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Abstract

We address the problem of maximizing an unknown
submodular function that can only be accessed via noisy
evaluations. Our work is motivated by the task of sum-
marizing content, e.g., image collections, by leveraging
users’ feedback in form of clicks or ratings. For sum-
marization tasks with the goal of maximizing cover-
age and diversity, submodular set functions are a nat-
ural choice. When the underlying submodular function
is unknown, users’ feedback can provide noisy evalua-
tions of the function that we seek to maximize. We pro-
vide a generic algorithm – EXPGREEDY – for maximiz-
ing an unknown submodular function under cardinality
constraints. This algorithm makes use of a novel explo-
ration module – TOPX – that proposes good elements
based on adaptively sampling noisy function evalua-
tions. TOPX is able to accommodate different kinds of
observation models such as value queries and pairwise
comparisons. We provide PAC-style guarantees on the
quality and sampling cost of the solution obtained by
EXPGREEDY. We demonstrate the effectiveness of our
approach in an interactive, crowdsourced image collec-
tion summarization application.

Introduction

Many applications involve the selection of a subset of items,
e.g., summarization of content on the web. Typically, the
task is to select a subset of items of limited cardinality with
the goal of maximizing their utility. This utility is often mea-
sured via properties like diversity, information, relevance or
coverage. Submodular set functions naturally capture the
fore-mentioned notions of utility. Intuitively, submodular
functions are set functions that satisfy a natural diminish-
ing returns property. They have been widely used in diverse
applications, including content summarization and recom-
mendations, sensor placement, viral marketing, and numer-
ous machine learning and computer vision tasks (Krause and
Guestrin 2008; Bilmes 2015).

Summarization of image collections. One of the moti-
vating applications, which is the subject of our experimental
evaluation, is summarization of image collections. Given a
collection of images, say, from Venice on Flickr, we would
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like to select a small subset of these images that summa-
rizes the theme Cathedrals in Venice, cf., Figure 1. We cast
this summarization task as the problem of maximizing a sub-
modular set function f under cardinality constraints.

Submodular maximization. Usually, it is assumed that
f is known, i.e., f can be evaluated exactly by querying an
oracle. In this case, a greedy algorithm is typically used for
maximization. The greedy algorithm builds up a set of items
by picking those of highest marginal utility in every itera-
tion, given the items selected that far. Despite its greedy na-
ture, this algorithm provides the best constant factor approx-
imation to the optimal solution computable in polynomial
time (Nemhauser, Wolsey, and Fisher 1978).

Maximization under noise. However, in many realistic
applications, the function f is not known and can only be
evaluated up to (additive) noise. For instance, for the im-
age summarization task, (repeatedly) querying users’ feed-
back in form of clicks or ratings on the individual images
or image-sets can provide such noisy evaluations. There are
other settings for which marginal gains are hard to com-
pute exactly, e.g., computing marginal gains of nodes in vi-
ral marketing applications (Kempe, Kleinberg, and Tardos
2003) or conditional information gains in feature selection
tasks (Krause and Guestrin 2005). In such cases, one can
apply a naive uniform sampling approach to estimate all
marginal gains up to some error ε and apply the standard
greedy algorithm. While simple, this uniform sampling ap-
proach could have high sample complexity, rendering it im-
practical for real-world applications. In this work, we pro-
pose to use adaptive sampling strategies to reduce sample
complexity while maintaining high quality of the solutions.

Our approach for adaptive sampling. The first key in-
sight for efficient adaptive sampling is that we need to esti-
mate the marginal gains only up to the necessary confidence
to decide for the best item to select next. However, if the dif-
ference in the marginal gains of the best item and the second
best item is small, this approach also suffers from high sam-
ple complexity. To overcome this, we exploit our second key
insight that instead of focusing on selecting the single best
item, it is sufficient to select an item from a small subset of
any size l ∈ {1, . . . , k} of high quality items, where k is the
cardinality constraint. Based on these insights, we propose
a novel exploration module – TOPX – that proposes good
elements by adaptively sampling noisy function evaluations.
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Figure 1: (a) Image collection V to be summarized; (b) Summaries obtained using pairwise comparisons via crowdsourcing for the themes
(i) Venice, (ii) Venice Carnival, and (iii) Venice Cathedrals. Images are numbered from 1 to 6 in the order of selection.

