t. w�
r Bwr = 1,

w�
r Bwi = 0, ∀i = {1, . . . , r − 1}.

By applying the method of Lagrange multiplier, Eq. 9 can
be reformulated as the following GEP:

(I −BWr−1W
�
r−1)Aw = λBw, (10)

where Wr−1 = [w1, . . . , wr−1] ∈ R
d×(r−1). Let A(1) = A,

then Eq. 10 leads to the following deflation technique for
Ar, r = {2, 3, . . . }:

A(r) = (I −BWr−1W
�
r−1)A, (11)

By the property of the Lagrange multiplier method, we
immediately have the following proposition:
Proposition 1. Let λ1 ≤ . . . λr−1 be the (r − 1) largest
eigenvalues of Eq. 1, and w1, . . . , wr−1 be the correspond-
ing eigenvectors, then the leading eigenvalue-eigenvector
pair of Eq. 10 is the rth largest eigenvalue and correspond-
ing eigenvector of Eq. 1. In addition, Eq. 10 has (r − 1)
eigenvalues of zero, and the correspond eigenvectors are
Wr−1.

For the multitask GEP on round i, i ∈ {1, . . . , r}, we
assign a new dictionary Di, based on the fact that the eigen-
vectors corresponding to different eigenvalues seldom lie in
the same subspace, which is especially true for the case of
PCA, where the eigenvectors are orthogonal to each other.
Therefore, it is not necessary to force the eigenvectors corre-
sponding to different eigenvalues to share the dictionary. In
addition, this approach requires less computation for sparse
coding and dictionary update at each iteration and can also
avoid overfitting. The complete MTGEP algorithm is given
in Algorithm 2.

Experiments

We first evaluate MTGEP in the context of multitask PCA
(MultiPCA) using three synthetic data sets. We then test
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Figure 1: Learning performances with different settings of Synth. 1. (a): with different feature dimensions, (b): different number
of training samples, (c): different number of tasks for each group.

MTGEP in the FDA setting (MultiFDA) using three multi-
task classification benchmarks. Finally, we apply MTGEP to
spatial filter design and propose MultiCSP for multi-subject
EEG classification in the BCI application. In all experi-
ments, the hyper-parameters (e.g., M , ρ) are selected by grid
search and cross-validation.

MultiPCA for Multitask Dimensionality Reduction

Synth. 1: In the first synthetic dataset, we generate G = 5
disjoint groups of d-dimensional Gaussian distributed ran-
dom variables. Within each group, we generate J tasks, each
with 500 instances (Ntrain instances for training, the rest for
testing). For all tasks, the leading eigenvalue of the covari-
ance matrix is 5; remaining eigenvalues are sampled from a
one-side normal distribution. Eigenvectors of the covariance
matrices are randomly generated, and are the same within
each group. We compare the average variance explained by
leading eigenvectors found by MTGEP-L to these:

• SinglePCA: apply traditional PCA on each individual
task.

• PoolPCA: apply traditional PCA jointly on all tasks.
• SVDPCA: the first column of the initial dictionary D(0)

found by MTGEP.

We first set J = 50, d = 30, Ntrain = 5, and the vari-
ances explained by first principal component obtained by
different approaches are reported in Table 1. We observe that
MultiPCA significantly outperforms the other approaches.
Fig. 1 shows how the learning performances of different al-
gorithms vary with different settings. In Fig. 1(a) we set
J = 50 and Ntrain = 5, and vary the dimension d of the
samples. We observe that the performance of SinglePCA de-
creases as the feature dimension increases due to less re-
liable estimates of the principal component, while Multi-
PCA is robust to the increase in dimension. In Fig. 1(b) we
set J = 50 and d = 30, and vary the amount of training
data, Ntrain. We observe that MultiPCA significantly bene-
fits from other tasks when the number of training instances
for each task is small. Finally, we consider the performances
of MultiPCA with different tasks for each group. We set
J = 50, Ntrain = 5, d = 30, and vary J from 1 to 100.

Table 1: Variance explained by each algorithm on synthetic
data sets, with d = 30, G = 5, J = 50, Ntrain = 5 for
Synth.1 and Synth.3, and d = 20, G = 3, J = 50, Ntrain =
10 for Synth.2.

