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Abstract

Semi-definite rank minimization problems model a wide range
of applications in both signal processing and machine learning
fields. This class of problem is NP-hard in general. In this
paper, we propose a proximal Alternating Direction Method
(ADM) for the well-known semi-definite rank regularized
minimization problem. Specifically, we first reformulate this
NP-hard problem as an equivalent biconvex MPEC (Mathe-
matical Program with Equilibrium Constraints), and then solve
it using proximal ADM, which involves solving a sequence
of structured convex semi-definite subproblems to find a de-
sirable solution to the original rank regularized optimization
problem. Moreover, based on the Kurdyka-Łojasiewicz in-
equality, we prove that the proposed method always converges
to a KKT stationary point under mild conditions. We apply
the proposed method to the widely studied and popular sen-
sor network localization problem. Our extensive experiments
demonstrate that the proposed algorithm outperforms state-
of-the-art low-rank semi-definite minimization algorithms in
terms of solution quality.
Keywords: Semidefinite Rank Minimization, MPEC, Sensor
Network Localization, Kurdyka-Łojasiewicz Inequality, Prox-
imal ADM, Convergence Analysis

1 Introduction

In this paper, we mainly focus on the following composite
rank regularized semi-definite optimization problem:

min
0�X�κI

g (A(X)− b) + λ rank(X), (1)

where λ and κ are strictly positive scalars, X ∈ R
n×n,

b ∈ R
m, the linear map A(·) : R

n×n → R
m is de-

fined as A(X) = [〈A(1),X〉, ..., 〈A(m),X〉]T , and the ma-
trices A(i) ∈ R

n×n, i = 1, ...,m are given. Moreover,
g(·) is a simple proper lower semi-continuous convex func-
tion such that its Moreau proximal operator proxg(c) �
minz g(z) + 1

2‖z− c‖22 can be efficiently computed.
Note that we constrain X with a ball of radius κ to en-

sure the boundedness of the solution. This is to guarantee
convergence; however, it interestingly does not increase the
computational complexity of our proposed solver much. If
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no prior information on κ is known, one can set it to a suffi-
ciently large value in practice. We remark that another equally
popular optimization model is to formulate Eq (1) into a rank-
constrianted/fixed-rank optimization problem. However, in
real applications, the true rank is usually unknown or, for
the constrained problem the low-rank solution may not even
exist. In this sense, Eq (1) is more appealing.

The optimization problem in Eq(1) describes many appli-
cations of interest to both the signal processing and machine
learning communities, including sensor network localiza-
tion (Biswas et al. 2006b), near-isometric embedding (Chin-
may Hegde 2015), low-dimensional Euclidean embedding
(Dattorro 2011; Recht, Fazel, and Parrilo 2010), non-metric
multidimensional scaling (Agarwal et al. 2007), low-rank
metric learning (Law, Thome, and Cord 2014; Liu et al. 2015;
Cong et al. 2013), low-rank kernel learning (Meka et al.
2008), optimal beamforming (Huang and Palomar 2010),
ellipsoid fitting (Saunderson et al. 2012), optimal power flow
(Louca, Seiler, and Bitar 2013), and cognitive radio networks
(Yu and Lau 2011), to name a few.

We mainly focus on positive semi-definite (PSD) opti-
mization. However, there are many applications (Candès and
Recht 2009; Zhang et al. 2013; 2012) such as matrix com-
pletion and image classification, where the solutions are not
necessarily PSD. Fortunately, one can resolve this issue by
embedding any general matrix with a larger PSD hull (refer
to Semi-definite Embedding Lemma in the supplementary
material). Moreover, many SDP optimization problems are
inherently low-rank. For example, for standard semi-definite
programming it has been proven that the rank of the solu-
tion is upper-bounded by � 12 (

√
8m+ 1 − 1)	, where m is

the number of equality constraints (Moscato, Norman, and
Pataki 1998). For metric learning (Roweis and Saul 2000)
and sensor network localization problems (Biswas and Ye
2004), the data distance metric often lives in a much lower
dimensional space.

