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Abstract

Dictionary learning (DL) has been successfully applied to
various pattern classification tasks in recent years. However,
analysis dictionary learning (ADL), as a major branch of
DL, has not yet been fully exploited in classification due
to its poor discriminability. This paper presents a novel DL
method, namely Discriminative Analysis Dictionary Learn-
ing (DADL), to improve the classification performance of
ADL. First, a code consistent term is integrated into the basic
analysis model to improve discriminability. Second, a triplet-
constraint-based local topology preserving loss function is in-
troduced to capture the discriminative geometrical structures
embedded in data. Third, correntropy induced metric is em-
ployed as a robust measure to better control outliers for clas-
sification. Then, half-quadratic minimization and alternate
search strategy are used to speed up the optimization process
so that there exist closed-form solutions in each alternating
minimization stage. Experiments on several commonly used
databases show that our proposed method not only signifi-
cantly improves the discriminative ability of ADL, but also
outperforms state-of-the-art synthesis DL methods.

1 Introduction

The success of sparse representation (SR) pushes forward
the research of dictionary learning (DL). In SR, a desired
dictionary learned from data often outperforms a set of pre-
defined bases in pattern classification tasks. One popular
line of research in DL aims to learn a synthesis dictio-
nary with specific promotion functions. Synthesis dictionary
learning is widely used but time-consuming. Hence, as its
dual model, analysis model has drawn much attention re-
cently (Rubinstein, Bruckstein, and Elad 2010).

Analysis dictionary learning (ADL) aims to learn a trans-
formation instead of utilizing off-the-shelf transformations
like FFT, DCT, etc, in such a way that the resulting pre-
sentation of signal is sparse (Shekhar, Patel, and Chellappa
2014). In recent years, some ADL methods have been de-
veloped. Ravishankar and Bresler (Ravishankar and Bresler
2013) proposed well-conditioned square transformations for
image denoising, while Shekhar et al. (Shekhar, Patel, and
Chellappa 2014) enhanced this method by imposing a full-
rank constraint on the analysis dictionary. Rubinstein and
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Elad (Rubinstein and Elad 2014) imposed a hard threshold-
ing operator on the analysis codes leading to sparse repre-
sentations for synthesis reconstruction. Gu et al. (Gu et al.
2014) combined analysis class-specific dictionary and syn-
thesis class-specific dictionary for classification.

These aforementioned methods benefit from the simpler
optimization for training and the higher speed for testing in
ADL. However, to the best of our knowledge, there are few
works to address the discriminability of ADL. This may be
because of its poor discriminability for pattern classification
tasks. Inspired by the significant attempts of synthesis dictio-
nary learning, we further integrate structure preserving and
discriminative characters into the basic analysis model. We
simply utilize the classical k Nearest Neighbor (kNN) clas-
sifier that performs exceptionally well without training ef-
fort. Nevertheless, it critically relies on the local topological
structures (known as topology property in (Luo et al. 2011))
as well as the discriminability of data. Hence, it is extremely
important to simultaneously exploit the underlying geomet-
rical structures and discriminability of data when applying
kNN classifier to DL-based classification tasks.

Main contributions of this paper are as follows:

• We explicitly introduce the discriminative information
into the analysis dictionary learning framework via a code
consistent term. Then, the learned analysis dictionary can
exploit the discriminability of data instead of merely well
representing data.

• We employ triplet constraints to capture the underlying
discriminative local structures of data, resulting in a novel
local topology preserving loss function. This loss function
can preserve the relative neighborhood proximities in a
supervised manner.

• We utilize correntropy induced metric (CIM) as a robust
measure to handle outliers and noise. Consequently, we
develop an alternating optimization algorithm based on
the alternate search strategy and half-quadratic (HQ) min-
imization.