Synth. 1 Synth. 2 Synth. 3
1st 2nd 3rd Total

Single 2.480 3.406 5.423 3.445 2.512 11.380
Pool 2.181 2.291 4.096 3.455 3.058 10.609
SVD 2.172 2.125 3.058 2.740 2.287 8.085
Multi 4.437 4.586 7.529 5.137 4.522 17.188

Fig. 1(c) shows that MultiPCA does not improve the learn-
ing performance when J = 1, since in this case there is no
common knowledge to be shared among tasks. As the num-
ber of tasks per group increases, the performance of Multi-
PCA improves by leveraging the knowledge from other tasks
within each group.
Synth. 2: The second dataset is generated using the approach
proposed by (Kumar and Daumé III 2012). The goal is to
investigate the effectiveness of MultiPCA on grouped tasks
with shared structure. The dataset consists of G = 3 groups
of datasets with d = 20 features, J = 50 for each group, and
Ntrain = 10 per task. The leading eigenvectors are gener-
ated from 4 latent vectors randomly drawn from a Gaussian
distribution with zero mean and identity covariance matrix.
The leading eigenvectors of the first group are generated by
linearly combining the first two latent vectors, with the coef-
ficients combination for each task i.i.d. sampled from a nor-
mal distribution. Similarly, the leading eigenvectors of the
second group are linear combinations of second and third la-
tent vectors and the leading eigenvectors of the third group
are linear combinations of the last two latent vectors.

The results shown in Table 1 confirm that MultiPCA
works well on the tasks with overlapped structure. Fig. 2
illustrates the sparsity structure recovered by MultiPCA for
Sythn. 1 and 2, showing that MultiPCA recovers most of the
task structure for both disjoint and overlapped sparsity pat-
terns.
Synth. 3: This is the same as Synth. 1, except that the first
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Figure 2: Sparsity recovery by MultiPCA. Top to bottom:
True model of Synth. 1; recovered sparsity structure for
Synth. 1; true model of Synth. 2; recovered sparsity struc-
ture for Synth. 2.

three leading eigenvalues for the covariance matrix of each
task are 9, 7, 5 respectively. We use the deflation approach in
Algorithm 2 to find the first three principal components. Re-
sults are presented in Table 1. The sum of the first three vari-
ances explained by MultiPCA is 17.188, much larger than
that of any other approaches, which highlights the effective-
ness of MTGEP to extract multiple components.

MultiFDA for Multitask Classification

Next, we evaluate MultiFDA algorithm on three common
multitask learning benchmarks: the landmine dataset (Xue
et al. 2007), and USPS and MNIST datasets (Kang, Grau-
man, and Sha 2011). For more detailed description of the
datasets and experimental setting, see (Kang, Grauman, and
Sha 2011; Ruvolo and Eaton 2013). Besides the baseline ap-
proach (SingleFDA), we also include comparison with the
grouping and overlapping multitask learning (GO-MTL) al-
gorithm (Kumar and Daumé III 2012), an existing multitask
supervised learning approach. Table 2 summarizes the re-
sults. We see that MultiFDA outperforms single task learn-
ing and performs comparably to GO-MTL. We note that for
the digit datasets, the improvements of the multitask learn-
ing approach over single task approach is not significant,
which is consistent with previous analysis (Kang, Grauman,
and Sha 2011; Kumar and Daumé III 2012).

MultiCSP for Multi-subject EEG Classification

Finally, we evaluate MTGEP for extracting multitask com-
mon spatial patterns (MultiCSP) in EEG signals. One bench-
mark dataset, dataset IIa from BCI competition IV1 is used
for performance evaluation. The dataset consists of EEG sig-
nals from 9 subjects who are instructed with visual cues to
perform left hand, right hand, foot, and tongue motor im-
agery . In this study, only the EEG signals from the left

1http://www.bbci.de/competition/iv/.

Table 2: Results on multitask classification tasks: the area
under the ROC curve (AUC) for the landmine dataset, and
classification accuracy (%) for USPS and MNIST datasets.

Landmine USPS MNIST
SingleFDA 74.9 90.9 89.1
MultiFDA 77.8 91.9 89.8
GO-MTL 78.0 92.8 86.6

hand and right hand motor imagery are used. The signals
are recorded using 22 channels, sampled at 250 Hz, and
bandpass-filtered in 0.5-100Hz. For each subject, the EEG
signals consist of a training set and a test set, each contain-
ing 72 trials per EEG pattern. The main challenge of this
problem is that the underlying task relatedness is unknown
and the EEG data structure can be complex (Müller, Ander-
son, and Birch 2003). In our experiments, the EEG signals
from 0.5 to 2.5 s after visual cue are used, and the data are
further bandpass filtered to 5-30 Hz, since this time segment
and frequency band include the signals involved in perform-
ing motor imagery. The first and last three eigenvectors of
Eq. 3 are used as spatial filters, and then the logarithm of
the variance of spatially filtered EEG signals are used as the
input for FDA classification.