In this paper, we give specific attention to solving the popu-
lar sensor network localization problem (Biswas et al. 2006b;
Zhang et al. 2010; Ji et al. 2013; Wang et al. 2008;
Krislock and Wolkowicz 2010), which falls into the low-
rank semi-definite optimization framework of Eq (1). The
problem of finding the positions of all the nodes given a few
anchor nodes and the relative distance information between
the nodes is called sensor network localization. It is an im-
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portant task in wireless network applications such as target
tracking, emergency response, logistics support and mobile
advertising (Ji et al. 2013).
Challenges and Contributions: There are mainly three chal-
lenges of existing work. (a) The general rank minimization
problem in Eq (1) is NP-hard due to the non-convexity and
discontinuous nature of the rank function. There is little
hope of finding the global minimum efficiently in all in-
stances. In order to deal with this issue, we reformulate the
rank minimization problem as an equivalent augmented op-
timization problem with a bilinear equality constraint using
a variational characterization of the rank function. Then, we
propose a proximal Alternating Direction Method (ADM)
to solve it. The resulting algorithm seeks a desirable solu-
tion to the original optimization problem without requir-
ing any approximation. (b) The second aspect is the sub-
optimality of the semi-definite optimization for sensor net-
work localization. Existing approximation solutions, such
as Schatten’s �p norm method (Ji et al. 2013), only give
sub-optimal solutions. We resolve this issue by considering
an exact method for solving general rank regularized opti-
mization. Experimental results show that our method is more
effective than the state-of-the-art. (c) The third aspect is the
convergence of the optimization algorithm. Many existing
convergence results for non-convex rank minimization prob-
lems tend to be either limited to unconstrained problems or
unapplicable to constrained optimization. We resolve this
issue by combining the complementarity reformulation of
the problem and a recent non-convex analysis tool called
the Kurdyka-Łojasiewicz inequality(Attouch and Bolte 2009;
Bolte, Sabach, and Teboulle 2014). In fact, we prove that
the proposed ADM algorithm converges to a first-order KKT
point under mild conditions. To the best of our knowledge,
this is the first multiplier method for solving rank minimiza-
tion problem with guaranteed convergence.
Organization and Notations: This paper is organized as
follows. Section 2 provides a brief description of the sensor
location network problem and the related work. Section 3
presents our proposed proximal ADM optimization frame-
work and Section 4 summarizes the experimental results.
Finally, Section 5 concludes this paper. Throughout this pa-
per, we use lowercase and uppercase boldfaced letters to
denote real vectors and matrices respectively. 〈X,Y〉 is the
Euclidean inner product of X with Y, σ(X) is the eigenval-
ues of X, and diag(x) is a diagonal matrix with x in the main
diagonal entries. Finally, ‖X‖H � (vec(X)TH vec(X))1/2

denotes the generalized vector norm.

2 Preliminaries and Related Work

2.1 Preliminaries

The sensor network localization problem is defined as fol-
lows. We are given c anchor points A = [a1,a2, ...,ac] ∈
R

c×d, whose locations are known, and u sensor points
S = [s1, s2, ..., su] ∈ R

u×d whose locations we wish to
determine. Furthermore, we are given the Euclidean distance
values χkj between ak and sj for some k, j, and χij be-
tween si and sj for some i, j. Specifically, we model the

noisy distance measurements as:

‖ak − sj‖22 = χ2
kj + εkj , ‖si − sj‖22 = χ2

ij + εij ,

where each (k, j) ∈ Πas and each (i, j) ∈ Πss are some
selected pairs of the known (noisy) distances χ. We denote
the noise variable as ε ∈ R

|Π|, where |Π| is the total number
of elements in Π � Πas ∪ Πss. Then, we formulate the
distances in the following matrix representation:

