
Scalable Completion of Nonnegative Matrices
with the Separable Structure

Xiyu Yu, Wei Bian, Dacheng Tao
Center for Quantum Computation and Intelligent Systems, University of Technology Sydney

xiyu.yu@student.uts.edu.au
{wei.bian, dacheng.tao}@uts.edu.au

Abstract

Matrix completion is to recover missing/unobserved values of
a data matrix from very limited observations. Due to widely
potential applications, it has received growing interests in
fields from machine learning, data mining, to collaborative
filtering and computer vision. To ensure the successful recov-
ery of missing values, most existing matrix completion algo-
rithms utilise the low-rank assumption, i.e., the fully observed
data matrix has a low rank, or equivalently the columns of the
matrix can be linearly represented by a few numbers of ba-
sis vectors. Although such low-rank assumption applies gen-
erally in practice, real-world data can process much richer
structural information. In this paper, we present a new model
for matrix completion, motivated by the separability assump-
tion of nonnegative matrices from the recent literature of ma-
trix factorisations: there exists a set of columns of the ma-
trix such that the resting columns can be represented by their
convex combinations. Given the separability property, which
holds reasonably for many applications, our model provides
a more accurate matrix completion than the low-rank based
algorithms. Further, we derives a scalable algorithm to solve
our matrix completion model, which utilises a randomised
method to select the basis columns under the separability
assumption and a coordinate gradient based method to au-
tomatically deal with the structural constraints in optimisa-
tion. Compared to the state-of-the-art algorithms, the pro-
posed matrix completion model achieves competitive results
on both synthetic and real datasets.

Introduction

In many practical problems, people would like to recover
missing/observed values of a data matrix from a small sub-
set of observations. For example, in the famous Netflix chal-
lenge, one has to predict users’ preferences in a huge and
sparse matrix according to a very small fraction of ratings.
This matrix completion process is critical for many tasks,
such as, reconstruction, prediction and classification. There-
fore, it has received great interests recently, in a wide range
of fields from machine learning, data mining, to collabo-
rative filtering and computer vision (Shamir and Shalev-
Shwartz 2011; Xiao and Guo 2014; Huang, Nie, and Huang
2013; Liu et al. 2015; Yao and Kwok 2015).
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Matrix completion seems to be an impossible task due to
the large amount of unknown variables but limited informa-
tion. In order to make it tractable, more assumptions should
be made on the data matrix. A reasonable and commonly
used assumption is that the matrix has a low-rank, i.e., its
columns reside in a subspace spanned by several basis vec-
tors. To incorporate the low-rank assumption, directly min-
imising the rank function is straightforward, but it is NP-
hard (Fazel, Hindi, and Boyd 2004). Alternatively, inspired
by �1 norm minimisation for sparse signal recovery, min-
imising the nuclear norm of the data matrix imposes spar-
sity on the singular values of the data matrix and thus fulfils
the low-rank assumption. Indeed, the nuclear norm is known
as the best convex lower bound of the rank function (Fazel
2002). Theoretical results have established for successful
matrix completion by using nuclear norm minimisation
(Candès and Recht 2009; Recht 2011; Candès and Tao 2010;
Bhojanapalli and Jain 2014; Chen et al. 2013; Cai, Candès,
and Shen 2010), and even in the cases where the data ma-
trix is contaminated with noise (Candes and Plan 2010;
Keshavan, Montanari, and Oh 2009). Another way to in-
corporate low-rank assumption is to use the matrix pro-
duction idea. Any matrix X ∈ R

m×n of a low rank r
could be factorized into two small matrices, i.e., X = UV,
where U ∈ R

m×r and V ∈ R
r×n. Based on this idea,

we can directly apply this factorization form into matrix
completion model so as to obtain a low-rank matrix (Wen,
Yin, and Zhang 2012; Aravkin et al. 2014; Recht and Ré
2013). There are many other works inherently based on low-
rank assumption but using some different views, such as,
probabilistic model (Todeschini, Caron, and Chavent 2013;
Lafond et al. 2014), summation of rank-one matrices (Wang
et al. 2014), etc.