Our contributions. Our main contributions are:
• We provide a greedy algorithm EXPGREEDY for sub-

modular maximization of a function via noisy evalua-
tions. The core part of this algorithm, the exploration
module TOPX, is invoked at every iteration and imple-
ments a novel adaptive sampling scheme for efficiently
selecting a small set of items with high marginal utilities.

• Our theoretical analysis and experimental evaluation pro-
vide insights of how to trade-off the quality of subsets se-
lected by EXPGREEDY against the number of evaluation
queries performed by TOPX.

• We demonstrate the applicability of our algorithms in a
real-world application of crowdsourcing the summariza-
tion of image collections via eliciting crowd preferences
based on (noisy) pairwise comparisons, cf., Figure 1.

Related Work

Submodular function maximization (offline). Submodu-
lar set functions f(S) arise in many applications and, there-
fore, their optimization has been studied extensively. For ex-
ample, a celebrated result of Nemhauser, Wolsey, and Fisher
(1978) shows that non-negative monotone submodular func-
tions under cardinality constraints can be maximized up
to a constant factor of (1 − 1/e) by a simple greedy al-
gorithm. Submodular maximization has furthermore been
studied for a variety of different constraints on S, e.g., ma-
troid constraints or graph constraints (Krause et al. 2006;
Singh, Krause, and Kaiser 2009), and in different settings,
e.g., distributed optimization (Mirzasoleiman et al. 2013).
When the function f can only be evaluated up to (addi-
tive) noise, a naive uniform sampling approach has been em-
ployed to estimate all the marginal gains (Kempe, Kleinberg,
and Tardos 2003; Krause and Guestrin 2005), an approach
that could have high sampling complexity.

Learning submodular functions. One could approach
the maximization of an unknown submodular function by
first learning the function of interest and subsequently opti-
mizing it. Tschiatschek et al. (2014) present an approach for
learning linear mixtures of known submodular component
functions for image collection summarization. Our work is
complimentary to that approach wherein we directly target
the subset selection problem without learning the underly-
ing function. In general, learning submodular functions from

data is a difficult task — Balcan and Harvey (2011) provide
several negative results in a PAC-style setting.

Submodular function maximization (online). Our
work is also related to online submodular maximiza-
tion with (opaque) bandit feedback. Streeter and Golovin
(2008) present approaches for maximizing a sequence of
submodular functions in an online setting. Their adversar-
ial setting forces them to use conservative algorithms with
slow convergence. Yue and Guestrin (2011) study a more
restricted setting, where the objective is an (unknown) linear
combination of known submodular functions, under stochas-
tic noise. While related in spirit, these approaches aim to
minimize cumulative regret. In contrast, we aim to identify
a single good solution performing as few queries as possible
— the above mentioned results do not apply to our setting.

Best identification (pure exploration bandits). In ex-
ploratory bandits, the learner first explores a set of actions
under time / budget constraints and then exploits the gath-
ered information by choosing the estimated best action (top1
identification problem) (Even-Dar, Mannor, and Mansour
2006; Bubeck, Munos, and Stoltz 2009). Beyond best indi-
vidual actions, Zhou, Chen, and Li (2014) design an (ε, δ)-
PAC algorithm for the topm identification problem where
the goal is to return a subset of size m whose aggregate util-
ity is within ε compared to the aggregate utility of the m best
actions. Chen et al. (2014) generalize the problem by con-
sidering combinatorial constraints on the subsets that can be
selected, e.g., subsets must be size m, represent matchings,
etc. They present general learning algorithms for all decision
classes that admit offline maximization oracles. Dueling
bandits are variants of the bandit problem where feedback is
limited to relative preferences between pairs of actions. The
best-identification problem is studied in this weaker infor-
mation model for various notions of ranking models (e.g.,
Borda winner), cf., Busa-Fekete and Hüllermeier (2014).
However, in contrast to our work, the reward functions con-
sidered by Chen et al. (2014) and other existing algorithms
are modular, thus limiting the applicability of these algo-
rithms. Our work is also related to contemporary work by
Hassidim and Singer (2015), who treat submodular maxi-
mization under noise. While their algorithms apply to per-
sistent noise, their technique is computationally demanding,
and does not enable one to use noisy preference queries.
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Problem Statement

