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Abstract

Many learning problems in real world applications involve
rich datasets comprising multiple information modalities. In
this work, we study co-regularized PLSA (coPLSA) as an ef-
ficient solution to probabilistic topic analysis of multi-modal
data. In coPLSA, similarities between topic compositions of
a data entity across different data modalities are measured
with divergences between discrete probabilities, which are in-
corporated as a co-regularizer to augment individual PLSA
models over each data modality. We derive efficient itera-
tive learning algorithms for coPLSA with symmetric KL, �2
and �1 divergences as co-regularizers, in each case the essen-
tial optimization problem affords simple numerical solutions
that entail only matrix arithmetic operations and numerical
solution of 1D nonlinear equations. We evaluate the perfor-
mance of the coPLSA algorithms on text/image cross-modal
retrieval tasks, on which they show competitive performance
with state-of-the-art methods.

Introduction

Numerous real-world applications of machine learning in-
volve rich datasets comprising multiple and heterogeneous
information modalities. For instance, Wikipedia pages typ-
ically include both texts and images, articles recounting
emerging news stories often have multiple versions trans-
lated into different languages, and datasets of social network
usually contain user profiles as well as friendship links. In
a multi-modal dataset, each data modality may only reveal
partial yet relevant information of the data entities being
studied, and only in combination do they yield a complete
description. Combining multiple modalities can improve the
performance of learning algorithms, and the resulting multi-
modal learning methods have found wide ranges of applica-
tions, such as image annotation (Srivastava and Salakhut-
dinov 2012), multi-media retrieval (Pereira et al. 2014;
Rasiwasia et al. 2010; Mao et al. 2013), and audio-visual
speech classification (Ngiam et al. 2011).

As each data modality may have intrinsically different
representations, simply concatenating them cannot lead to
a satisfactory solution to multi-modal learning problems.
On the other hand, borrowing ideas from probabilistic topic
analysis for text documents (Hofmann 1999; Blei, Ng, and
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Jordan 2003), we can model each data entity in a multi-
modal dataset as a probabilistic mixture of “topics” that cor-
responds to common thematic concepts. Then the same topic
is instantiated as multiple probabilistic distributions, each of
which is defined over the basic representation of one data
modality. Representing data entities using their topic com-
position thus discounts the difference of basic representa-
tions in the data modalities. As such, learning methods based
on the topic representations of the multi-modal dataset can
leverage compatible and complementary conceptual themes
encompassed within each modality, and are often more ef-
fective than methods that use features from direct concate-
nation of all modalities.

In several previous works (Nallapati and Cohen 2008;
Nallapati et al. 2008; Liu, Niculescu-Mizil, and Gryc 2009),
integrating multi-modal data at topic level is achieved by
requesting each data entity to have the same topic compo-
sitions across different modalities. This is equivalent to re-
quire multiple representations of one data entity over dif-
ferent modalities to share their topic compositions. This ap-
proach fares well when different modalities contain infor-
mation largely consistent with each other. But this may not
always be the case, for instance, an image of the Central
Park may be associated with texts in a Wiki document about
New York City, but its contents may also be related with an-
other document about Parks. A less restrictive approach is to
model topic compositions of each data entity across different
modalities separately, and the learning algorithms encourage
them to be similar but not necessarily identical. As such, it
has the flexibility of capturing non-overlapping topic com-
positions over different modalities, and can recover more
diverse topics across different modalities to summarize the
thematic concepts embodied in the dataset.

In this work, we study co-regularized probabilistic la-
tent semantic analysis (coPLSA) as a general method for
topic analysis of multi-modal datasets. We describe a gen-
eral framework of coPLSA where the co-regularizers are
divergences between discrete probability distributions that
correspond to topic compositions of a data entry across dif-
ferent modalities. Optimizing the objective of PLSA while
minimizing such divergences serve to encourage similarity
between topic compositions of a data entry across differ-
ent modalities during topic learning. For three widely used
divergences (i.e., symmetric KL, �2 and �1 divergences),
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we derive efficient algorithms for learning topics and topic
compositions on multi-modal datasets, all based on sim-
ple matrix operations and numerical solution of 1D nonlin-
ear equations. Unlike previous works (Jiang et al. 2012a;
2012b), our algorithms follow the correct optimization of
the objective functions, and afford theoretical guarantee of
convergence. The coPLSA algorithms are applied to cross-
modal retrieval tasks on benchmark text/image datasets, and
compared favorably with the current state-of-the-art meth-
ods.