‖si − sj‖22 = eij
TSST eij,

‖ak − sj‖22 = ( ak
ej )

T
(

Id S

ST STS

)
( ak
ej ) ,

where eij ∈ R
u has 1 at the ith position, −1 at the jth posi-

tion and zero everywhere else. Hence, we formulate sensor
network localization as the following optimization:

Find S ∈ R
d×u,

s.t. eij
TSTSeij = d2

ij + εij , ‖εTij εTkj‖q ≤ δ

( ak
ej )

T
(

Id S

ST STS

)
( ak
ej ) = d2

kj + εkj . (2)

Here q can be 1 (for laplace noise), 2 (for Gaussian noise)
or ∞ (for uniform noise), see e.g. (Yuan and Ghanem 2015).
The parameter δ which depends on the noise level needs
to be specified by the user. By introducing the PSD hull
X = ( Id S

ST STS
) ∈ R

(u+d)×(u+d), we have the following
rank minimization problem (Ji et al. 2013):

min
X

rank(X)

s.t. 〈(0; eij)(0; eij)T ,X〉 = d2
ij + εij

〈(ak; ej)(ak; ej)T ,X〉 = d2
kj + εkj

X1:d,1:d = Id, ‖εTij εTkj‖q ≤ δ, X 
 0, (3)

It is not hard to validate that Eq (3) is a special case of the
general optimization framework in Eq (1).

2.2 Related Work

This subsection presents a brief review of existing related
work, from the viewpoint of sensor network localization and
semi-definite rank minimization algorithms.

Sensor network localization is a well studied problem in
distance geometry (Biswas et al. 2006a; Rallapalli et al. 2010;
Krislock and Wolkowicz 2010; Dattorro 2011). Several
convex/non-convex approaches have been proposed in the lit-
erature. Semi-definite programming relaxation for this prob-
lem was initially proposed by (Biswas and Ye 2004). The
basic idea of this approach is to convert the non-convex
quadratic constraints into linear matrix inequality constraints
by using an SDP lifting technique to remove the quadratic
term in the optimization problem. It was subsequently shown
that if there is no noise in the measured distances, the sensor
network localization problem can be solved in polynomial
time under a unique solution assumption (So and Ye 2007).
However, if the sensor network problem does not have a
unique solution, there must exist a higher rank localization
solution that minimizes the objective function. In this case,
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Table 1: Semi-definite rank minimization algorithms.

Optimization Algorithms and References Description

(a) convex trace norm (Fazel 2002; Candès and Tao 2010) rank(X) ≈ tr(X)

(b) nonlinear factorization (Burer and Monteiro 2003) rank(X) ≤ k, with X ≈ LLT, L ∈ R
n×k

(c) Schatten �p norm (Lu 2014; Nie, Huang, and Ding 2012) rank(X) ≈ ‖σ(X)‖p

(d) log-det heuristic (Fazel, Hindi, and Boyd 2003; Deng et al. 2013) rank(X) ≈ log det(X+ εI)

(e) truncated nuclear norm (Hu et al. 2013; Miao, Pan, and Sun 2015) rank(X) ≤ k ⇔ tr(X) = ‖σ(X)‖top-k

(f) pseudo-inverse reformulation(Zhao 2012) rank(A) = rank(A†A) = tr(A†A)

(g) iterative hard thresholding (Zhang and Lu 2011; Lu and Zhang 2013) minX
1

2
‖X−X′‖2

F + rank(X)

(h) MPEC reformulation [this paper],(Yuan and Ghanem 2015) rank(X)=min0�V�I tr(I−V), s.t. 〈V,X〉 = 0