• Extensive comparison experiments well validate the en-
couraging gain in pattern classification from our method,
and demonstrate that analysis models can outperform syn-
thesis models in pattern classification tasks if discrimina-
tive information is well treated.
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2 Preliminaries

2.1 Notation Summary

Bold uppercase letters (U,V, · · ·) stand for matrices. Bold
lowercase letters (u,v, · · ·) are vectors, while lowercase let-
ters (u, v, · · ·) are scalars. Tr (U), U−1 and UT denote the
trace, inverse and transpose of U, respectively. Ui· is the
ith row of U, while U·j presents the jth column of U. Uij

means the jth element in the ith row of U. ‖U‖F and ‖U‖0
denote the Frobenius norm (

√∑
i,j U

2
ij) and l0 norm (num-

ber of nonzero entries), respectively. U�V is the Hadamard
product (element-wise multiplication) of two matrices with
identical size. Moreover, 0, 1 and I denote the all zeros, all
ones and identity matrix with appropriate sizes, respectively.

2.2 Dictionary Learning (DL)

Y = [y1,y2, · · · ,yn] ∈ R
m1×n denotes the original data

matrix. The core idea of DL is to learn an optimized dictio-
nary which can effectively represent each sample yi ∈ R

m1 .
Let X = [x1,x2, · · · ,xn] ∈ R

m2×n be the coding coeffi-
cients of Y over the learned dictionary.

Synthesis dictionary learning: Based on classical syn-
thesis sparse model, most existing DL methods aim to learn
a synthesis dictionary D = [d1,d2, · · · ,dm2 ] ∈ R

m1×m2

by solving

min
D,X

‖Y −DX‖2F
s.t. D ∈ D,

‖xi‖0 ≤ T0, i = 1, 2, · · · , n
(1)

where ‖Y −DX‖2F stands for the reconstruction error. T0

is a positive integer that controls the sparsity level. D is a set
of constraints on D for a well-regularized solution.

In pattern classification applications, there exist various
specific regularizations added to the objective function, e.g.,
structured incoherence of dictionary (Ramirez, Sprechmann,
and Sapiro 2010), transform-invariance of dictionary (Zhang
et al. 2014), joint dictionary learning and subspace cluster-
ing (Zhang, He, and Davis 2014).

Analysis dictionary learning: As a dual analysis view-
point of the commonly used synthesis dictionary learning,
analysis dictionary learning (ADL) gives an intuitive expla-
nation like feature transformation (e.g. DWT). It aims to
learn an analysis dictionary Ω ∈ R

m2×m1 by solving

min
Ω,X

‖X−ΩY‖2F
s.t. Ω ∈ W,

‖xi‖0 ≤ T0, i = 1, 2, · · · , n
(2)

where W is a set of constraints on Ω to make the solution
non-trivial. As indicated in (Shekhar, Patel, and Chellappa
2014), W can be matrices with either relatively small Frobe-
nius norm or unity row-wise norm.

However, this model has poor discriminability for pat-
tern classification. Inspired by the meaningful attempts of
conventional synthesis DL methods for classification tasks,
we integrate two significant functions with (2) to simulta-
neously exploit the discriminative geometrical structures of
Y and promote the discriminability of X. We postpone the
detailed discussion of our design until next section.

2.3 Correntropy

Different from mean square error (MSE), a global similarity
measure, correntropy is a local measure between two vari-
ables, which is more robust to outliers. Correntropy is di-
rectly related to Renyi’s quadratic entropy in which Parzen
windowing (a non-parametric estimation method) is em-
ployed to estimate the data’s probability distribution.

Non-Parametric Renyi’s Entropy: Renyi’s quadratic
entropy is often used to measure how regular a data set is.
Suppose that all yis in the aforementioned data set Y are
independently and identically drawn from the probability
density function p(y). A non-parametric estimator of Y’s
Renyi’s quadratic entropy can be calculated as

HR (Y) = − log
∑
i

∑
j

Kσ (yi,yj), (3)

where Kσ (yi,yj) = exp
(
−‖yi − yj‖22 /σ2

)
is Gaussian

kernel density estimation in the Parzen windowing method,
Following similar arguments, we compute Renyi’s cross-

entropy between two sets Y and Y′ (Yuan and Hu 2009).