Related Works
Many existing works on multi-modal learning are based on
seeking latent representations where the difference among
multiple modalities are minimized. Such latent representa-
tions can be directly obtained in the form of nonlinear mani-
folds with kernelized canonical correlation analysis (Vinok-
ourov, Shawe-taylor, and Cristianini 2002), cross-modal fac-
tor analysis (Pereira et al. 2014), manifold alignment ap-
proach (Mao et al. 2013), joint dimension reduction (Ma-
hadevan et al. 2011) or deep network models (Ngiam et al.
2011; Srivastava and Salakhutdinov 2012). Another popular
approach to find such joint latent representations is through
the use of co-regularized nonnegative matrix factorization
(NMF)(Jialu Liu and Han 2013; He et al. 2014). Though
each of these methods has its merits, the learned joint latent
representations usually do not afford explicit probabilistic
interpretations.

The probabilistic topic analysis of multi-modal data was
first formulated in (Cohn and Hofmann 2001), in which the
citations in a document is considered as another modality
to the documents in a corpus, and the shared topics of two
modalities are the weighted combination of the topic that
learned form the individual modalities. Subsequently, many
methods, e.g., (Nallapati et al. 2008; Rosen-Zvi et al. 2004;
Liu, Niculescu-Mizil, and Gryc 2009) were developed to
jointly model document topics and other auxiliary informa-
tion provided with the corpus. However, these models all
assume that each data entity and its associated auxiliary data
share the same topic composition across different modality.
As pointed out in the previous section, this assumption may
be too restrictive when applied to real-world multi-modal
datasets that contain non-text data types such as images.

A Bayesian treatment of multi-modal topics that incor-
porates similarities between associated topic compositions
of different data modalities leads to a Markov random field
augmented probabilistic topic model that has been studied
recently in (Virtanen et al. 2012). Though achieving good
performances in multi-modal learning tasks, the Bayesian
MRF model suffers from increased complexity in the learn-
ing and inference algorithms that have to be implemented
with Monte-Carlo methods. Therefore, it is useful to extend
simpler topic analysis methods such as probabilistic latent
semantic analysis (PLSA) (Hofmann 1999) to multi-modal
learning, whose efficient implementation can be used for
rapid analysis of large multi-modal dataset and initializa-
tions of more sophisticated Bayesian methods.

Two specific methods of extending PLSA to multi-modal
learning with co-regularization has been studied in two re-

cent works (Jiang et al. 2012a; 2012b)1. The co-regularizer
used in (Jiang et al. 2012a) is based on the mutual simi-
larities of data in the topic space, and that of (Jiang et al.
2012b) is the �2 divergence between the topic assignments
in the latent space. The common drawback of both methods,
however, is that the optimization procedure cannot guaran-
tee monotonic improvement of the objective function before
a stationary point is reached (we pointed out in Section 4).
As such, the algorithms in these previous works do not af-
ford guarantees to converge and usually lead to inferior per-
formance.

In comparison with the previous works, the main contri-
butions of this work can be summarized as follows: (i) We
describe the general method of coPLSA based on divergence
between discrete probability distributions as co-regularizer;
(ii) for �2 divergence as co-regularizer, our coPLSA algo-
rithm is more efficient and guarantees convergence (see Sec-
tion 4 for detail); and (iii) we describe new coPLSA al-
gorithms using symmetric KL and �1 divergences as co-
regularizers and demonstrate that they are more effective
than that based on �2 divergence.

Review of PLSA Algorithm

We first introduce notations and definitions to be used here-
after. A d-dimensional vector v is stochastic if vi � 0 and∑d

i=1 vi = 1, and corresponds to a categorical probability
distribution over d outcomes. A d×n nonnegative matrix V
is stochastic if its column vectors are stochastic.

For two d-dimensional stochastic vectors v and w, we
define their Kulback-Leibler (KL), �2 and �1 divergence, in
sequence, as: DKL(v,w) =

∑d
i=1 vi log

vi
wi

, D�2(v,w) =
1
2

∑d
i=1(vi − wi)

2, D�1(v,w) =
∑d

i=1 |vi − wi|, and
their symmetric KL divergence is defined as DsKL(v,w) =
DKL(v,w)+DKL(w,v). Accordingly, we define divergence
between two stochastic matrices V and W as the sum of the
divergence between their corresponding columns, as

D∗(W,V ) =
∑

j D∗(W·,j , V·,j), (1)

where D∗ can be replaced with DKL,DsKL,D�2 or D�1 . For
stochastic vectors/matrices, these divergences are nonnega-
tive and equal to zero if and only if the two vectors/matrices
are identical.