SDP relaxation always produces this maximal rank dimen-
sional solution. The classical way to obtain a low dimen-
sional solution is to project the high dimensional solution to
the desirable space using eigenvalue decomposition, but this
generally only produces sub-optimal results. Second-order
cone programming relaxation was proposed in (Tseng 2007),
which has superior polynomial complexity. However, this
technique obtains good results only when the anchor nodes
are placed on the outer boundary, since the positions of the
estimated remaining nodes lie within the convex hull of the
anchor nodes. Due to the high computational complexity of
the standard SDP algorithm, the work of (Wang et al. 2008;
Pong and Tseng 2011) considers further relaxations of the
semi-definite programming approach to address the sensor
network localization problem. Very recently, the work of (Ji
et al. 2013) explores the use of a nonconvex surrogate of the
rank function, namely the Schatten �p-norm, in network lo-
calization. Although the resulting optimization is nonconvex,
they show that a first-order critical point can be approximated
in polynomial time by an interior-point algorithm.

Several semi-definite rank minimization algorithms have
been studied in the literature (See Table 1). (a) Convex trace
norm (Fazel 2002) is a lower bound of the rank function in
the sense of operator (or spectral) norm. It is proven to lead
to a near optimal low-rank solution (Candès and Tao 2010;
Recht, Fazel, and Parrilo 2010) under certain incoherence
assumptions. However, such assumptions may be violated
in real applications. (b) Nonlinear factorization (Burer and
Monteiro 2003; 2005) replaces the solution matrix X by
a nonlinear matrix multiplication LLT. One important fea-
ture of this approach is avoiding the need to perform eigen-
value decomposition. (c) Schatten �p norm with p ∈ (0, 1)
was considered by (Lu 2014; Nie, Huang, and Ding 2012;
Lu et al. 2014) to approximate the discrete rank function.
It results in a local gradient Lipschitz continuous function,
to which some smooth optimization algorithms can be ap-
plied. (d) Log-det heuristic (Fazel, Hindi, and Boyd 2003;
Deng et al. 2013) minimizes the first-order Taylor series
expansion of the objective function iteratively to find a
local minimum. Since its first iteration is equivalent to
solving the trace convex relaxation problem, it can be
viewed as a refinement of the trace norm. (e) Truncated
trace norm (Hu et al. 2013; Miao, Pan, and Sun 2015;
Law, Thome, and Cord 2014) minimizes the summation of
the smallest (n− k) eigenvalues, where k is the matrix rank.

This is due to the fact that these eigenvalues have little effect
on the approximation of the matrix rank. (f) Pseudo-inverse
reformulations (Zhao 2012) consider an equivalent formula-
tion to the rank function: rank(A) = tr(A†A). However,
similar to matrix rank, the pseudo-inverse function is not con-
tinuous. Fortunately, one can use a Tikhonov regularization
technique 1 to approximate the pseudo-inverse. Inspired by
this fact, the work of (Zhao 2012) proves that rank minimiza-
tion can be approximated to any level of accuracy via contin-
uous optimization. (g) Iterative hard thresholding (Zhang and
Lu 2011) considers directly and iteratively setting the largest
(in magnitude) elements to zero in a gradient descent format.
It has been incorporated into the Penalty Decomposition Al-
gorithm (PDA) framework (Lu and Zhang 2013). Although
PDA is guaranteed to converge to a local minimum, it lacks
stability. The value of the penalty function can be very large,
and the solution can be degenerate when the minimization
subproblem is not exactly solved.

From above, we observe that existing methods either pro-
duce approximate solutions (method (a), (c), (d) and (g)), or
limited to solving feasibility problems (method (b) and (e)).
The only existing exact method (method (g)) is the penalty
method. However, it often gives much worse results even as
compared with the simple convex methods, as shown in our
experiments. This unappealing feature motivates us to design
a new exact multiplier method in this paper. Recently, the
work of (Li and Qi 2011) considers a continuous variational
reformulation of the low-rank problem to solve symmetric
semi-definite optimization problems subject to a rank con-
straint. They design an ADM algorithm that finds a stationary
point of the rank-constrained optimization problem. Inspired
by this work, we consider a augmented Lagrangian method
to solve the general semi-definite rank minimization problem
by handling its equivalent MPEC reformulation. Note that
the formulation in (Li and Qi 2011) can be viewed as a spe-
cial case of ours, since it assumes that the solution has unit
diagonal entries, i.e. diag(X) = 1.