Utility model. Let V = {1, 2, . . . , N} be a set of N items.
We assume a utility function f : 2V → R over subsets of V .
Given a set of items S ⊆ V , the utility of this set is f(S).
Furthermore, we assume that f is non-negative, monotone
and submodular. Monotone set functions satisfy f(S) ≤
f(S′) for all S ⊆ S′ ⊆ V; and submodular functions
satisfy the following diminishing returns condition: for all
S ⊆ S′ ⊆ V\{a}, it holds that f(S∪{a})−f(S) ≥ f(S′∪
{a}) − f(S′). These conditions are satisfied by many real-
istic, complex utility functions (Krause and Guestrin 2011;
Krause and Golovin 2012). Concretely, in our image col-
lection summarization example, V is a collection of images,
and f is a function that assigns every summary S ⊆ V a
score, preferring relevant and diverse summaries.

Observation model. In classical submodular optimiza-
tion, f is assumed to be known, i.e., f can be evaluated ex-
actly by an oracle. In contrast, we only assume that noisy
evaluations of f can be obtained. For instance, in our sum-
marization example, one way to evaluate f is to query users
to rate a summary, or to elicit user preferences via pairwise
comparisons of different summaries. In the following, we
formally describe these two types of queries in more detail:

(1) Value queries. In this variant, we query the value for
f(a|S) = f({a} ∪ S) − f(S) for some S ⊆ V and a ∈ V .
We model the noisy evaluation or response to this query by
a random variable Xa|S with unknown sub-Gaussian distri-
bution. We assume that Xa|S has mean f(a|S) and that re-
peated queries for f(a|S) return samples drawn i.i.d. from
the unknown distribution.

(2) Preference queries. Let a, b ∈ V be two items and
S ⊆ V . The preference query aims at determining whether
an item a is preferred over item b in the context of S (i.e.,
item a has larger marginal utility than another item b). We
model the noisy response of this pairwise comparison by
the random variable Xa>b|S that takes values in {0, 1}.
We assume that Xa>b|S follows some unknown distribu-
tion and satisfies the following two properties: (i) Xa>b|S
has mean larger than 0.5 iff f(a|S) > f(b|S); (ii) the map-
ping from utilities to probabilities is monotone in the sense,
that if given some set S, and given that the gaps in utili-
ties satisfy f(a|S)− f(b|S) ≥ f(a′|S)− f(b′|S) for items
a, b, a′, b′ ∈ V , then the mean of Xa>b|S is greater or equal
to the mean of Xa′>b′|S . For instance, the distribution in-
duced by the commonly used Bradley-Terry-Luce prefer-
ence model (Bradley and Terry 1952; Luce 1959) satisfies
these conditions. We again assume that repeated queries re-
turn samples drawn i.i.d. from the unknown distribution.

Value queries are natural, if f is approximated via
stochastic simulations (e.g., as in Kempe, Kleinberg, and
Tardos (2003)). On the other hand, preference queries may
be a more natural way to learn what is relevant / interest-
ing to users compared to asking them to assign numerical
scores, which are difficult to calibrate.

Objective. Our goal is to select a set of the items S ⊆ V
with |S| ≤ k that maximizes the utility f(S). The optimal

solution to this problem is given by
Sopt = argmax

S⊆V,|S|≤k

f(S). (1)

Note that obtaining optimal solutions to problem (1) is
intractable (Feige 1998). However, a greedy optimization
scheme based on the marginal utilities of the items can pro-
vide a solution Sgreedy such that f(Sgreedy) ≥ (1 − 1

e ) ·
f(Sopt), i.e., a solution that is within a constant factor of the
optimal solution can be efficiently determined.