However, data from real-world applications can process
much richer structural information than the low-rank as-
sumption. In particular, the recent literature of matrix fac-
torizations shown that it is reasonable to assume that there
exists a set of columns of the data matrix such that the resting
columns can be represented by their convex combinations
(Recht et al. 2012; Kumar, Sindhwani, and Kambadur 2013;
Gillis, Vavasis, and others 2014; Arora et al. 2012) . Such
assumption is called separability and has been utilised in de-
veloping efficient algorithms for nonnegative matrix factor-
ization (Benson et al. 2014; Zhou, Bian, and Tao 2013). Mo-
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tivated by this, we propose a Nonnegative Matrix Comple-
tion model under Separability Assumption (NMCSA).We
derives a scalable algorithm to solve our matrix completion
model. First, a randomised method is applied to select the
basis columns of the data matrix, which overcomes the dif-
ficulty of the original combinatorial optimisation over the
basis index. We show that under mild regularity conditions,
the randomised method is able to successfully select the ba-
sis columns with high probabilities. Next, we developed a
coordinate gradient based method to optimise data matrix.
One advantages of our method is that it automatically deal
with these structural constraints of separability. In addition,
it has a closed form solution in each iteration, with only lin-
ear complexity. These features show the potentials of our
algorithm for solving large problems.

We present our model NMCSA and the optimisation algo-
rithm in the next two sections. Then, empirical evaluations
on both synthetic and real-world data are report.

Notations: Throughout this paper, boldface uppercase
(resp. lowercase) letters, such as X (resp. x), denote a ma-
trix (resp. vector); letters which are not bold denote scalars.
Π is a permutation matrix. For a matrix X, Xij ,Xi·and X·j
respectively denote the (i, j)th element, ith row vector and
jth column vector; we may also use Xi to denote a column
vector X·i of a matrix X whenever it is appropriate. ‖ · ‖F
denotes the Frobenius norm of a matrix; ‖ · ‖2 denotes the
�2 norm of a vector. The set of nonnegative real number is
denoted by R

+. For a matrix, X ∈ R
m×n
+ (or X ≥ 0) indi-

cates that all elements in X are nonnegative. [n] denotes the
set {1, 2, · · · , n}, and | · | is the cardinality of a set. If S is a
subset of an arbitrary set, then S̄ is its complement set.

Matrix Completion Model

Given a nonnegative data matrix X ∈ R
m×n
+ , each column

of which corresponds to a data point in R
m
+ , we say X has

the separable property if the columns of X can be repre-
sented by convex combinations of its few columns, which
are called basis columns, while the basis columns cannot
be represented by the resting columns. Mathematically, we
have the following definition for separability.

Definition 1 (Separability). For nonnegative matrix X ∈
R

m×n
+ and a submatrix XS composed by its columns with

index S ∈ [n], X is separable if and only if it resides in a
convex hull generated by XS , i.e.,

∀i ∈ [n],Xi ∈ conv(XS),XS = {Xi}i∈S ,

or equivalently,

XΠ = XS [I F] and FT1r = 1(n−r),

where r = |S| and F ∈ R
r×(n−r)
+ .

The separability can be interpreted that a rich dataset
could be represented by a small subset of its few exem-
plars therein (Mahoney and Drineas 2009; Yang et al. 2015).
Compared to the low-rank assumption, it offers additional
advantages: 1) representing dataset using several exemplar
data points results in more natural and interpretable models;

2) instead of searching an undetermined model with the ba-
sis and weights in a high-dimensional space, directly anchor-
ing representative exemplars much reduces the complexity
of learning space. Indeed, a series of recent works have been
carried out by utilising the separability to learn succinct rep-
resentations of large high-dimensional data, especially in the
direction of nonnegative matrix factorisations (Benson et al.
2014; Zhou, Bian, and Tao 2013).

However, in many application scenarios, we have only in-
complete data with a very small portion of observations, like
collaborative filtering, and need to recover the unobserved
values from such limited information. In such cases, sep-
arability is still helpful as the structural constraints to re-
strict the freedom of unobserved values and therefore of-
fer chances for successful completion. More importantly,
the separable property holds rationally for practical datasets.
Taking the MovieLens dataset as an example, the ratings of
an ordinary person could be represented by combination of
the ratings by typical users. Thus, albeit a large amount of
movies unrated by most users, we can still predict these rat-
ings by limited observed information.