3 Proposed Optimization Algorithm

This section presents our proposed optimization algorithm.
Specifically, we first reformulate the optimization problem
in Eq (1) as an equivalent MPEC (Mathematical Program
with Equilibrium Constraints) in Section 3.1, and then solve

1A† = lim
ε→0

(ATA+ εI)−1AT = lim
ε→0

AT (AAT + εI)−1
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Algorithm 1 A Proximal Alternating Direction Method
for Solving the Non-Convex MPEC Problem (8)

(S.0) Initialize X0 = 0 ∈ R
n×n, V0 = I ∈ R

n×n, π0 =
0 ∈ R. Set k = 0 and μ > 0.
(S.1) Solve the following X-subproblem with D � μI:

Xk+1 = argmin
0�X�κI

L(X,Vk, πk) +
1

2
‖X−Xk‖2D (4)

(S.2) Solve the following V-subproblem with E � μI +
α‖Xk+1‖2F I− αvec(Xk+1)vec(Xk+1)T :

Vk+1 = argmin
0�V�I

L(Xk+1,V, πk) +
1

2
‖V −Vk‖2E (5)

(S.3) Update the Lagrange multiplier:

πk+1 = πk + α(〈Vk+1,Xk+1〉) (6)

(S.4) Set k := k + 1 and then go to Step (S.1).

the equality constrained optimization problem by a proximal
Alternating Direction Method (ADM) in Section 3.2. In Sub-
section 3.3, we discuss the merits of the MPEC reformulation
and the proximal ADM algorithm.

3.1 Equivalent MPEC Reformulation

We reformulate the semi-definite rank minimization problem
in Eq (1) as an equivalent MPEC from the primal-dual view-
point. We provide the variational characterization of the rank
function in the following lemma.
Lemma 1. For any PSD matrix X ∈ R

n×n, it holds that:

rank(X) = min
0�V�I

tr(I−V), s.t. 〈V,X〉 = 0, (7)

and the unique optimal solution of the minimization problem
in Eq (7) is given by V∗ = Udiag(1− sign(σ))UT , where
X = Udiag(σ)UT is the SVD of X.

Proof. Refer to the supplementary material.

The result of Lemma 1 implies that the rank regularized
problem in Eq(1) is equivalent to

min
0�X�κI
0�V�I

g (A(X)− b) + λtr(I−V), s.t.〈V,X〉 = 0. (8)

in a sense that if X∗ is a global optimal solution of Eq (1),
then (X∗,Udiag(1− sign(σ))UT ) is globally optimal for
Eq (8). The converse is also true.

Eq (8) is a bi-convex problem since it is convex with
respect to each of the two variables X and V when the
other is fixed. The equality 〈V,X〉 = 0 is an equilib-
rium/complementarity constraint. This is because for all
j ∈ [n] (i) both σj(V) and σj(X) are non-negative and
(ii) the equality only holds when either component is zero.
Compared with Eq (1), Eq (8) is a non-smooth non-convex
minimization problem and its non-convexity is only caused
by the complementarity constraint. Although the MPEC prob-
lem in Eq (8) is obtained by increasing the dimension of the

original rank-regularized problem in Eq (1), this does not
lead to additional local optimal solutions. In the following
section, we will develop an algorithm to solve Eq (8) using
proximal ADM and show that such a “lifting” technique can
achieve a desirable solution of the original rank regularized
optimization problem.