In our setting, we can only evaluate the unknown utility
function f via noisy queries and thus cannot hope to achieve
the same guarantees. The key idea is that in a stochastic set-
ting, our algorithms can make repeated queries and aggre-
gate noisy evaluations to obtain sufficiently accurate esti-
mates of the marginal gains of items. We study our proposed
algorithms in a PAC setting, i.e., we aim to design algorithms
that, given positive constants (ε, δ), determine a set Sthat is
ε-competitive relative to a reference solution with probabil-
ity of at least 1− δ. One natural baseline is a constant factor
approximation to the optimal solution, i.e., we aim to deter-
mine a set S such that with probability at least 1− δ,

f(S) ≥ (1− 1

e
) · f(Sopt)− ε. (2)

Our objective is to achieve the desired (ε, δ)-PAC guaran-
tee while minimizing sample complexity (i.e., the number
of evaluation queries performed).

Submodular Maximization Under Noise
We now present our algorithm EXPGREEDY for maximiz-
ing submodular functions under noise. Intuitively, it aims to
mimic the greedy algorithms in noise-free settings, ensuring
that it selects a good element in each iteration. Since we can-
not evaluate the marginal gains exactly, we must experiment
with different items, and use statistical inference to select
items of high value. This experimentation, the core part of
our algorithm, is implemented via a novel exploration mod-
ule called TOPX.

The algorithm EXPGREEDY, cf., Algorithm 1, iteratively
builds up a set S ⊆ V by invoking TOPX(ε′, δ′, k′, S) at ev-
ery iteration to select the next item. TOPX returns candidate
items that could potentially be included in S to maximize its
utility. The simplest adaptive sampling strategy that TOPX
could implement is to estimate the marginal gains up to the
necessary confidence to decide for the next best item to se-
lect (top1 identification problem). However, if the difference
in the marginal gains of the best and the second best item is
small, this approach could suffer from high sample complex-
ity. Extending ideas from the randomized greedy algorithm
(Buchbinder et al. 2014), we show in Theorem 1 that in ev-
ery iteration, instead of focusing on top1, it is sufficient for
EXPGREEDY to select an item from a small subset of items
with high utility. This corresponds to the following two con-
ditions on TOPX:

1. TOPX returns a subset A �= ∅ of size at most k′.
2. With probability at least 1− δ′, the items in A satisfy

1

|A|
∑
a∈A

f(a|S) ≥ max
B⊆V

|B|=|A|

[
1

|B|
∑
b∈B

f(b|S)
]
− ε′. (3)
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Algorithm 1: EXPGREEDY

1 Input: Ground set V; No. of items to pick k; ε, δ > 0;
2 Output: Set of items S ⊆ V : |S| ≤ k, such that S is
ε-competitive with probability at least (1− δ);

3 Initialize: S = ∅
foreach j = 1, . . . , k do

4 A = TOPX(ε′, δ′, k′, S)
5 Sample s uniformly at random from A
6 S = S ∪ {s}
7 return S

At any iteration, satisfying these two conditions is equiv-
alent to solving a topl identification problem for l = |A|
with PAC-parameters (ε′, δ′). TOPX essentially returns a set
of size l containing items of largest marginal utilities given
S. Let us consider two special cases, (i) l = 1 and (ii) l = k
for all j ∈ {1, . . . , k} iterations. Then, in the noise free set-
ting, EXPGREEDY for case (i) mimics the classical greedy
algorithm (Nemhauser, Wolsey, and Fisher 1978) and for
case (ii) the randomized greedy algorithm (Buchbinder et
al. 2014), respectively. As discussed in the next section, the
sample complexity of these two cases can be very high. The
key insight we use in EXPGREEDY is that if we could effi-
ciently solve the topl problem for any size l ∈ {1, . . . , k}
(i.e., |A| is neither necessarily 1 or k), then the solution to
the submodular maximization problem is guaranteed to be of
high quality. This is summarized in the following theorem:
Theorem 1. Let ε > 0, δ ∈ (0, 1). Using ε′ = ε

k , δ
′ = δ

k and
k′ = k for invoking TOPX, Algorithm 1 returns a set S that
satisfies E[f(S)] ≥ (1 − 1