Specifically, in matrix completion tasks, we are given a
data matrix X that is only partially observed within a support
set Ω. Denote by X̃ is incomplete version of X, i.e.,

Xij = X̃ij , ∀ (i, j) ∈ Ω,

we intend to obtain a full recovery of X from X̃. The fol-
lowing uniform sampling condition on the observed entries
of X is commonly needed for matrix completion (Candès
and Recht 2009). It excludes the cases where a few columns
of X are mostly observed while the rest are almost empty.
Suppose ρ = 0.1, it implies roughly 10% of the entries of X
are observed.
Condition 1 (Uniform sampling). The incomplete version
X̃ is generated by sampling the entries of X uniformly, with
Bernoulli distribution B(1, ρ).

Accordingly, the completion of a separable nonnegative
matrix X from incomplete observation X̃ can be formulated
as the optimisation below,

min
S,Π,X,F

1

2
‖XΠ−XS [I F] ‖2F

s.t. X ∈ R
m×n
+ ,Xij = X̃ij , ∀(i, j) ∈ Ω,

FT1r = 1n−r,F ∈ R
r×(n−r)
+ ,

|S| = r.

(1)

Remarks. The matrix completion model (1) takes most
advantages of separability by using several representative
data points to recover missing values. Besides, given com-
pleted X, it also gives rise to a unique matrix factorisation
XS [I F], which can be used for further analysis, such data
clustering and visualisations.

Optimisation

The separable structure makes the optimisation (1) nontriv-
ial, and inapplicable the existing algorithms for low-rank as-
sumption based matrix completions. The index set S of the
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convex basis contains discrete variables that are inherently
hard to deal with; the nonnegative constraint on X and the
additional constraint to restrict F onto an r− 1 dimensional
simplex (column-wise), SF = {F : FT1r = 1n−r, F ∈
R

r×(n−r)
+ } convey further difficulties for the optimisation.
We propose to break down the whole problem into two

steps. First, we apply a randomised method to determine the
index set S of the convex basis. Although the randomised
feature gives the optimal solution in terms of probability, it
offers an extreme efficient way to address the discrete opti-
misation over S. Besides, we provide a theoretical justifica-
tion to show that the probability of successful selection of S
is overwhelming, given mild regularity conditions. Second,
we derive scalable methods to optimise {X,F}. The meth-
ods are built upon coordinate gradient based optimisation,
and thus efficient and scalable to large problems. In addi-
tion, they are able to handle the structural constraints over
{X,F} automatically, without any projections onto the fea-
sible set required as in general gradient based methods for
constrained optimisations.

Randomised Method for Convex Basis Selection

Our randomised method for selecting the index set S of the
convex basis is motivated by the following proposition on
the separable nonnegative matrix X. In the following analy-
sis, we can ignore the permutation matrix for simplicity.

Proposition 1 (Projection Property). Given a separable
nonnegative matrix X = XS [I F] ∈ R

m×n, where XS ⊂
X is the convex basis with index set S, and its projection
y = XTβ onto any random direction (vector) β ∈ R

m, if
i = argmax1≤j≤n yj , then it must hold that j ∈ S.

Actually, Proposition 1 is the corollary of the much gen-
eral facts that the projection of a high-dimensional convex
set into a low-dimensional subspace is still a convex set and
any vertex of the latter must correspond to a vertex of the
original. Most recently, quite a few works have been done
(Zhou, Bian, and Tao 2013), by utilizing Proposition 1 to
design efficient algorithms for separable nonnegative ma-
trix factorisations, as well as other related problems such as
learning topic models and latent variable models.

Our study further extends this direction of research to ma-
trix completions. Note that in the completion task, matrix X
is only partially observed (with generally very few entries)
on the support set Ω. Such sparse character could lead to
a considerably poor projection property, compared to that
stated by Proposition 1 for a fully observed matrix. The key
reason is that for X with missing values, specially when such
missing-value patterns for rows of X are distinct and ran-
dom, a dense random projection (i.e., with a dense random
vector β ∈ Rm) will partially malfunction and thus unable
to capture the separable structure of X. Considering this, we
prefer a sparse random projection and in the extreme case,
the projection onto a randomly chosen standard base vec-
tor ej of R

m. And the following regularity conditions are
needed for the success of our randomised method.