3.2 Proximal ADM Optimization Framework

Here, we give a detailed description of the solution algo-
rithm to the optimization in Eq (8). This problem is rather
difficult to solve because it is neither convex nor smooth.
To curtail these issues, we propose a solution that is based
on proximal ADM (PADM), which updates the primal and
dual variables of the augmented Lagrangian function in
Eq (8) in an alternating way. The augmented Lagrangian
L : Rn×n × R

n×n × R→ R is defined as:

L(X,V, π) � g(A(X)− b) + λtr(I−V) + π〈V,X〉
+
α

2
(〈V,X〉)2, s.t. 0 � X � κI, 0 � V � I,

where π is the Lagrange multiplier associated with the con-
straint 〈V,X〉 = 0, and α > 0 is the penalty parameter. We
detail the PADM iteration steps for Eq (8) in Algorithm 1.
In simple terms, PADM updates are performed by optimiz-
ing for a set of primal variables at a time, while keeping all
other primal and dual variables fixed. The dual variables are
updated by gradient ascent on the resulting dual problem.

At first glance, Algorithm 1 might seem to be merely an
application of PADM on the MPEC reformulation in Eq(8).
However, it has some interesting properties that are worth
commenting on.
(a) Monotone property. For any feasible solution of vari-
ables X in Eq (4) and V in Eq (5), it can be used to show
that 〈Vk+1,Xk+1〉 ≥ 0. Using the fact that αk > 0 and due
to the update rule of πk, we conclude that πk is monotone
non-increasing. Moreover, if we initialize π0 = 0 in the first
iteration, π is always non-negative.
(b) Initialization Strategy. We initialize both N0 to I and
π0 to 0. This is for the sake of finding a reasonable good local
minimum in the first iteration as it reduces to a convex trace
norm minimization problem for the X-subproblem.
(c) V-Subproblem. Variable V in Eq (5) is updated by solv-
ing the following problem:

Vk+1 = argmin
0�V�I

− λtr(V) + π〈V,Xk+1〉

+α
2 (〈V,Xk+1〉)2 + 1

2‖V −Vk‖2E
(9)

Introducing the proximal term in the V-subproblem enables
finding a closed-form solution. After an elementary calcula-
tion, subproblem (9) can be simplified as

Vk+1 = argmin
0�V�I

L

2
‖V −W‖2F (10)

where W = Vk −G/L, with G = −λI + πkXk+1 + α ·
Xk+1 · 〈Xk+1,Vk〉 and L = μ+ α‖Xk+1‖2F . Assume that
W = Udiag(χ)UT . Clearly, Eq (10) has a closed-form
solution: Vk+1 = Udiag(min(1,max(0,χ)))UT .
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(d) X-Subproblem. Variable X in Eq (4) is updated by solv-
ing the following structured convex optimization problem:

min
0�X�κI

g(A(X)− b) + α
2 ‖B(X)‖2F + μ

2 ‖X‖2F + 〈X,C〉,

where B(·) : R
n×n → R is another linear map defined

as B(X) � 〈V,X〉, C = πkVk. The X-subproblem has
no closed-form solution, but it can be solved by classi-
cal/linearized ADM (He and Yuan 2012; Lin, Liu, and Su
2011). Refer to the supplementary material for more details.

Proximal ADM has excellent convergence properties in
practice, but the optimization problem in Eq (8) is non-
convex, so additional conditions are needed to guarantee
convergence to a KKT point. In what follows and based
on the Kurdyka-Łojasiewicz inequality, we prove that under
broad assumptions, our proximal ADM algorithm always con-
verges to a KKT point. Specifically, we have the following
convergence result.

Theorem 1. Convergence of Algorithm 1. Assume that πk

is bounded for all k. As k → +∞, Algorithm 1 converges to
a first order KKT point of Eq (8).

Proof. Refer to the supplementary material.