e ) · f(Sopt) − ε with probability
at least 1 − δ. For the case that k′ = 1, the guarantee is
f(S) ≥ (1− 1

e ) · f(Sopt)− ε with probability at least 1− δ.
The proof is provided in Appendix A of the extended ver-

sion of paper (Singla, Tschiatschek, and Krause 2016).
As it turns out, solutions of the greedy algorithm in the

noiseless setting Sgreedy often have utility larger than (1 −
1
e ) · f(Sopt). Therefore, we also seek algorithms that with
probability at least 1− δ identify solutions satisfying

f(S) ≥ f(Sgreedy)− ε. (4)
This can be achieved according to the following theorem:
Theorem 2. Let δ ∈ (0, 1). Using ε′ = 0, δ′ = δ

k and k′ = 1
for invoking TOPX, Algorithm 1 returns a set S that satisfies
f(S) = f(Sgreedy) with probability at least 1− δ.

If we set k′ = 1 and ε = 0, then condition (3) is actually
equivalent to requiring that TOPX, with high probability,
identifies the element with largest marginal utility. The proof
follows by application of the union bound. This theorem en-
sures that if we can construct a corresponding exploration
module, we can successfully compete with the greedy algo-
rithm that has access to f . However, this can be prohibitively
expensive in terms of the required number of queries per-
formed by TOPX, cf., Appendix B of the extended version
of this paper (Singla, Tschiatschek, and Krause 2016).

Exploration Module TOPX
In this section, we describe the design of our exploration
module TOPX used by EXPGREEDY.

Figure 2: An example to illustrate the idea of topl item se-
lection with N = 5 items and parameter k′ = 4. While both
the top1 identification (l = 1) and the top4 identification
(l = k′) have high sample complexity, the top2 identifica-
tion (l = 2 ∈ {1, . . . , k′}) is relatively easy.

TOPX with Value Queries

We begin with the observation that for fixed l ∈ {1, . . . , k′}
(for instance l = 1 or l = k′), an exploration module TOPX
satisfying condition (3) can be implemented by solving a
topl identification problem. This can be seen as follows.

Given input parameter S, for each a ∈ V \ S define its
value va = f(a|S), and define va = 0 for each a ∈ S.
Then, the value of any set A (in the context of S) is v(A) :=∑

a∈A va, which is a modular (additive) set function. Thus,
in this setting (fixed l), meeting condition (3) requires iden-
tifying a set A maximizing a modular set function under car-
dinality constraints from noisy queries. This corresponds to
the topl best-arm identification problem. In particular, Chen
et al. (2014) proposed an algorithm – CLUCB – for identify-
ing a best subset for modular functions under combinatorial
constraints. At a high level, CLUCB maintains upper and
lower confidence bounds on the item values, and adaptively
samples noisy function evaluations until the pessimistic esti-
mate (lower confidence bound) for the current best topl sub-
set exceeds the optimistic estimate (upper confidence bound)
of any other subset of size l. The worst case sample com-
plexity of this problem is characterized by the gap between
the values of l-th item and (l+1)-th item (with items indexed
in descending order according to the values va).

As mentioned, the sample complexity of the topl problem
can vary by orders of magnitude for different values of l, cf.,
Figure 2. Unfortunately, we do not know the value of l with
the lowest sample complexity in advance. However, we can
modify CLUCB to jointly estimate the marginal gains and
solve the topl problem with lowest sample complexity.

The proposed algorithm implementing this idea is pre-
sented in Algorithm 2. It maintains confidence intervals for
marginal item values, with the confidence radius of an item i

computed as radt(i) = R
√
2 log

(
4Nt3

δ′
)
/Tt(i), where the

corresponding random variables Xi|S are assumed to have
an R-sub-Gaussian tail and Tt(i) is the number of observa-
tions made for item i by time t. If the exact value of R is
not known, it can be upper bounded by the range (as long
as the variables have bounded centered range). Upon ter-
mination, the algorithm returns a set A that satisfies con-
dition (3). Extending results from Chen et al. (2014), we can
bound the sample complexity of our algorithm as follows.
Consider the gaps Δl = f(π(l)|S)− f(π(l + 1)|S), where
π : V → {1, . . . , N} is a permutation of the items such that
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Algorithm 2: TOPX
1 Input: Ground set V; Set S; integer k′; ε′, δ′ > 0;
2 Output: Set of items A ⊆ V : |A| ≤ k′, such that A

satisfies (3) with probability at least 1− δ′;
3 Initialize: For all i = 1, . . . , |V|: observe Xi|S and set
vi to that value, set T1(i) = 1;
for t = 1, . . . do