Making analogy to a collection of text documents, we use
a “bag-of-word” representation of a dataset, where each data
entity (a “document”) is represented as the normalized fre-
quencies over some basic features (“words” in a “vocabu-
lary”). Probabilistic latent semantic analysis (PLSA) (Hof-
mann 1999) is based on a simple probabilistic generative
model of the dataset (Blei, Ng, and Jordan 2003): each word
in a document is a sample from a mixture model; each com-
ponent of the mixture model is a categorical distributions
over the vocabulary (a “topic”); the mixing weights of the

1Because of the close relation between PLSA and NMF al-
gorithms (Gaussier and Goutte 2005; Ding, Li, and Peng 2008),
coPLSA can also be regarded as a co-regularized NMF problem.
However, most existing co-regularized NMF methods use �2 di-
vergence for both main objective and co-regularizer, and do not
consider the normalization constraint.
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mixture model correspond to a probability distribution over
the topics, and provides the topic composition of the data
entity.

Specifically, for n documents, (d1, · · · ,dn), over a vo-
cabulary of size d, (w1, · · · ,wd), we use stochastic matrix
V of dimension d× n to represent conditional probabilities,
as Vij ≡ Prob(word = wi|doc = dj). Assuming the doc-
uments are associated with m topics, (t1, · · · , tm), we use
stochastic matrices W of dimension d×m and H of dimen-
sion m× n to represent conditional probabilities, as Wik ≡
Prob(word = wi|topic = tk) and Hkj ≡ Prob(topic =
tk|doc = dj), respectively. According to the document gen-
eration model, documents and words are conditionally in-
dependent from each other. As such, these probabilities sat-
isfy Prob(word = wi|doc = dj) =

∑
k Prob(word =

wi|topic = tk)Prob(topic = tk|doc = dj). With the
matrix notations, this is equivalent to V = WH . Given a
dataset represented in matrix V , PLSA attempts to find its
decomposition into W and H , formulated as an optimiza-
tion problem: minW,H DKL(V,WH), with the constraint
that both W and H are stochastic matrices. After dropping
irrelevant constant terms, minimizing the KL divergence is
equivalent to maximizing

J (W,H) =
∑

ij Vij log(WH)ij . (2)

This optimization problem can be solved with block coordi-
nate ascent by iteratively optimizing W or H while fixing
the other until converging to a local optimum. The individ-
ual optimization step for W and H is solved with the EM
algorithm. To facilitate subsequent discussion, we briefly
review the EM algorithm using the matrix notations intro-
duced early in this section.
Optimizing W : Introducing a different stochastic matrix
Ŵ , we first define an auxiliary function

F(W, Ŵ ) =
∑
ijk

VijŴikHkj(
ŴH

)
ij

log

(
Wik

Ŵik

(
ŴH

)
ij

)

=
∑
ik

Mik logWik + const.

(3)

In the last step, terms irrelevant to W are collected
into a constant. Nonnegative matrix M = Ŵ ⊗[
(V � (ŴH))HT

]
is formed with element-wise matrix

multiplication ⊗ and division �. An application of the
Jensen’s inequality shows that F(W, Ŵ ) � J (W,H) with
equality holds when W = Ŵ , i.e., F(W, Ŵ ) is a tight
lower-bound of J (W,H).

The EM algorithm optimizing W uses this lower-bound
to improve the objective function in an iterative manner:
Starting with an initial values W = W (0), we iteratively
solve for W (t+1) ← argmaxW F(W,W (t)) with the con-
straint W being stochastic. As we have J (W (t), H) =
F(W (t),W (t)) � F(W (t+1),W (t)) � J (W (t+1), H),
the sequence (W (0),W (1), · · · ) monotonically increases
J (W,H) until reaching a local maximum.