3.3 Discussions

In this paper, we consider a variational characterization of the
rank function in Lemma 1. However, other alternative MPEC
reformulation exists. Using the result in our previous work
(Yuan and Ghanem 2015), we have:

rank(X) = min
0≤v≤1

〈1,1− v〉, s.t. 〈v,σ(X)〉 = 0

where σ(X) denotes the eigenvalues of X. However, such a
reformulation is non-convex with respect to X for general v.
The proposed reformulation in Eq (8) is convex with respect
to X, which is very helpful for convergence. The key strategy
of the biconvex formulation is enforcing X and V to share
the same spectral decomposition.

There are two merits behind the MPEC reformulation.
(i) Eq (8) is a continuous optimization reformulation. This
facilitates analyzing its KKT condition and utilizing existing
continuous optimization algorithms to solve the resulting
convex sub-problems. (ii) MPEC is an effective way to model
certain classes of discrete optimization (Yuan and Ghanem
2015; Bi, Liu, and Pan 2014; Luo, Pang, and Ralph 1996). We
argue that, from a practical point of view, improved solutions
to Eq (1) can be obtained by reformulating the problem in
terms of complementarity constraints.

We propose a proximal ADM algorithm to solve the MPEC
problem. There are three reasons that explain the good perfor-
mance of our proposed optimization algorithm. (i) It targets a
solution to the original problem in Eq (1). (ii) It finds a good
initialization. It reduces to the classical convex relaxation
method in the first iteration. (iii) It has a monotone/greedy
property owing to the complimentarity constraints brought
on by the MPEC. The complimentary system characterizes
the optimality of the KKT solution. We let u � {X,V}. Our
solution directly handles the complimentary system of Eq

(1) which takes the following form (on eigenvalues for the
matrix case):

〈f(u), g(u)〉 = 0, f(u) ≥ 0, g(u) ≥ 0

The complimentary constraint is the source of all the special
properties of MPEC that distinguishes it from general non-
linear optimization. We penalize the complimentary error of
〈f(u), g(u)〉 (which is always non-negative) and ensure that
the error is decreasing in every iteration.

4 Experimental Results

In this section, we provide empirical validation for our pro-
posed method by conducting extensive sensor network local-
ization experiments and performing a thorough comparative
analysis with the state-of-the-art. We compare our method
(denoted as PADM) with five state-of-the-art and popular
algorithms: Feasibility Method (FM) (Biswas et al. 2006a),
Trace Approximation Method (TAM) (Biswas et al. 2006a),
Schatten �p Approximation Method (LPAM) 2(Ji et al. 2013;
Lu et al. 2015), Log-Det Heuristic Method (LDHM) (Fazel,
Hindi, and Boyd 2003), and Penalty Decomposition Algo-
rithm (PDA) (Zhang and Lu 2011). We provide our supple-
mentary material and MATLAB implementation online at:
http://yuanganzhao.weebly.com/.

4.1 Experimental Setup

Following the experimental setting in (Biswas et al. 2006b),
we uniformly generate c anchors (c = 5 in all our exper-
iments) and u sensors in the range [−0.5, 0.5] to generate
d-dimensional data points. To generate random and noisy
distance measure, we uniformly select o � (r × |Π|) subset
measurements χ̃ ∈ R

o from Π and inject them with noise by
χ̃ ← χ̃ + s × ε, where ε ∈ R

o is noise of unit scale. Here
s and r can be viewed as the noise level and sampling ratio,
respectively. We consider two ways to measure the quality of
the recovered solution X 3:

rank(X) � ‖σ(X)‖0-ε,

dist(S) � (1/n ·∑n
i=1 ‖S(i, :)− S̄(i, :)‖2)1/2

where ‖x‖0-ε is the soft �0 norm which counts the number
of elements whose magnitude is greater than a threshold
ε = 0.01 · ‖x‖, ∀x ∈ R

n. S̄ is the true position of the
sensors.