4 Compute confidence radius radt(i) for all i;
5 Initialize list of items to query Q = [];

for l ∈ 1, . . . , k′ do
6 Mt = argmaxB⊆V,|B|=l

∑
i∈B vi;

7 foreach i = 1, . . . , |V| do
8 If i ∈ Mt set ṽi = vi − radt(i), otherwise

set ṽi = vi + radt(i)

9 M̃t = argmaxB⊆V,|B|=l

∑
i∈B ṽi;

10 if [
∑

i∈˜Mt
ṽi −

∑
i∈Mt

ṽi] ≤ l · ε′ then

11 Set A = Mt and return A
12 Set q = argmax

i∈(M\˜M)∪(˜M\M)
radt(i);

13 Update list of items to query:
Q = Q.append(q)

foreach q ∈ Q do
14 Query and observe output Xq|S ;
15 Update empirical means vt+1 using the output;
16 Update observation counts Tt+1(q) = Tt(q) + 1

and Tt+1(j) = Tt(j) for all j �= q;

f(π(1)|S) ≥ f(π(2)|S) ≥ . . . ≥ f(π(N)|S). For every
fixed l, the sample complexity of identifying a set of top l
items is characterized by this gap Δl. The reason is that if
Δl is small, many samples are needed to ensure that the con-
fidence bounds radt are small enough to distinguish the top
l elements from the runner-up. Our key insight is that we can
be adaptive to the largest Δl, for l ∈ {1, . . . , k′}. That is, as
long as there is some value of l with large Δl, we will be
able to enjoy low sample complexity (cf., Figure 2):
Theorem 3. Given ε′ > 0, δ′ ∈ (0, 1), S ⊆ V and k′, Algo-
rithm 2 returns a set A ⊆ V , |A| ≤ k′ that with probability
at least 1− δ′ satisfies condition (3) using at most

T ≤ O
(
k′ min

l=1,...,k′

[
R2H(l,ε′) log

(
R2

δ′
H(l,ε′)

)])
samples, where H(l,ε′) = N min{ 4

Δ2
l
, 1
ε′2 }.

A proof sketch is given in Appendix C of the extended ver-
sion of this paper (Singla, Tschiatschek, and Krause 2016).

TOPX with Preference Queries

We now show how noisy preference queries can be used.
As introduced previously, we assume that there exists an un-
derlying preference model (unknown to the algorithm) that
induces probabilities Pi>j|S for item i to be preferred over
item j given the values f(i|S) and f(j|S). In this work,
we focus on identifying the Borda winner, i.e., the item
i maximizing the Borda score P (i|S), formally given as

1
(N−1) · ∑j∈V\{i} Pi>j|S . The Borda score measures the
probability that item i is preferred to another item cho-
sen uniformly at random. Furthermore, in our model where

we assume that an increasing gap in the utilities leads to
monotonic increase in the induced probabilities, it holds
that the top l items in terms of marginal gains are the
top l items in terms of Borda scores. We now make use
of a result called Borda reduction (Jamieson et al. 2015;
Busa-Fekete and Hüllermeier 2014), a technique that allows
us to reduce preference queries to value queries, and to con-
sequently invoke Algorithm 2 with small modifications.

Defining values vi via Borda score. For each item
i ∈ V , Algorithm 2 (step 3, 15) tracks and updates
mean estimates of the values vi. For preference queries,
these values are replaced with the Borda scores. The sam-
ple complexity in Theorem 3 is then given in terms of
these Borda scores. For instance, for the Bradley-Terry-
Luce preference model (Bradley and Terry 1952; Luce
1959), the Borda score for item i is given by 1

(N−1) ·∑
j∈V\{i}

1
1+exp (−β(f(i|S)−f(j|S))) . Here, β captures the

problem difficulty: β → ∞ corresponds to the case of noise-
free responses, and β → 0 corresponds to uniformly random
binary responses. The effect of β is further illustrated in the
synthetic experiments.