HR (Y;Y′) = − log
∑
i

∑
j

Kσ

(
yi,y

′
j

)
(4)

Correntropy Induced Metric (CIM): Based on the
above concepts and a finite number of data {(yi,y

′
i)}ni=1,

the correntropy of (Y,Y′) is defined as

V̂σ (Y,Y′) =
1

n

n∑
i=1

Kσ (yi,y
′
i) (5)

It is obvious that the value of correntropy is primarily
decided by the Gaussian kernel function along the line
Y = Y′.

Liu et al. (Liu, Pokharel, and Principe 2007) extended
the concept of correntropy for Correntropy Induced Metric
(CIM), which is a general similarity measure between any
two vectors (u,v) of the same length. It is defined as

CIM (u,v) = [Kσ (0)−Kσ (u,v)]
1/2

=
[
1− exp

(
−‖u− v‖22 /σ2

)]1/2 (6)

CIM is proved to obey all the properties for a distance met-
ric, such as nonnegativity, identity of indiscernibles, sym-
metry and triangle inequality. Hence, correntropy induced
metric can replace other commonly used distance metrics.

The robustness and effectiveness of correntropy have been
verified in principal component analysis (He et al. 2011),
feature selection (He et al. 2012), subspace clustering (Lu et
al. 2013), and sparse representation (He et al. 2014). We em-
ploy this concept in our paper since it contributes to classifi-
cation by well controlling outliers. To the best of our knowl-
edge, there is no such work for analysis dictionary based
pattern classification tasks.

3 The Proposed DADL Method
In this section, we introduce our proposed method, which in-
corporates the original data’s discriminative information and
local topological property into a unified analysis dictionary
learning framework.
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3.1 Code Consistent Term

To introduce the discriminative information into analysis
dictionary learning, we design a sufficiently sparse matrix
H = [h1,h2, · · · ,hn] ∈ R

m2×n as target codes. Each col-
umn of H is a sparse vector hi, which acts as the desired
form of sparse code xi and also indicates the class label of
yi. Then, a code consistent term ‖X−H‖2F is added to (2),
which can fully exploit the discrimination embedded in data.
This code consistent term enforces samples from the same
category to have similar sparse codes.

There are two main ways used to generate target codes,
i.e. unsupervised and supervised manners. For the unsu-
pervised design approach, the sparse codes for each class
should be unique. Random binary codes, Hadamard codes
(Yang et al. 2015), unsupervised version of Iterative Quan-
tization are good alternatives. For the supervised design ap-
proach, the target output of multi-class linear regression is a
nice choice, which is also the spectral matrix in linear dis-
criminant analysis (LDA). In the spectral matrix, code vec-
tors for any class have a similar form: [0, ..., 0, 1, , 0..., 0]T ,
whose non-zero position indicates the category which is ob-
viously sparse. However, this kind of target codes have a
unified length same as the total number of classes. For anal-
ysis dictionary learning, the length of each sparse code is
often larger than the number of classes. To solve this prob-
lem, we skillfully employ the Kronecker product to generate
high-dimensional codes. The Kronecker product of the orig-
inal spectral codes and an all ones vector with appropriate
size is named Kron-form spectral codes.

In this paper, we focus on the discriminability of analysis
dictionary learning rather than how to choose better target
codes. Therefore, for simplicity, we generate longer sparse
target codes by concatenating the Kron-form spectral codes
to the sequency Walsh-ordered Hadamard codes.

3.2 Local Topology Preserving Loss Function

Local topology property describes data’s local structures.
Besides the neighborhood relationships, it emphasizes the
ranking information of each data point’s neighbors. The rela-
tive neighborhood proximities as well as the discriminability
of data play a vital role in kNN classification. Different from
conventional unsupervised similarity preserving loss func-
tions based on pairwise/doublet constraints, we propose a
local topology preserving loss function via triplet constraints
in a supervised manner.
Definition 1. (Luo et al. 2011) Let (yi,yu,yv) be a triplet
comprised of yi and its neighbors yu and yv . Their corre-
sponding codes also form a triplet (xi,xu,xv). dist (·, ·) is a
function that returns the pairwise distance of inputs. Then, a
coding process is called local topology preserving when the
following condition holds: if dist (yi,yu) ≤ dist (yi,yv),
then dist (xi,xu) ≤ dist (xi,xv).