Table 2: Varying parameters used in the experiments

dimension (d) 2, 3, 7
noise type (q) 2, 1,∞
# sensors (u) 30, 50, 70, 90, 110, 130, 150, 170, 190
noise level (s) 0.01, 0.03, 0.05, 0.07, ..., 0.19
sampling ratio (r) 0.1, 0.2, 0.3, 0.4, ..., 1.0

2Since the interior-point method (Ji et al. 2013) is not convenient
to solve the general composite rank minimization problem, we con-
sider an alternative ADM algorithm which is based on generalized
singular value thresholding (Lu et al. 2015).

3Note that we need to retrieve S from X (See Eq (2)).
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In our experiments, we test the impact of five parameters:
d, q, u, s, and r. Although we are mostly interested in d-
dimensional (d = 2 or 3) localization problems, Problem (3)
is also strongly related to Euclidean distance matrix comple-
tion, a larger dimension (e.g. d = 7) is also interesting. The
range of all these five parameters is summarized in Table 2.
Unless otherwise specified, the default parameters in bold
are used. Due to space limitation, we only present our ex-
perimental localization results in the presence of Gaussian
noise (p = 2). For more experimental results on laplace noise
(i.e. p = 1) and uniform noise (p = ∞), please refer to
supplementary material.

4.2 Convergence Behavior and Examples

First of all, we verify the convergence property of our pro-
posed PADM algorithm by considering the d = 3 sensor
network localization problem. We record rank and dist val-
ues for PADM at every iteration k and plot these results in
Figure 1. We observe that both the rank and dist values de-
crease monotonically, and we attribute this to the monotone
property of the dual variable π in Algorithm 1. Moreover, the
rank and dist values stabilize after the 5th iteration, which
means that our algorithm has converged. The decrease of
the values is negligible after this iteration. This implies that
a looser stopping criterion can be used without sacrificing
much localization quality. Second, we show two localization
examples on d = 2 and d = 3 data to demonstrate the effec-
tiveness of PADM. As can be seen in Figure 2 and Figure
3, LPAM improves upon the convex/non-convex methods,
while our PADM achieves the lowest rank and dist values
in the experiments.

4.3 Varying the Parameter u, s and r

We now evaluate the performance of all the methods with
varying number of sensor u, noise levels s and sampling ra-
tio r. We report the recovered results in Figure 4, Figure 5
and Figure 6, respectively. We make the following observa-
tions. (i) For the convex methods TAM and FM, TAM often
achieves a lower rank solution and gives better performance.
(ii) LDHM generally outperforms the convex methods TAM
and FM because it can often refine the solution of the trace re-
laxation method when using appropriate initialization. How-
ever, this method is still unstable in the varying sampling
ratio test cases. (iii) For all our experiments, PDA fails to
localize the sensors and generates much worse results than
the other methods. (iv) For all the methods, the dist value
tends to increase (decrease) as the noise level (sampling ra-
tio) increases. Our proposed PADM generally and relatively
gives better performance than all the remaining methods, i.e.
it often achieves lower rank and dist values.

5 Conclusions

In this paper, we propose an MPEC approach for solving
the semi-definite rank minimization problem. Although the
optimization problem is non-convex, we design an effective
proximal ADM algorithm to solve the equivalent MPEC
problem. We also prove that our method is convergent to a
first-order KKT point. We apply our method to the problem

of sensor network localization, where extensive experimental
results demonstrate that our method generally achieves better
solution quality than existing methods. This is due to the fact
that the original rank problem is not approximated.
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locations at different stages of the optimization (1, 2, 3, 4, 5).
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Figure 2: Performance comparison on 2d data in the presence of Gaussian noise.
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Figure 3: Performance comparison on 3d data in the presence of Gaussian noise.
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Figure 4: Performance comparison with varying number of sensors u in the presence of Gaussian noise.
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Figure 5: Performance comparison with varying noise level s in the presence of Gaussian noise.
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Figure 6: Performance comparison with varying sampling ratio r in the presence of Gaussian noise.
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