Condition 2 (Minimal Probability for Basis Selection). For
separable nonnegative matrix X = XS [I F] ∈ R

m×n,

denoting by p∗i = Pr(i = argmaxj∈[n] X
T e and i ∈ S),

where e is a randomly chosen standard basis vector of Rm,
it holds

∑
i∈S p∗i = 1. Assume mini∈S p∗i ≥ 1−ρ

ρ(n−|S|) + γ,
for some γ > 0.
Condition 3 (Data Generation). For separable nonnegative
matrix X = XS [I F] ∈ R

m×n, the columns {Fj , j ∈ S̄}
are i.i.d. instances sampled from some distribution p(f) over
{f : fT1r = 1, f ∈ R

r
+}.

Note that both conditions are mild and to be hold in gen-
eral. In particular, the probability requirement in Condition
2 is easy to be satisfied given large enough n, and Condi-
tion 3 nearly imposes no harsh restrictions on X. However,
the necessity of the two conditions can be interpreted as be-
low: Condition 2 guarantees that even with incomplete ma-
trix X̃, any column {X̃j , j ∈ S} has a better chance to be
selected, while Condition 3 ensures that none of the columns
{X̃j , j ∈ S̄} has an absolutely large probability to be se-
lected, so as to malfunction our randomised method. With
such conditions, we have Proposition 2 for the (random)
projection property for a separable nonnegative matrix with
missing entries.
Proposition 2 (Projection Property with Missing Entries).
For separable nonnegative matrix X = XS [I F] ∈ R

m×n

satisfying Conditions 2 and 3, let X̃ be its incomplete ver-
sion with observation probability ρ. Then, given the projec-
tion y = X̃T e onto a (uniformly selected) random standard
direction of Rm, if i′ = argmax1≤j′≤n yj′ , it hoilds that
Pr(i′ = i; i ∈ S) ≥ ρp∗i , and Pr(i′ = j; ∀j ∈ S̄) ≤
(1− ρ)/(n− |S|).

Now, we are ready to present the basis selection algorithm
and main theorem for the identifiability of the basis of an
incomplete separable nonnegative matrix X̃ by random pro-
jections.
Theorem 1 (Basis Selection by Random Projections).
Given incomplete version X̃ of a separable nonnegative ma-
trix X = XS [I F] ∈ R

m×n, with observation probability
ρ, let π be the statistics defined via T times projections on
randomly selected standard basis vector e of Rm, i.e.,

πi =
1

T

T∑
t=1

1
(
i = argmax

j∈[n]
X̃T

j e
)

(2)

It holds that
min
j∈S

πj > max
j∈S̄

πj , (3)

with probability at least 1−|S|(n−|S|) exp(−Tγ2ρ2/16).
By applying Theorem 1, we have the following algorithm

for our randomised method to select the basis set S given an
incomplete separable nonnegative matrix X̃.

Scalable Optimisation for F and X
Given the index set S of the convex basis, the problem of
matrix completion (1) reduces to

min
Y,Z,F

1
2‖Y − ZF‖2F

subject to X ∈ R
m×n
+ , Xij = X̃ij , ∀(i, j) ∈ Ω

FT1r = 1n−r,F ∈ R
r×(n−r)
+ .

(4)
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Algorithm 1 Basis Selection by Random Projections

Input: X̃, r, T
Output: S

1: Initialization: I = ∅
2: for k = 1 : T do
3: randomly select standard basis vector e
4: i = argmaxj∈[n] X̃

T
j e

5: I = I ∪ {i}
6: end for
7: S ← r unique elements of I with largest occurrences

where Y = XS̄ ,Z = XS , X = [Y Z]Π.
Clearly, this is a constrained minimisation over triplet

{F,Y,Z} and can be solved by alternating optimisation
methods. However, as the problem size (m,n) scales up
quickly, standard off-the-shelf algorithms can be consider-
ably inefficient on solving (4). This can be understood by the
fact that least squares with the nonnegative and/or the sim-
plex constraints are nontrivial even with a moderate problem
size. Therefore, we intend to derive a scalable algorithm that
solves (4) in a most probably efficient way.