During each iteration step of the EM algorithm, we solve

for argmaxW F(W,W (t)), which using Eq.(3) reduces to

maxW
∑

ik Mik logWik, s.t. Wij � 0 &
∑

i Wij = 1.
(4)

The solution to this problem is given by Wik = Mik∑
i′ Mi′k

, in
which the normalization step and the non-negativity of M
assures W to be a stochastic matrix.
Optimizing H: The EM algorithm optimizing H with fixed
W proceeds similarly. First using an auxiliary stochastic ma-
trix Ĥ we define function

G(H, Ĥ) =
∑
ijk

VijWikĤkj(
WĤ

)
ij

log

(
Hkj

Ĥkj

(
WĤ

)
ij

)

=
∑
kj

Qkj logHkj + const,

(5)

with matrix Q = Ĥ ⊗
[
WT (V � (WĤ))

]
. With a sim-

ilar argument, we can show that G(H, Ĥ) is also a tight
lower-bound of J (W,H), on the basis of which the EM al-
gorithm is obtained. Specifically, each step of the EM algo-
rithm solves

maxH
∑

kj Qik logHkj , s.t. Hkj � 0 &
∑

k Hkj = 1,
(6)

of which the solution is given by Hkj =
Qkj∑
k′ Qk′j

.

The coPLSA Algorithm

In coPLSA, our goal is to perform joint PLSA of a multi-
modal dataset across different modalities, based on the as-
sumption that different data modalities admit similar under-
lying semantic structure of the data. Formally, given two
modalities of the dataset2 represented with stochastic matri-
ces V (1) and V (2) of size d1×n and d2×n, we seek factor-
ization V (l) ≈ W (l)H(l), with stochastic matrices W (l) of
size d� ×m and matrix H(l) of size m× n representing the
m modality-specific topic matrices and the topic composi-
tions of the dataset, respectively. In coPLSA, association of
different modalities to their common data entry is achieved
by coupling the factorizations V (l) ≈ W (l)H(l), i.e., besides
individual PLSA objectives to each modality, the algorithm
also introduce co-regularizers to minimize the difference of
H matrices, corresponding to the topic compositions of each
modality (illustrated in the left panel of Fig.1). Specifically,
coPLSA is formulated as a constrained optimization prob-
lem as

min
W (�),H(�)

∑
�=1,2

DKL(V
(l),W (l)H(l)) + λD∗(H(1), H(2)),

(7)
with the constraint that W (l) and H(l) are stochastic ma-
trices. Parameter λ > 0 balances the contribution of the
PLSA objectives of each modality and the co-regularization
term. In the following, D∗ will be replaced with the symmet-
ric KL, �2 or �1 divergences3. Dropping irrelevant constant

2The algorithm described subsequently can be easily extended
to more than two data modalities.

3It is also possible to incorporate other regularization terms on
the factors W (l) and H(l) to express other preference on the factors
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V (1)d1

n

V (2)d2

≈

≈

W (1)

m

W (2) ×

× H(1)

n

H(2)

≈

Initialize W (1),W (2), H(1), H(2);

While not converge

While not converge

update W (l) using Eq.(4);

While not converge

If D∗ = DsKL, update H(l) with (11) and (14);

If D∗ = D�2 , update H(l) with (12) and (14);

If D∗ = D�1 , update H(l) with (13) and (14);

Figure 1: Left: Illustration of coPLSA as two stochastic matrix factorization problems co-regularized through similarities on
factors. Right: Pseudo-code of the coPLSA algorithm in this work.

terms, the objective function of (7) can be further simplified
to

max
W (�),H(�)

∑
�=1,2

J (W (l), H(l))− λD∗(H(1), H(2)), (8)

with the same constraints on the factors.
As in the case of PLSA, in the learning step of coPLSA,

the objective function in (8) is optimized with a block-
coordinate descent scheme, alternating between steps that
optimizing each of W (1), W (2), H(1) or H(2) while fixing
the other factors. In the following, we describe the steps of
these sub-problems.
Optimizing W (l): The step optimizing each W (l) is the
same as the optimization of W in PLSA. As such, the solu-
tion can be obtained via solving a sequence of optimization
problem given in (4).
Optimizing H(l): The optimization of H(l) is different be-
cause of the co-regularizer. For simplicity, we use H(\l) to
denote the other H factor other than H(l). The optimization
of H(l) with fixed W (l) and H(\l), after removing irrelevant
constant terms, becomes

max
H(l)

J (W (l), H(l))− λD∗(H(l), H(\l)),

s.t. H
(l)
kj � 0 &

∑
k

H
(l)
kj = 1.