Based on Definition 1, determining appropriate {xu,xv}
for xi is identical to optimize

max
xu,xv

Ai (u, v) [dist (xi,xu)− dist (xi,xv)] , (7)

where Ai is an antisymmetric matrix whose (u, v)
th ele-

ment equals dist (yi,yu)− dist (yi,yv).

However, (7) is an unsupervised type. In consideration of
each sample’s category, we further develop a supervised type
loss by replacing Ai with A′i in (7). The (u, v)

th element
of A′i is defined as

A′
i (u, v)

Δ
=

⎧⎨
⎩

−Ai (u, v) sign [Ai (u, v)] ,hi = hu �= hv

Ai (u, v) sign [Ai (u, v)] ,hi = hv �= hu

Ai (u, v) , otherwise

(8)

where sign (a) =

{ −1 , a < 0
0 , a = 0
+1 , a > 0

is the sign function. It is

obvious that A′i is also an antisymmetric matrix. We obtain
the supervised local topology preserving loss function

max
X

n∑
i=1

n∑
u=1

n∑
v=1

A′i (u, v) [dist (xi,xu)− dist (xi,xv)].

(9)

Proposition 1. Let W ∈ R
n×n be a weighting matrix

whose (i, j)
th element equals

∑n
u=1 A

′
i (u, j). Objective

(9) is equivalent to minX
∑n

i=1

∑n
j=1 Wijdist (xi,xj).

Proof. Recall that A′i is an antisymmetric matrix, so we
obtain A′i (u, v) = −A′i (v, u). Then (9) is equivalent to

max
X

⎧⎪⎪⎨
⎪⎪⎩

−
n∑

i=1

n∑
u=1

n∑
v=1

A′i (v, u) dist (xi,xu)

−
n∑

i=1

n∑
v=1

n∑
u=1

A′i (u, v) dist (xi,xv)

⎫⎪⎪⎬
⎪⎪⎭ , (10)

which can also be written as

max
X

⎧⎪⎪⎨
⎪⎪⎩

−
n∑

i=1

n∑
u=1

Wiudist (xi,xu)

−
n∑

i=1

n∑
v=1

Wivdist (xi,xv)

⎫⎪⎪⎬
⎪⎪⎭ . (11)

The ultimate form minX
∑n

i=1

∑n
j=1 Wijdist (xi,xj) can

be easily derived from (11).

To simultaneously preserve neighborhood ranking infor-
mation as well as neighborhood relationship in a supervised
manner, we employ (12) to calculate Wij .

Wij =

{ ∑
yu∈Ni

A′i (u, j) , yj ∈ Ni

0 , otherwise
(12)

where Ni is a set containing the k nearest neighbors of yi. In
practice, each non-zero Wij is normalized to [0, 1] by row.

Considering the important role of Ω in coding process,
we substitute xi with Ωyi in the loss function (9) so that Ω
can be directly learned, which is demonstrated to be efficient
and effective in our experiments.

3.3 Correntropy Induced Objective Function

As indicated in (Chen and Principe 2012; Chen et al. 2014;
2015), correntropy can contribute to pattern classification by
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well controlling outliers. Hence, we apply CIM (6) as a ro-
bust metric and obtain the following correntropy induced ob-
jective function

min
Ω,X

J = J0 + λ1J1 + λ2J2

s.t. Ω ∈ W,
‖xi‖0 ≤ T0, ∀i

(13)

where⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

J0 =
n∑

i=1

{
1− exp

(
−‖xi−Ωyi‖22

σ2

)}
J1 =

n∑
i=1

{
1− exp

(
−‖xi−hi‖22

σ2

)}
J2 = 1

2

n∑
i=1

n∑
j=1

{
Wij

[
1− exp

(
−‖Ωyi−Ωyj‖22

σ2

)]} ,

(14)
λ1 and λ2 are scalar constants which control the relative im-
portance of corresponding terms.