Updating F: When (Z,Y) are fixed, the optimisation
over F reads

min
F

1
2‖Y − ZF‖2F

subject to FT1r = 1n−r,F ∈ R
r×(n−r)
+

(5)

This is a least square problem with a feasible set defined
by the r − 1 dimensional simplex (column-wise), SF =

{F : FT1r = 1n−r, F ∈ R
r×(n−r)
+ }. Again, the gradi-

ent descent method combined with projection onto SF will
not work preferably. Following a similar strategy of solv-
ing (9), we intend to optimise the rows of F via the coordi-
nate gradient descent method. Unfortunately, the constraint
FT1r = 1n−r makes no freedom for an individual row of
F given the rest. We overcome this problem by using a ran-
domised coordinate optimisation strategy, which randomly
selects two rows of F to optimise jointly. For any two rows
Fi· and Fj·, letting E = Y−Z·ijFij·, where Z·ij is the sub-
matrix of Z excluding the i, j-th columns, and analogically
Fij·. We have the following minimisation

min
Fi·,Fj·

1
2‖E− Z·iFi· − Z·jFj·‖2F

subject to Fi· + Fj· = f ,
Fi· ≥ 0,Fj· ≥ 0.

(6)

where f = 1 − Σk �=i,jFk·.The optimal solution of ( 6) is
given by

Fj· =
[
min

{ (Z·j − Z·i)T (E− Z·if)
‖Z·j − Z·i‖2 , f

}]
+

Fi· = f − Fj·

(7)

Updating Y: Firstly, the updating of Y is trivial given
(Z,F). We can fill the missing/unobserved entries of Y us-
ing corresponding entries in ZF, i.e.,

Y(Ω̄) = {ZF}(Ω̄). (8)
where Ω̄ is the complement of support set of Y.

Updating Z: When (Y,F) are fixed, the updating of Z
can be achieved by solving the following minimisation

min
Z

1
2‖Y − ZF‖2F

subject to X ∈ R
m×n
+ , Xij = X̃ij , ∀(i, j) ∈ Ω.

(9)

Note that this is basically a nonnegative least squares prob-
lem, which can be solved by the standard gradient descent
plus projection onto the feasible set method. Albeit the the-
oretical guarantees for convergence, such method is consid-
erably inefficient, as the projection step does not favour at all
the decreasing of the objective function. Therefore, we pro-
pose to solve (9) by a coordinate gradient descent method
that simultaneously deals with the nonnegative constraint.
Specifically, we optimise each of the columns of Z in a se-
quential way. For the t-th column of Z, we have the follow-
ing minimisation,

min
Z·t

1
2‖Y − Z·t̄Ft̄· − Z·tFt·‖2F

subject to Z·t ∈ R
m
+ , Xij = X̃ij , ∀(i, j) ∈ Ω.

(10)

where Z·t̄ is the submatrix of Z excluding the t-th column,
and analogically Ft̄·. Further, due to the equality constraint
in support set Ω, we only need to optimise the corresponding
entries of Z·t in Ω̄t. Let I be the index set of unconstrained
entries of Z·t, i.e., Ω̄t, and z = Z·t(I) and A = Y(I, :
)− Z·t̄(I, :)Ft̄·. Then, the optimisation of z is given by

min
z≥0

1

2
‖A− zFt·‖2F (11)

which enjoys a close-form optimal solution

z∗ = max{AFT
t·/‖Ft·‖22, 0} (12)

Given the updating rules of each element of {F,Y,Z},
problem (4) could be alternatively optimised by Algorithm
2. In Algorithm 2, convergence of each subproblem in each
iteration is time-consuming and not necessary. We need only
an improvement on the optimisation result and a decrease
of the objective function by our coordinate gradient based
method. This can also ensure the final convergence of the
whole optimisation process.

Algorithm 2 Scalable Optimisation for F and X

Input: X̃, S
Output: X,F

1: Initialization: Y = X̃S̄ ,Z = X̃S

2: while unconvergence do
3: update two randomly selected rows of F by (7)
4: update Y by (8)
5: for k = 1 : r do
6: update k-th column of Z by (12)
7: end for
8: end while
9: XS̄ = Y,XS = Z,X = [Y Z]Π
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Figure 1: Properties of Randomised Method for Selection of
Basis Columns.

Empirical Evaluations

To demonstrate the effectiveness of NMCSA for complet-
ing matrices with separable structures, we conduct empirical
valuations both on synthetic and real datasets. We also com-
pare NMCSA with state-of-the-art methods for low-rank
based matrix completions, including APGL (Toh and Yun
2010) and LMaFit (Wen, Yin, and Zhang 2012).