Incorporating noisy responses. Observing the value for
item i in the preference query model corresponds to pairing i
with an item in the set V \{i} selected uniformly at random.
The observed preference response provides an unbiased es-
timate of the Borda score for item i. More generally, we can
pick a small set Zi of fixed size τ selected uniformly at ran-
dom with replacement from V \ {i}, and compare i against
each member of Zi. Then, the observed Borda score for item
i is calculated as 1

τ ·∑j∈Zi
Xi>j|S . Here, τ is a parameter

of the algorithm. One can observe that the cost of one prefer-
ence query is τ times the cost of one value query. The effect
of τ will be further illustrated in the experiments.

The subtle point of terminating Algorithm 2 (step 10) is
discussed in Appendix D of the extended version of this pa-
per (Singla, Tschiatschek, and Krause 2016).

Experimental Evaluation

We now report on the results of our synthetic experiments.

Experimental Setup

Utility function f and set of items V . In the synthetic ex-
periments we assume that there is an underlying submodular
utility function f which we aim to maximize. The explo-
ration module TOPX performs value or preference queries,
and receives noisy responses based on model parameters
and the marginal gains of the items for this function. For our
experiments, we constructed a realistic probabilistic cover-
age utility function following the ideas from El-Arini et al.
(2009) over a ground set of N = 60 items. Details of this
construction are not important for the results stated below
and can be found in Appendix E of the extended version of
this paper (Singla, Tschiatschek, and Krause 2016).

Benchmarks and Metrics. We compare several variants
of our algorithm, referred to by EXPGREEDYθ, where θ
refers to the parameters used to invoke TOPX. In particu-
lar, θ = O means k′ = 1 and ε′ = ε/k (i.e., competing
with (1 − 1

e ) of f(Sopt)); θ = G means k′ = 1 but ε′ = 0
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Figure 3: Experimental results using synthetic function f and simulated query responses: (a)–(d) results are for value queries and (e)–(f)
results are for preference queries. (a) EXPGREEDY dramatically reduces the sample complexity compared to UNIFORM and the other adaptive
baselines. (b) EXPGREEDY adaptively allocates queries to identify largest gap Δl. (c) An execution instance showing the marginal gains and
sizes of topl solutions returned by TOPX. (d)–(f) EXPGREEDY is robust to noise and outperforms UNIFORM baseline.

(i.e., competing with f(Sgreedy)); omitting θ means k′ = k
and ε = ε/k. As benchmarks, we compare the performance
with the deterministic greedy algorithm GREEDY (with ac-
cess to noise-free evaluations), as well as with random se-
lection RANDOM. As a natural and competitive baseline, we
compare our algorithms against UNIFORM (Kempe, Klein-
berg, and Tardos 2003; Krause and Guestrin 2005) — re-
placing our TOPX module by a naive exploration module
that uniformly samples all the items for best item identi-
fication. For all the experiments, we used PAC parameters
(ε = 0.1, δ = 0.05) and a cardinality constraint of k = 6.

Results

Sample Complexity. In Figure 3(a), we consider value
queries, and compare the number of queries performed by
different algorithms under varying noise-levels until con-
vergence to the solution with the desired guarantees. For
variance σ2, we generated the query responses by sampling
uniformly from the interval [μ − σ2, μ + σ2], where μ is
the expected value of that query. For reference, the query
cost of GREEDY with access to the unknown function f is
marked (which equals N · k). The sample complexity dif-
fers by orders of magnitude, i.e., the number of queries per-
formed by EXPGREEDY grows much slower than that of
EXPGREEDYG and EXPGREEDYO. The sample complexity
of UNIFORM is worse by further orders of magnitude com-
pared to any of the variants of our algorithm.