Using the auxiliary function G defined in Eq.(5), we can
also obtain a tight lower-bound of the above objective func-
tion, as: G(H(l), Ĥ)−λD∗(H(l), H(\l)) � J (W (l), H(l))−
λD∗(H(l), H(\l)) with equality when Ĥ = H(l), which fol-
lows from the property of G. Note that in this lower-bound,
the second term λD∗(H(l), H(\l)) does not depend on the
auxiliary variable Ĥ .

Then, a similar EM algorithm can be developed to op-
timize H(l) iteratively, which improves the lower-bound in
each iteration: starting with an initial values H(l) = H(l,0),

such as sparsity. Furthermore, we can us similar methods to enforce
consistencies in parts of factor W (l). However, for simplicity, in the
current work we do not consider these types of regularizers.

we iteratively solve for

H(l,t+1) ← argmax
H(l)

G(H(l), H(l,t))− λD∗(H(l), H(\l)),

s.t. H
(l)
kj � 0 &

∑
k

H
(l)
kj = 1.

(9)
In each iteration, it is guaranteed that the objective function
will not be decreased, as
J (W (l), H(l,t))− λD∗(H(l,t), H(\l)) = G(H(l,t), H(l,t))−
λD∗(H(l,t), H(\l)) � G(H(l,t+1), H(l,t))− λD∗(H(l,t+1),

H(\l)) � J (W (l), H(l,t+1))− λD∗(H(l,t+1), H(\l)).

As such, the sequence
(
H(l,0), H(l,1), · · · ) monotoni-

cally increases the objective function J (W (l), H(l)) −
λD∗(H(l), H(\l)) until reaching a local minimum.

Solving the optimization problem in (9) is key to the op-
timization. For the �2 co-regularizer, a method is given in
(Jiang et al. 2012b), where one first updates H

(l)
kj using the

PLSA EM step, Eq.(6), followed by another update of H(l)
kj

to decrease λD�2(H
(l,t), H(\l)). Unfortunately, the two up-

date steps may undo the effect of each other as they are per-
formed independently. As such, there is no clear guarantee
that the overall algorithm will converge or converge to the
optimal solution.

In this work, we provide efficient algorithms for sym-
metric KL, �2 and �1 divergences with convergence guaran-
tees. Using the equivalent matrix definition of function G in
Eq.(5) with Q obtained from V (l), W (l) and Ĥ , the essential
optimization problem we need to solve is

max
H(l)

∑
kj

Qkj logH
(l)
kj − λD∗(H(l), H(\l)),

s.t. H
(l)
kj � 0 &

∑
k

H
(l)
kj = 1.

(10)

With respect to three types of co-regularizer, namely, sym-
metric KL, �2 and �1 divergences, the optimal solution to
(10) are given as non-linear functions of a scalar variable ηj
that corresponds to the Lagrangian multiplier of the normal-
izing constraint,

∑
k H

(l)
kj = 1 and is shared by all elements
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image topic composition tags image topic composition tags

New, york, city,
Unite, largest, State,
high, metropolitan,
Manhattan, world

water, lake
pond, surface

stream, basin, ice
flow, wave

town, house,
area, village, urban,

tree, room, local,
home, settlement

tree, plant, root,
sap,forest, leave,

layer, fruit,
growth, timber

building, construct,
structure, design,
city, built, sustain,

home, public

forest, tree, Forb,
taiga, tropic, climat,
season, plant, region,

broadleaf, nature,

Figure 2: Illustrating images with their annotation and topic proportion.

in one column of H(l). Specifically, these solutions are given
in the following equations:
• For D∗ = DsKL,

H
(l)
kj (ηj) =

Qkj+λH
(\l)
kj

λW0

(
Qkj+λH

(\l)
kj

λH
(\l)
kj

exp(1+
ηj
λ )

) , (11)

where W0(·) is the principal branch of the Lambert W
function (Corless et al. 1996) that is defined implicitly as
z = W (z)eW (z) for z > 0 4.

• For D∗ = D�2 ,

H
(l)
kj (ηj) =

1
2

√(
H

(\l)
kj − ηj

λ

)2
+

4Qkj

λ
+ 1

2

(
H

(\l)
kj − ηj

λ

)
.

(12)
• For D∗ = D�1 ,

H
(l)
kj (ηj) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Qkj

ηj+λ , −λ < ηj <
Qkj

H
(\l)
kj

− λ,

H
(\l)
kj ,

Qkj

H
(\l)
kj

− λ � ηj � Qkj

H
(\l)
kj

+ λ,

Qkj

ηj−λ ,
Qkj

H
(\l)
kj

+ λ < ηj .