Synthetic Data Experiments

In this section, we use synthetic data to verify the effective-
ness of randomised method to find convex basis and eval-
uate the recovery performance of the proposed algorithm.
The synthetic data matrices in these experiments are gener-
ated in the form X = XS [I F]Π. The entries of XS and
F are generated by i.i.d. uniform distribution in [0,1] at first,
and then their column are normalized to have unit l1 norm.
In this case, the data matrix automatically has normalized
rows.

Basis Selection In the first experiment, we try to justify
the validity of the randomised method for basis selection,
i.e., with high probabilities, the method is able to find the
convex basis of a separable nonnegative matrix. We ran-
domly generate an incomplete matrix of size 200×200, with
parameters rank r = 20 and sampling ratio ρ = 0.15. We
count the frequency of each column being identified as ba-
sis columns in all projections and check whether the true
basis vectors occupy with highest frequencies. Figure 1(a)
shows an example from one experiment. We can see that
the basis columns, which correspond to the first 20 columns
of the matrix, have the highest frequencies, and thus the ran-
domised method success in selecting the basis columns. Fur-
ther, we increase the size N and M of the matrix from 200
to 800, and rerun the experiment 50 times for different size
settings. Figure 1(b) shows the statistics of errors for basis
selection. We can see that for size N(M) = 200, on most

of the experiments, the randomised method correctly selects
the basis, and only on two experiments, it gives an error
larger than 1. However, as the matrix size increases, the er-
rors reduce significantly. For example, for N(M) = 600,
only on 1 out of the 50 experiments, the randomised method
gives error 1, while for N(M) = 800, it successes on all
experiments.
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Figure 2: Phase Transistion diagrams for matrix completion
recoverability.

Phase Transition Analysis A benchmark method to eval-
uate the performance of a matrix completion algorithm
is the phase transition analysis (Candès and Recht 2009;
Wen, Yin, and Zhang 2012). In the second experiment, by
using a single phase diagram, we can test the influence
of sampling ratio and rank individually or simultaneously
on the recovery results. Here, we fix the size of matrices
to be 500 × 500, and vary the rank and sampling ratio
in the following ranges, i.e., r ∈ {5, 8, 11, · · · , 59} and
ρ ∈ {0.01, 0.06, · · · , 0.86}, according to (Wen, Yin, and
Zhang 2012). Then, 50 independent matrix completion ex-
periments are performed for each pair (r, ρ). We declare
that a matrix is successfully recovered if the relative error
‖X−Xopt‖F

‖X‖F
is less than 1e-3, where X is the ground truth

and Xopt the result of completion. The experimental results
are shown in Figure 2. Each color cell of the phase diagrams
corresponds to the recovery rate for each pair (r, ρ). White
means perfect recovery of all matrices of 50 experiments
while black means all failed. As shown in this figure, com-
pared to LMaFit (Wen, Yin, and Zhang 2012), NMCSA has
a better capability of recovering separable matrices with a
wider range of ranks and sampling ratios.

On Large Problems Next, we evaluate the performance
of the proposed NMCSA on larger matrix completion prob-
lems, and compare it with the state-of-the-art algorithms,
LMaFit (Wen, Yin, and Zhang 2012) and APGL (Toh and
Yun 2010). Following the same experimental settings (Cai,
Candès, and Shen 2010), we fix the sampling ratio ρ = 0.2,
and vary the matrix size N(M) from 1000, to 5000 and
10000, and the rank from 10, to 20 and 50. The parameters
for different algorithms are set as below: for APGL, tol =
10−4, μ = 10−4, truncation = 1, and truncation gap =
100; for LMaFit, est rank = 1, tol = 10−4, and K be
�1.25r� or �1.5r� (Wen, Yin, and Zhang 2012). All the ex-
periments are performed in Matlab on a desktop computer.
Table 1 shows the results for performance comparison. One
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can see that NMCSA outperforms its competitors LMaFit
and APGL consistently on all experiments.

Table 1: Recovery Error for Large Problems.