4 Optimization

4.1 Half-quadratic Technique

The problem (13) is not convex, so it is difficult to optimize
directly. Fortunately, the half-quadratic (HQ) technique can
be employed to optimize this non-convex function by alter-
nately minimizing its augmented function. According to the
conjugate function theory and HQ theory (Nikolova and Ng
2005), we have
Lemma 1. Suppose that f (z) is a function which satisfies
the conditions listed in (Nikolova and Ng 2005), then for a
fixed z, there exists a dual potential function ϕ (·), such that

f (z) = inf
p∈R

{
pz2 + ϕ (p)

}
(15)

where p is an auxiliary variable determined by the minimizer
function δ (z) w.r.t. f (z).

As indicated in (Zhang et al. 2013; He, Tan, and Wang
2014), δ (z) = exp

(
− z2

σ2

)
when f (z) = 1 − exp

(
− z2

σ2

)
.

That is to say, the infimum of f (z) for a fixed z can be
reached at p = δ (z).

According to Lemma 1, the augmented function Ĵ of (13)
takes the following form

min
Ω,X,P,Q,R

Ĵ = Ĵ0 + λ1Ĵ1 + λ2Ĵ2

s.t. Ω ∈ W,
‖xi‖0 ≤ T0, ∀i

(16)

where⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ĵ0 =
n∑

i=1

{
Pii

‖xi−Ωyi‖22
σ2 + φi (Pii)

}

Ĵ1 =
n∑

i=1

{
Qii

‖xi−hi‖22
σ2 + ϕi (Qii)

}

Ĵ2 = 1
2

n∑
i=1

n∑
j=1

{
WijRij

‖Ωyi−Ωyj‖2

2
σ2 +Wijψij (Rij)

}

(17)
The n×n matrices P, Q and R store the auxiliary variables
introduced by HQ. Note that P and Q are diagonal. {φi}ni=1,
{ϕij}ni=1 and {ψij}ni,j=1 are conjugate functions.

4.2 Optimization Procedure

Based on the HQ optimization theory, Ĵ (Ω,X,P,Q,R)
can be alternately minimized as follows:

1) Update the analysis dictionary and sparse codes.(
Ωt+1,Xt+1

)
= argmin

Ω,X
F = F0 + λ1F1 + λ2F2

s.t. Ω ∈ W,
‖xi‖0 ≤ T0, ∀i

(18)
where⎧⎪⎪⎨

⎪⎪⎩
F0 = Tr

(
(X−ΩY)Pt(X−ΩY)

T
)

F1 = Tr
(
(X−H)Qt(X−H)

T
)

F2 = Tr
(
ΩYLt+1YTΩT

) . (19)

Lt+1 is the Laplacian matrix1 of the weighting matrix Wt+1

in the (t+ 1)
th iteration. The weighting matrix is updated as

Wt+1 = Wt � Rt. Let Ct+1 be a diagonal matrix whose

(i, i)
th element equals

∑n
j=1

Wt+1
ij +Wt+1

ji

2 . We define the

Laplacian matrix Lt+1 Δ
= Ct+1 − Wt+1+(Wt+1)

T

2 .
To fast solve (18), we prefer the set of constraints W to

be matrices with relatively small Frobenius norm. Then, the
alternate search strategy can be employed to alternatively
minimize (18) with respect to one variable while fixing the
other one. To update Ω ∈ R

m2×m1 with fixed X, we solve

min
Ω

Tr

{ −2XPtYTΩT + λ3ΩΩT

+ΩY (Pt + λ2L
t)YTΩT

}
, (20)

where λ3 is the Lagrange multiplier for ‖Ω‖2F . The ana-
lytical solution is computed by setting its first derivative to
zero: Ω = XPtYT

[
Y (Pt + λ2L

t)YT + λ3I
]−1

. To up-
date X ∈ R

m2×n with fixed Ω, we solve (21) for each col-
umn.

min
xi

∥∥∥xi − Pt
iiΩyi+λ1Q

t
iihi

Pt
ii+λ1Qt

ii

∥∥∥2
2

s.t. ‖xi‖0 ≤ T0

(21)

The analytical solution is obtained by applying hard thresh-
olding operation: setting the smallest m2 − T0 elements (in
magnitude) of Pt

iiΩyi+λ1Q
t
iihi

Pt
ii+λ1Qt

ii
to 0. The update for X can

be efficiently implemented in parallel.
2) Update auxiliary variables.