(13)
Compared with the two other divergence types, the up-
date steps for �1 divergence in Eq.(13) corresponds to
a piecewise function. The computation only involves
arithmetic operations and thresholding, and is substan-
tially simpler and more efficient. The use of �1 co-
regularizer has another important property that the re-
sulting H(l) can have identical components as H(\l),
while for the �2 and symmetric KL co-regularizers, this
is not usually the case.

4The Lambert W function can be numerically evaluated and
is provided in popular numerical tools such as MATLAB (function
lambertw) or SciPy (function scipy.special.lambertw).
It has been used in algorithms that enforce entropic priors (Brand
1999). It also appears in a variant of PLSA to encourage sparsity
over the obtained W or H factors (Shashanka, Raj, and Smaragdis
2007).

We use H(l)
kj (ηj) in Eqs.(11,12,13) to emphasize the fact that

they are functions of the scalar parameter ηj . To determine
the value of ηj , which in turn leads to the optimal solution
to H(l), we can solve the following 1D nonlinear equation
corresponding to the normalization constraint in (10),∑

k H
(l)
kj (ηj) = 1. (14)

For each type of co-regularizers, we use the correspond-
ing H

(l)
kj (ηj) in Eq.(11,12,13). For each column index j,

Eq.(14) is solved numerically, e.g., with Newton-Raphson
when H

(l)
kj (ηj) is differentiable (e.g., D∗ = D�2 or DsKL) or

bi-section when otherwise (e.g., D∗ = D�1 ).
In summary, we solve the coPLSA problem with an iter-

ative algorithm that alternates between the optimization of
individual W and H factors while fixing the others. The op-
timization of W factor is performed with another iterative
EM algorithm based on individual optimization steps given
in (4), and the optimization of H factor is achieved by it-
erating steps that first solve Eq.(14) and then determine the
factors with Eq.(11), (12) or (13). In practice, all iterative
algorithms converges within 5-10 steps. The right panel of
Fig.1 provides the pseudo-code of the overall algorithm.

Application to Cross-Modal Retrieval

One important multi-modal learning task is cross-modal
Text/Image retrieval. With the proliferation of online multi-
modal data (Wikipedia, Youtube, etc), queries are frequently
made in one modality (e.g., image or videos) with input from
another modality (e.g., texts). In this section, we apply the
coPLSA algorithms to cross-modal retrieval tasks involv-
ing documents containing text and images. Specifically, we
consider two tasks: text retrieval from an image query (i2t),
and image retrieval from a query with a text document (t2i).
With the coPLSA model, the difference in basic data repre-
sentations of text and images are encapsulated into the cor-
responding topics. And with their topic compositions, texts
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Methods
Topic space similarity Semantic space similarity

TVGraz Wikipedia TVGraz Wikipedia
i2t t2i i2t t2i i2t t2i i2t t2i

SCM (Pereira et al. 2014) 0.460 0.450 0.267 0.219 0.664 0.649 0.362 0.273
Link PLSA (Cohn and Hofmann 2001) 0.349 0.349 0.247 0.247 0.803 0.803 0.605 0.605

�1 coPLSA 0.359 0.365 0.317 0.307 0.723 0.726 0.667 0.658
�2 coPLSA 0.450 0.445 0.360 0.358 0.846 0.845 0.706 0.701

sKL coPLSA 0.481 0.481 0.413 0.413 0.850 0.850 0.726 0.724

Table 1: Performances of multi-modal learning methods measured by the mean average precision on two text/image datasets.

and images are projected into a compatible semantic space,
which can be used to establish links between images and text
documents and facilitates cross-modal retrieval.

We use two benchmark text/image datasets in our ex-
periments: TVGraz (Khan, Saffari, and Bischof 2009) and
Wikipedia (Rasiwasia et al. 2010), in which images are as-
sociated with long text documents and the texts and images
do not necessarily have direct correspondence as in the case
of image tagging tasks (Hwang and Grauman 2012; Gong
et al. 2014). The TVGraz dataset contains 2058 text/image
pairs of 10 semantic categories with an average document
length of 289 words, and is split into a training set of 1558
text/image pairs and a testing set of 500 text/image pairs.
The Wikipedia dataset contains by 2866 text/image pairs of
30 semantic categories, and is split into training and testing
sets with 2173 and 693 text/image pairs. Images and texts in
both datasets are converted to bag-of-word representation,
where for images we used 1024 visual keywords as a result
of clustering the SIFT features from all training images, and
6203 unique text words were selected after stemming and
removal of the common stop words.