Incomplete Matrix Computational Results
Size N(M) Rank r APGL LMaFit NMCSA

1000

10 3.645e-04 3.149e-04 2.649e-04
20 6.496e-04 8.208e-04 6.718e-04
50 1.245e-01 1.567e-01 3.512e-02

5000

10 3.922e-04 2.154e-04 9.989e-05
20 3.477e-04 3.139e-04 1.804e-04
50 4.023e-03 3.330e-03 3.184e-04

10000

10 1.599e-04 1.792e-04 9.998e-05
20 1.852e-04 2.247e-04 1.226e-04
50 4.321e-04 4.615e-04 2.518e-04

Table 2: Recommendation Dataset Statistics.
Dataset Dim Sampling ratio
Jester-1 24983× 101 0.7247
Jester-2 23500× 101 0.7272
Jester-3 24938× 101 0.2474
Jester-all 73421× 101 0.5634

MovieLens-100K 943× 1682 0.0630
MovieLens-1M 6040× 3706 0.0447
MovieLens-10M 71567× 10677 0.0131

Real Data Experiments

We further evaluate NMCSA on two real datasets, Jester1

and MovieLens, for collaborative filtering. Both datasets are
benchmarks and have been commonly used in the literature
for matrix completions. It has been noticed that completing
the missing/unobserved entries of these datasets are consid-
erably challenging, because of the very large problem scales
and the relatively low sampling ratio. Table 2 summaries the
basic information of the two datasets.

As no test data are available in these datasets, a com-
mon choice is to sample the available ratings by 50% for
training and use the resting 50% for test (Wang et al. 2014;
Aravkin et al. 2014). To evaluate the performance of com-
pletion, we use two measures, the Normalized Mean Ab-
solute Error (NMAE) and the Root Mean Square Error

1The ratings of Jester dataset are from -10 to 10, which is not
nonnegative. In the experiments, we make a shift by adding 10 to
each entry of the data matrix. Note that such manipulation does not
affect the geometric structure of the dataset, and thus the separabil-
ity should still hold.

(RMSE), calculated on the support set Ω,

NMAE =

∑
(i,j)∈Ω |Xij −Mij |
(rmax − rmin)|Ω|

and

RMSE =

√
Σ(i,j)∈Ω(Xij −Mij)2

|Ω|
where rmax and rmin are the lower and upper bounds for the
ratings. For Jester dataset, rmax = 20, and rmin = 0; for
MovieLens, rmax = 5, andrmin = 1. |Ω| is the cardinality
of the support set.

The parameters for the used matrix completion meth-
ods are set as below (Wen, Yin, and Zhang 2012):
for APGL, tol = 10−4, μ = 10−4, truncation =
1, and truncation gap = 20, while for LMaFit,
est rank = 2, tol = 10−3,K = 1, and rk inc = 2. Ta-
ble 3 and 4 show the experimental results on the Jester and
the MovieLens datasets. Note that our method NMCSA out-
performs consistently its competitor, APGL and LMaFit, on
both datasets. We believe this is because the separable struc-
ture offers more information than the low-rank assumption
for the recovery of missing/unobserved data in these two
datasets.

Table 3: Performance of Matrix Completion on the Jester
Dataset (NMSE/RMSE).

APGL LMaFit NMCSA

Jester-1 0.0919/3.3708 0.1149/3.9858 0.0874/3.1797
Jester-2 0.0921/3.3948 0.1133/3.7868 0.0899/3.2931
Jester-3 0.0969/3.4945 0.1157/3.8446 0.0928/3.7397
Jester-all 0.1568/4.388 0.1151/3.9750 0.0900/3.3115

Table 4: Performance of Matrix Completion on the Movie-
Lens Dataset (NMSE/RMSE).

APGL LMaFit NMCSA

100K 0.1204/0.8707 0.1504/1.0949 0.1011/0.7493
1M 0.1415/0.9615 0.1479/0.9850 0.0973/0.9541
10M 0.1245/0.8581 0.1355/0.8338 0.0986/0.9632

Conclusions

In this paper, we have proposed a novel matrix completion
model for recovering matrices with the separable structure.
By using the separability rather than the low-rank assump-
tion, our model exploits richer structural information of real-
world data, and achieves better matrix completion results
when the separability applies. A scalable algorithm is de-
rived to optimise the proposed model. We use a randomised
method to select basis columns of the data matrix and a co-
ordinate gradient based method to automatically deal with
the structural constraints from the separability. On both syn-
thetic and real-world datasets, our model achieves compet-
itive performances compared to the state-of-the-art matrix
completion methods.
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