Pt+1
ii = exp

(
−
∥∥xt+1

i −Ωt+1yi

∥∥2
2

σ2

)
(22)

Qt+1
ii = exp

(
−
∥∥xt+1

i − hi

∥∥2
2

σ2

)
(23)

Rt+1
ij = exp

(
−
∥∥Ωt+1yi −Ωt+1yj

∥∥2
2

σ2

)
(24)

As summarized in Algorithm 1, the above update steps
are alternatively minimized until convergence.

1The normalized Laplacian matrix is often used in practice.
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Algorithm 1 Discriminative Analysis Dictionary Learning
Input:

Training data Y and corresponding target codes H;
Number of each sample’s nearest neighbors k;
Regularization parameters λ1, λ2 and λ3;
Gaussian kernel parameter σ.

Output:
The analysis dictionary Ω.

1: Set X(0) = H, P(0) = I, Q(0) = I, R(0) = 1 for ini-
tialization, t = 0;

2: while not convergence do
3: t ← t+ 1;
4: Compute the weighting matrix W(t) and its Lapla-

cian matrix L(t);
5: Update Ω(t) by solving (20);
6: Update X(t) by solving (21) in parallel;
7: Update P(t), Q(t) and R(t) via (22), (23) and (24);
8: end while

4.3 Convergence Analysis

According to Lemma 1, when Ω and X are fixed, the fol-
lowing equation holds:

J (Ω,X) = inf
P,Q,R

Ĵ (Ω,X,P,Q,R) . (25)

It follows that
min
Ω,X

J (Ω,X) = min
Ω,X,P,Q,R

Ĵ (Ω,X,P,Q,R) . (26)

Therefore, minimizing J (Ω,X) is equivalent to minimiz-
ing the augmented function Ĵ (Ω,X,P,Q,R) on the en-
larged domain. According to the properties of half-quadratic
minimization (Nikolova and Ng 2005; Yuan and Hu 2009;
He et al. 2014) and alternate search strategy, we have

Ĵ
(
Ωt+1,Xt+1,Pt+1,Qt+1,Rt+1

)
≤ Ĵ

(
Ωt+1,Xt+1,Pt,Qt,Rt

)
≤ Ĵ (Ωt,Xt,Pt,Qt,Rt)

. (27)

The objective function is non-increasing at each alternative
minimization step.

What’s more, according to the property of correntropy
(Liu, Pokharel, and Principe 2007), the objective function
J (Ω,X) in (13) is bounded below, and thus by (26) we ob-
tain that Ĵ (Ω,X,P,Q,R) is also bounded. Consequently,
we can conclude that Ĵ (Ωt,Xt,Pt,Qt,Rt) decreases step
by step until Algorithm 1 converges.

5 Experiments

5.1 Datasets

We demonstrate the performance of our proposed method
on five benchmark databases: two face datasets (YaleB and
AR), and one object categorization dataset (Caltech 101),
and one scene categorization dataset (Scene 15), and one ac-
tion recognition dataset (UCF 50). We use the features of
these databases provided by Jiang2 and Corso3.

2http://www.umiacs.umd.edu/∼zhuolin/projectlcksvd.html.
3http://www.cse.buffalo.edu/∼jcorso/r/actionbank.

The Extended Yale face database B (hereafter referred to
as YaleB) (Georghiades, Belhumeur, and Kriegman 2001)
includes 2,414 face images of 38 persons under 64 illumi-
nation conditions, which is challenging due to plentiful ex-
pressions and varying illumination conditions. All the orig-
inal images are cropped to 192×168 pixels and then pro-
jected onto 504-dimensional vectors with a randomly gen-
erated matrix to obtain random-face features. We randomly
select 32 images each person for training and the rest for
testing.