The results in Table 3 show the that the multitask learn-
ing algorithms outperform single task learning approach for
most subjects. In particular, the combination of MultiCSP
and MultiFDA achieves the best performance, yielding an
average improvement of 2.55% in classification accuracy.
More important, it performs at least as well as single task
learning approach for each subject. In other words, the learn-
ing performances of all the subject-specific spatial filters and
classifiers benefit from knowledge shared between subjects.

We further investigate the effectiveness of MTGEP with
insufficient data by varying the number of training samples
per task, and the results are shown in Fig. 3. We can observe
that the performance gap between single task learning ap-
proach and MTGEP is larger when fewer training samples
are used. In other words, the estimation of covariance ma-
trix, as well as between-class scatter matrix and within-class
scatter matrix, suffer insufficient data problem, which dete-
riorates the learning performance. The less training samples
are available, the more necessary it is to share the knowledge
across the tasks, and the more significant the improvement
of MTGEP is, as it alleviates the unreliable estimation prob-
lem, which justify the effectiveness of our algorithm.

Related Work

Multitask learning has been actively studied in recent years.
While most previous work focuses on supervised learning,
no existing work deals with the problem in the context of
GEP. As the first attempt to solving multitask GEP, our work
formulates this problem within the framework of sparse cod-
ing (Olshausen and Field 1996). In this section, we briefly
review the literature that relates to sparse coding based trans-
fer and multitask learning algorithms.

In the context of transfer learning, the self-taught learning
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Table 3: Classification accuracy (%) of different algorithms for nine different subjects.

S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean
CSP+FDA 90.28 52.08 93.75 65.28 51.39 62.50 79.17 89.58 88.19 74.69
CSP+MultiFDA 91.67 59.03 93.75 65.97 50.69 65.97 77.78 90.28 88.89 76.00
MultiCSP+FDA 92.36 56.25 93.75 65.97 50.69 63.89 81.25 92.36 88.19 76.08
MultiCSP+MultiFDA 92.36 56.94 93.75 66.67 54.86 65.28 84.03 93.06 88.19 77.24

10 20 30 40 50 60 70

66

68

70

72

74

76

Number of Training Samples

A
ve

ra
ge

 C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

 

 

CSP+FDA
CSP+MultiFDA
MultiCSP+FDA
MultiCSP+MultiFDA

Figure 3: Learning performances with different number of
training samples.

framework (Raina et al. 2007) applies sparse coding to con-
struct higher level features using unlabeled data in source
domain to improve the supervised learning performance in
target domain. The seminal work encoding common knowl-
edge into a dictionary via sparse coding for multitask learn-
ing is proposed in (Kumar and Daumé III 2012), where the
model parameters of the multiple tasks are assumed to lie
in a low dimensional subspace. Later, the generalization to
transfer learning and the related theoretical analysis are pre-
sented in (Maurer, Pontil, and Romera-Paredes 2013; 2014).
This method is applied for activity recognition (Zhou et al.
2013), with feature selection achieved by imposing �1 regu-
larization on the dictionary. More recently, it is generalized
to the context of lifelong learning (Ruvolo and Eaton 2013;
2014), and also applied to multitask reinforcement learning
(Ammar et al. 2014).

Multitask learning for spatial filter and/or classifier design
has also been studied in BCI community. The first attempt
to utilizing the multitask learning framework to BCI de-
sign is presented in (Alamgir, Grosse-Wentrup, and Altun
2010), where the model parameters of each task are assumed
to share a common Gaussian prior. By inferring the mean
and covariance from all tasks jointly, the features extracted
from brain signals of different subjects are interacted and the
learning performances are improved. In (Devlaminck et al.
2011), the spatial filters of each subject are decomposed into
the sum of a global and a subject-specific filter and the CSP
algorithm is reformulated as a sum of regularized GEPs.
More recently, (Samek, Kawanabe, and Muller 2014) has re-

formulated multitask CSP algorithm as a regularized diver-
gence maximization problem, where the regularization term
is the Kullback-Leibler (KL) divergence of different sub-
jects. In (Kang and Choi 2014), a non-parametric Bayesian
approach with Indian Buffet process priors is proposed for
multitask CSP, where spatial patterns are modeled by an in-
finite latent feature model, assuming that a latent subspace is
shared across subjects. While all of these methods are exclu-
sively designed for the BCI application, MTGEP is a more
general algorithm that can be applied to more scenarios.