Varying σ2 for value queries and (β, τ ) for preference
queries. Next, we investigate the quality of obtained
solutions for a limited budget on the total number of queries
that can be performed. Although convergence may be slow,
one may still get good solutions early in many cases. In Fig-
ures 3(d)–3(f) we vary the available average budget per item
per iteration on the x-axis — the total budget available in

terms of queries that can be performed is equivalent to N · k
times the average budget shown on x-axis. In particular,
we compare the quality of the solutions obtained by EXP-
GREEDY for different σ2 in Figure 3(d) and for different
(β, τ) in Figure 3(e)–3(f), averaged over 50 runs. The pa-
rameter β controls the noise-level in responses to the prefer-
ence queries, whereas τ is the algorithm’s parameter indicat-
ing how many pairwise comparisons are done in one query
to reduce variance. For reference, we show the extreme case
of σ2 = ∞ and β = 0 which is equivalent to RANDOM; and
the case of σ2 = 0 and (β = ∞, τ = N) which is equiv-
alent to GREEDY. In general, for higher σ in value queries,
and for lower β or smaller τ in preference queries, more
budget must be spent to achieve solutions with high utility.

Comparison with UNIFORM exploration. In Fig-
ure 3(d) and Figure 3(e)–3(f), we also report the quality of
solutions obtained by UNIFORM for the case of σ2 = 10
and (β = 0.5, τ = 1) respectively. As we can see in the
results, in order to achieve a desired value of total utility,
UNIFORM may require up to 3 times more budget in compar-
ison to that required by EXPGREEDY. Figure 3(b) compares
how different algorithms allocate budget across items (i.e.,
the distribution of queries), in one of the iterations. We ob-
serve that EXPGREEDY does more exploration across differ-
ent items compared to EXPGREEDYG and EXPGREEDYO.
However, the exploration is heavily skewed in comparison to
UNIFORM because of the adaptive sampling by TOPX. Fig-
ure 3(c) shows the marginal gain in utility of the considered
algorithms at different iterations for a particular execution
instance (no averaging over multiple executions of the algo-
rithms was performed). For EXPGREEDY, the size of topl
solutions returned by TOPX in every iteration is indicated
in the Figure, demonstrating that TOPX adaptively allocates
queries to efficiently identify the largest gap Δl.
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Image Collection Summarization

We now present results on a crowdsourced image collection
summarization application, performed on Amazon’s Me-
chanical Turk platform. As our image set V , we retrieved
60 images in some way related to the city of Venice from
Flickr, cf., Figure 1(a). A total of over 100 distinct workers
participated per summarization task.

The workers were queried for pairwise preferences as fol-
lows. They were told that our goal is to summarize images
from Venice, motivated by the application of selecting a
small set of pictures to send to friends after returning from
a trip to Venice. The detailed instructions can be found in
Appendix F of the extended version of this paper (Singla,
Tschiatschek, and Krause 2016). We ran three instances of
the algorithm for three distinct summarization tasks for the
themes (i) Venice, (ii) Venice Carnival, and (iii) Venice
Cathedrals. The workers were told the particular theme for
summarization. Additionally, the set of images already se-
lected and two proposal images a and b were shown. Then
they were asked which of the two images would improve the
summary more if added to the already selected images.

For running EXPGREEDY, we used an average budget
of 25 queries per item per iteration and τ = 3, cf., Fig-
ure 3(f). Note that we did not make use of the function
f constructed for the synthetic experiments at all, i.e., the
function we maximized was not known to us. The results of
this experiment are shown in Figure 1(b), demonstrating that
our methodology works in real-word settings, produces high
quality summaries and captures the semantics of the task.

Conclusions

We considered the problem of cardinality constrained sub-
modular function maximization under noise, i.e., the func-
tion to be optimized can only be evaluated via noisy queries.
We proposed algorithms based on novel adaptive sampling
strategies to achieve high quality solutions with low sam-
ple complexity. Our theoretical analysis and experimen-
tal evaluation provide insights into the trade-offs between
solution quality and sample complexity. Furthermore, we
demonstrated the practical applicability of our approach on a
crowdsourced image collection summarization application.
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