The AR face database (Martinez and Benavente 1998)
contains a number of color face images from 126 people.
Each person has 26 frontal face images which are taken dur-
ing two sessions. This database includes frontal views of
faces with different facial expressions, lighting conditions,
and occlusion conditions (sunglasses and scarves). All the
images are cropped and scaled to 165×120. Following the
standard evaluation protocol, a subset consisting of 2,600
images from 50 males and 50 females is obtained. The fea-
tures used here are 540-dimensional random-face features.
We randomly select 20 images each human subject for train-
ing and the other 6 images for testing.

The Caltech 101 database (Li, Fergus, and Perona 2007) is
comprised of 9,144 images from 102 classes. Each category
has 31 to 800 images. We use the standard Bag-of-Features
(BoF) + Spatial Pyramid Matching (SPM) frame (Lazebnik,
Schmid, and Ponce 2006) for feature extraction. Dense SIFT
descriptors are first extracted from patches of size 16×16
which are sampled by a grid with a 6-pixel step size. Then,
we compute the SPM features with 1×1, 2×2, and 4×4 sub-
regions. Vector quantization based coding method is used to
extract mid-level features and high-dimensional features are
obtained by max pooling. Finally, the high-dimensional fea-
tures are reduced to 3,000 dimensions by Principal Compo-
nent Analysis (PCA). 30 images per category are randomly
selected for training and the remaining for testing.

The fifteen scene dataset (Scene 15) was first introduced
in (Lazebnik, Schmid, and Ponce 2006). The number of
samples in each category ranges from 200 to 400, and the
average image size is around 250×300 pixels. This database
contains 15 scenes, such as kitchen, bedroom, and country
scenes. Similar to Caltech 101’s features, the image features
used here are generated by extracting dense SIFT descriptors
in local regions, encoding local patch features, max pooling
in spatial pyramid and being reduced to 3,000 dimensions by
PCA. Following the the common experimental settings, 100
images per category are randomly chosen as training data
with the rest as testing data.

The UCF 50 (Reddy and Shah 2013) is an action recogni-
tion database with 50 action categories, consisting of 6,680
realistic human action videos taken from YouTube. For all
the 50 categories, the action videos are divided into 25
groups, where each group contains over 4 action clips. The
action clips in the same group share some common features,
such as similar viewpoint, similar background, the same per-
son, and so on. We utilize the action bank features (Sadanand
and Corso 2012) and five-fold data splitting to evaluate our
method, where four folds are used for training and the re-
maining one fold for testing. We employ PCA to reduce the
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Table 1: Major parameters, determined by cross-validation.

YaleB AR Caltech
101

Scene
15

UCF
50

k 7 7 5 5 7
λ2 0.001 0.001 0.001 0.010 0.001
λ3 0.100 0.100 4.000 1.000 0.100

Table 2: Classification accuracies (%) on five datasets.

YaleB AR Caltech
101

Scene
15

UCF
50

ADL+SVM 95.4 96.1 64.5 90.1 72.3
SRC 96.5 97.5 70.7 91.8 75.0
CRC 97.0 98.0 68.2 92.0 75.6
DLSI 97.0 97.5 73.1 91.7 75.4
FDDL 96.7 97.5 73.2 92.3 76.5

LC-KSVD 96.7 97.8 73.6 92.9 70.1
DPL 97.5 98.3 73.9 97.7 77.4

DADL 97.7 98.7 74.6 98.3 78.0

features to 5,000 dimensions.