While the structure we adopt to share knowledge across
the tasks is similar to (Kumar and Daumé III 2012; Mau-
rer, Pontil, and Romera-Paredes 2013), we emphasize that
the learning contexts and optimization techniques are totally
different. MTGEP is a new framework that jointly solves
multiple generalized eigenvalue problems, rather than tradi-
tional multitask learning paradigm, which substantially en-
riches the possibilities for multitask learning.

Discussion

This paper introduces a new framework to solve multitask
generalized eigenvalue problems, which can be used within
a wide variety of machine learning approaches, such as mul-
titask PCA, multitask FDA and more. The framework relies
on the core assumption that the multitask problem can be
captured by multiple GEPs whose eigenvectors lie in some
subspace that can be represented by a set of shared basis
vectors. We solve the resulting optimization problem via si-
multaneous sparse coding and dictionary learning. The pro-
posed framework is validated within several task categories
(both unsupervised and supervised) using both synthetic and
real datasets. The empirical results show that solving re-
lated GEPs indeed benefits from our MTGEP approach, es-
pecially for GEPs with well grouped or overlapped struc-
tures.

The work opens up several avenues for future work. First,
the MTGEP framework can also be extended for transfer
learning and lifelong learning as in (Maurer, Pontil, and
Romera-Paredes 2013; Ruvolo and Eaton 2013). Of particu-
lar interest is a deeper investigation of the use of MTGEP for
lifelong EEG signal classification system in BCI research.
In addition, there are promising directions for a theoretical
analysis of the generalization bound of MTGEP based on
Rademacher complexity (Bartlett and Mendelson 2002) and
a recently proposed inequality for multitask dictionary learn-
ing (Maurer, Pontil, and Romera-Paredes 2014).
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Kumar, A., and Daumé III, H. 2012. Learning task grouping
and overlap in multi-task learning. In ICML.

Lotte, F.; Congedo, M.; Lécuyer, A.; Lamarche, F.; and Ar-
naldi, B. 2007. A review of classification algorithms for
EEG-based brain–computer interfaces. Journal of Neural
Engineering 4(2):R1–R13.
Maurer, A.; Pontil, M.; and Romera-Paredes, B. 2013.
Sparse coding for multitask and transfer learning. In ICML.
Maurer, A.; Pontil, M.; and Romera-Paredes, B. 2014. An
inequality with applications to structured sparsity and mul-
titask dictionary learning. In COLT.
Moghaddam, B.; Weiss, Y.; and Avidan, S. 2006. General-
ized spectral bounds for sparse LDA. In ICML.
Müller, K.-R.; Anderson, C. W.; and Birch, G. E. 2003.
Linear and nonlinear methods for brain-computer interfaces.
IEEE Transactions on Neural Systems and Rehabilitation
Engineering 11(2):165–169.
Olshausen, B. A., and Field, D. J. 1996. Emergence of
simple-cell receptive field properties by learning a sparse
code for natural images. Nature 381(6583):607–609.
Raina, R.; Battle, A.; Lee, H.; Packer, B.; and Ng, A. Y.
2007. Self-taught learning: Transfer learning from unlabeled
data. In ICML.
Ramoser, H.; Müller-Gerking, J.; and Pfurtscheller, G. 2000.
Optimal spatial filtering of single trial EEG during imagined
hand movement. IEEE Transaction on Rehabilitation Engi-
neering 8(4):441–446.
Ruvolo, P., and Eaton, E. 2013. ELLA: An efficient lifelong
learning algorithm. In ICML.
Ruvolo, P., and Eaton, E. 2014. Online multi-task learning
via sparse dictionary optimization. In AAAI.
Samek, W.; Kawanabe, M.; and Muller, K.-R. 2014.
Divergence-based framework for common spatial patterns
algorithms. IEEE Reviews in Biomedical Engineering 7:50–
72.
Song, J.; Babu, P.; and Palomar, D. P. 2014. Sparse gener-
alized eigenvalue problem via smooth optimization. arXiv
preprint arXiv:1408.6686.
Sriperumbudur, B. K.; Torres, D. A.; and Lanckriet, G. R. G.
2007. Sparse eigen methods by d.c. programming. In ICML.
Wolpaw, J. R.; Birbaumer, N.; McFarland, D. J.;
Pfurtscheller, G.; and Vaughan, T. M. 2002. Brain–
computer interfaces for communication and control.
Clinical Neurophysiology 113(6):767–791.
Xue, Y.; Liao, X.; Carin, L.; and Krishnapuram, B. 2007.
Multi-task learning for classification with dirichlet process
priors. Journal of Machine Learning Research 8:35–63.
Zhou, Q.; Wang, G.; Jia, K.; and Zhao, Q. 2013. Learning
to share latent tasks for action recognition. In ICCV.

2121