In the learning phase, we determine modality-specific top-
ics using the coPLSA learning algorithm on the training sets.
We extract 50 topics from the TVGraz dataset and 100 top-
ics from the Wikipedia dataset, and choose the balance pa-
rameter λ in coPLSA algorithms with cross-validation on a
subset of the training data. When performing retrieval tasks
on the testing set, we first recover the topic composition of
the queried image or text using the PLSA algorithm (only
the optimization of H matrix) using the learned modality-
specific topics. The similarities between topic compositions
of the queried image and texts in testing set (in task i2t)
or queried text and images in testing set (in task t2i) are
then evaluated and ranked. Two similarity measures are used
in our experiments, the centered normalized correlation be-
tween the topic compositions and the centered normalized
correlations between topic compositions transformed by a
multi-class logistic regression function learned during train-
ing, which maps topic compositions to the semantic cate-
gories pre-defined for each dataset. As such, the former eval-
uates correlations of topic compositions directly, while the
latter can be regarded as the correlation in a more seman-
tically meaningful space induced from the topic composi-
tions (Pereira et al. 2014). We use the mean average pre-
cision (MAP) scores over all testing data as performance
metric. The average precision score for each query is com-
puted as the mean precision value for the top 10 relevant
retrievals. Here, we determine a relevant retrieval occurs if

the retrieved text/image is from the same semantic category
as the image/text used in query.

Table 1 summarizes the overall performances of coPLSA
algorithms with symmetric KL, �2 and �1 co-regularizers
on the two datasets. For comparison, we also include re-
trieval performance based on a link-PLSA model that re-
quires the topic compositions of associated text and image to
be identical. The link-PLSA algorithm can be implemented
as described in (Cohn and Hofmann 2001). Furthermore,
all results were compared to a baseline established by the
method of semantic correlation matching (SCM) (Pereira
et al. 2014), which represents the state-of-the-art perfor-
mance in text/image cross-modal retrieval tasks. Results in
Table 1 suggests that for the two cross-modal retrieval tasks,
coPLSA algorithms in general achieve better performance
than the link PLSA algorithm, and also outperform the SCM
method that is based on kernel canonical correlation analy-
sis. This may be attributed to, on the one hand, the more
semantic relevance of the representation (as probability mix-
ture of thematic topics of the text/images) obtained with
coPLSA, and on the other hand, its less restrict assumption
that allows for mis-match of topic compositions of associ-
ated text and images. This is further corroborated by observ-
ing that the MAP scores for i2t and t2i tasks are similar with
coPLSA algorithms, suggesting the diminished representa-
tional difference between the two modalities in the topic
space found by coPLSA. Furthermore, all three variants of
the coPLSA algorithms achieves better performance and ef-
ficient computation, but symmetric KL co-regularizer leads
to the best overall performance. Last, combining with more
semantic abstraction, as concluded in (Pereira et al. 2014),
can also significantly improve the retrieval performance.

In Fig.2 we further show several test images from the
Wikipedia dataset with their corresponding topic composi-
tions over a subset of topics obtained with the symmetric
KL coPLSA algorithm (the names of each topic is manually
assigned based on the top words from each topic to facili-
tate understanding), together with text tags that are gener-
ated by sampling from the topic mixtures associated with
each image. The visualized topic compositions and the gen-
erated text tags of these images obtained with coPLSA span
wide semantic ranges, and can shed some light on their ef-
fects in improving the precisions of semantic matching with
the queried text document.

Conclusions
We study co-regularized PLSA (coPLSA) for topic analy-
sis of multi-modal data and derive efficient iterative learning

2171



algorithms for coPLSA with three types of divergences as
co-regularizers, in each case the essential optimization prob-
lem affords simple solutions that entail only matrix arith-
metic operations and numerical solution of 1D nonlinear
equations. We evaluate the performance of the proposed
coPLSA algorithms on cross-modal retrieval tasks involving
text/image documents and show competitive performance
with state-of-the-art methods. In future work, we can extend
the coPLSA algorithms to more than two data modalities,
and to datasets in which each data entity may not associate
with all modalities.
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