5.2 Experiment Setup

We compare our proposed DADL method with the follow-
ing methods: the baseline Analysis Dictionary Learning +
Support Vector Machine (ADL+SVM) (Shekhar, Patel, and
Chellappa 2014), the classical Sparse-Representation-based
Classifier (SRC) (Wright et al. 2009) and Collaborative-
Representation-based Classifier (CRC) (Zhang, Yang, and
Feng 2011), and three state-of-the-art dictionary learning
methods: Dictionary Learning with Structured Incoherence
(DLSI) (Ramirez, Sprechmann, and Sapiro 2010), Fisher
Discrimination Dictionary Learning (FDDL) (Yang et al.
2011), Label Consistent K-SVD (LC-KSVD) (Jiang, Lin,
and Davis 2013), and the recently proposed projective Dic-
tionary Pair Learning (DPL) (Gu et al. 2014).

For fair comparison, we follow the experimental settings
in (Gu et al. 2014) for all the competing methods. We set the
Gaussian kernel parameter σ = 10 and the balance weight
λ1 = 10 in all our experiments. The experimental results are
insensitive to σ ∈ [7, 13] and λ1 ∈ [10, 15]. Since sparsity
level depends on the sparse target codes H that is determined
by information theoretic rules (refer to Section 3.1), it can
be well treated. The other major parameters (k, λ2, λ3) on
each database have been tuned by cross validation. The best
(k, λ2, λ3) for each database are listed in Table 1.

5.3 Results and Analysis

Given training data and corresponding target codes, an opti-
mized dictionary Ω can be learned by Algorithm 1. Then, we
can code both training and testing samples via the learned Ω.
Finally, we treat these coding vectors as new features and
employ kNN classifier to perform classification. All the ex-
periments are repeated 20 times with different random spits

Table 3: Training time (s) on five datasets.

YaleB AR Caltech
101

Scene
15

UCF
50

DPL 5.92 15.21 180.54 56.84 652.03
DADL 4.23 11.16 121.47 36.52 330.23

Table 4: Testing time (ms) on five datasets.

YaleB AR Caltech
101

Scene
15

UCF
50

DPL 0.19 0.42 1.45 1.36 1.62
DADL 0.16 0.39 1.39 1.31 1.48

of training and testing images on each dataset. Reliable re-
sults of different methods are reported in Table 2.

By contrast, DADL achieves obviously higher accuracy
than the basic ADL+SVM framework, which indicates that
our proposed method significantly improves the discrimi-
native ability of ADL. Compared with synthesis dictionary
based classification methods (SRC, CRC, DLSI, FDDL, and
LC-KSVD), our proposed DADL method achieves the best
performance. Besides, our approach also gives a better result
in comparison with the recently proposed projective Dictio-
nary Pair Learning (DPL) method, which combines discrim-
inative synthesis dictionary learning and ADL.

For some datasets, all the competitors achieve over 95%
accuracy, so our method’s improvement is not visibly big.
We can observe that DPL and our DADL obviously outper-
form other DL methods, which from another side proves the
strong vitality of analysis dictionary in classification tasks.
DPL in (Gu et al. 2014) also markedly outperforms state-of-
the-art DL methods in terms of faster running time. There-
fore, we conduct extra experiments to further evaluate the
efficiency of our method. Our experiments are run via MAT-
LAB R2013a on a desktop PC with an Intel Core i7-3770
processor at 3.40 GHz and 16.00 GB RAM. As reported in
Table 3 and 4, the less time consumption shows the superior-
ity of our method. Thus we can safely conclude that our pro-
posed DADL method performs better in classification than
state-of-the-art dictionary learning methods.

6 Conclusion

In this paper, we propose a Discriminative Analysis Dictio-
nary Learning (DADL) method. To make analysis dictionary
learning (ADL) applicable for pattern classification tasks, a
code consistent term has been introduced. Meanwhile, based
on triplet constraints, a discriminative local topology pre-
serving loss function has been developed, which simultane-
ously preserves neighborhood relationship as well as prox-
imities in a supervised manner. Besides, correntropy induced
metric is utilized as a robust measure to improve robustness.
Based on half-quadratic (HQ) technique and alternate search
strategy, we have developed an iterative method to speed up
the ADL process. Experimental results on five benchmark
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datasets show the effectiveness of our method against state-
of-the-art dictionary learning methods.
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