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Abstract

We consider convex-concave saddle point problems
with a separable structure and non-strongly convex
functions. We propose an efficient stochastic block co-
ordinate descent method using adaptive primal-dual up-
dates, which enables flexible parallel optimization for
large-scale problems. Our method shares the efficiency
and flexibility of block coordinate descent methods
with the simplicity of primal-dual methods and utiliz-
ing the structure of the separable convex-concave sad-
dle point problem. It is capable of solving a wide range
of machine learning applications, including robust prin-
cipal component analysis, Lasso, and feature selection
by group Lasso, etc. Theoretically and empirically, we
demonstrate significantly better performance than state-
of-the-art methods in all these applications.

1 Introduction

A large number of machine learning (ML) models can
be cast as convex-concave saddle point (CCSP) problems.
There are two common cases. First, convex optimization
problems with linear constraints can easily be reformu-
lated as CCSP problems by introducing Lagrangian multi-
pliers (Chen, Donoho, and Saunders 2001; Boyd et al. 2011;
Wainwright 2014). Second, empirical risk minimization
with regularization (ERM, (Hastie, Tibshirani, and Fried-
man 2009)) can be reformulated as CCSP problem by con-
jugate dual transformation. In machine learning applica-
tions, these two groups of CCSP problems often exhibit a
separable additive structure. Developing efficient optimiza-
tion methods for seperable CCSP problems is especially
important for large-scale applications. Existing work, such
as (Zhang and Xiao 2015; Zhu and Storkey 2015a), assumes
the strong convexity of each of the separable functions, and
applies to ERM problems. Although the strong convexity as-
sumption can be relaxed, there is no guide on how to se-
lect the extra regularization parameters. We also find the
relaxation significantly hinders convergence rates even for
post-hoc optimal choices of parameters. Furthermore, inap-
propriate parameter selection dramatically deteriorates the
practical performance. Even for strongly-convex systems the
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strong-convexity parameter is often hard to determine. Ad-
ditionally, it is currently unclear how to adapt the stepsize
for handling block separable problems.

In this work, we propose a novel stochastic and paralleliz-
able approach for Sep-CCSP problem, which naturally han-
dles convex cases that are not strongly convex and avoids
any notorious hyperparameter selection issues. This method
is also capable of dealing with block separable CCSP prob-
lem. In the following, we formally introduce the Sep-CSSP
problem and consider the two common machine learning in-
stantiations of this problem.

The generic convex-concave saddle point problem is
written as

min
x∈Rn

max
y∈Rm

{L(x,y) = f(x) + 〈y,Ax〉 − g∗(y)} , (1)

where f(x) is a proper convex function, g∗ is the con-
vex conjugate of a convex function g, and A ∈ R

m×n.
Many machine learning tasks reduce to solving a problem
of this form. One important subclass of (1) is where f(x) or
g∗(y) exhibits an additive separable structure. We say f(x)

is separable when f(x) =
∑J

j=1 fj(xj), with xj ∈ R
nj ,

and
∑J

j=1 nj = n. Separability for g∗(·) is defined like-
wise. We can also partition matrix A into J column blocks
Aj ∈ R

m×nj , j = 1, . . . , J , and Ax =
∑J

j=1 Ajxj , re-
sulting in a problem of the form

min
x∈Rn

max
y∈Rm

J∑
j=1

fj(xj) +

J∑
j=1

〈y,Ajxj〉 − g∗(y). (2)

We call problems of the form (2) Separable Convex Con-
cave Saddle point (Sep-CCSP) problems. We develop an
efficient optimization method for Sep-CCSP problems when
f(·) and/or g∗(·) are non-strongly convex; many ML meth-
ods result in a non-strongly convex Sep-CCSP form.

Example 1 Separable function minimization with linear
constraints takes the form

min
x

J∑
i=1

fi(xi) s.t.
J∑

i=1

Aixi = b, (3)

leading to

min
x

max
y

L(x,y) =

J∑
i=1

fi(xi)+〈y,
J∑

i=1

Aixi〉−yTb (4)
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when we introduce Lagrangian multipliers y for the linear
constraints. Here g∗(y) = yTb is non-strongly convex.
A large number of machine learning problems can be ex-
pressed as linearly constrained optimization problems of this
form (Chen, Donoho, and Saunders 2001; Boyd et al. 2011;
Wainwright 2014), for instance, robust principal component
analysis (RPCA) (Wright et al. 2009; Candès et al. 2011).

Example 2 Another important case of Sep-CCSP is em-
pirical risk minimization (ERM) of linear predictors, with a
convex regularization function f(x):

min
x

f(x) +
1

N

N∑
i=1

gi(a
T
i x) (5)

where N labels the number of data points. Many well-
known classification and regression problems are included
in this formulation, such as group Lasso (Yuan and Lin
2006) with the regularizer as a sum of groupwise L2-norm
f(x) =

∑G
g=1 fg(xg) = λ

∑G
g=1 wg‖xg‖2. Reformulating

the above regularized ERM by employing the conjugate dual
of function g, i.e.,

gi(a
T
i x) = sup

yi∈R
yi〈ai,x〉 − g∗i (yi), (6)

we transform it into a Sep-CCSP problem,

min
x

max
y

G∑
g=1

fg(xg) +
1

N
〈

N∑
i=1

yiai,x〉 − 1

N

N∑
i=1

g∗i (yi).

(7)
If gi(·) is not smooth (e.g. hinge or absolute loss), the con-
jugate dual g∗(·) is non-strongly convex.

Inspired by current active research on block coordi-
nate descent methods (BCD, (Nesterov 2012; Richtárik and
Takáč 2015; 2014)), we propose a Stochastic Parallel Block
Coordinate Descent method (SP-BCD) for solving the sep-
arable convex-concave saddle point problems, particularly
non-strongly convex functions. The key idea is to apply
stochastic block coordinate descent of the separable primal
space into the primal-dual framework (Chambolle and Pock
2014; Pock and Chambolle 2011) for the Sep-CCSP prob-
lem. We propose a novel adaptive stepsize for both the pri-
mal and dual updates to improve algorithm convergence per-
formance. Compared with the standard primal-dual frame-
work, our method enables the selected blocks of variables to
be optimized in parallel according to the processing cores
available. Without any assumption of strong convexity or
smoothness, our method can achieve an O(1/T ) conver-
gence rate, which is the best known rate for non-strongly
(and non-smooth) convex problem. Also, in a wide range
of applications, we show that SP-BCD can achieve signifi-
cantly better performance than the aforementioned state-of-
the-art methods. These results are presented in Section 4.

Wang, Banerjee, and Luo(2014) proposed a stochastic
and parallel algorithm for solving the problem (3). How-
ever, their method is based on an augmented Lagrangian,
often suffering from the selection of penalty parameter. As
previously discussed, the methods for handling Sep-CCSP
in (Zhang and Xiao 2015; Zhu and Storkey 2015a) focused

on the ERM problem, and assumed that both f(x) and
g∗(y) are strongly convex, or relaxed that constraint in ways
that we show significantly hits performance, and required
additional hyperparameter selection (as do augmented La-
grangian methods). Additionally, the method in (Zhang and
Xiao 2015) is not capable of handling block separable CCSP
problem. These all limit its applicability. Our approach SP-
BCD can overcome these difficulties, which can (i) naturally
handle non-strongly convex functions, and avoids any noto-
rious hyperparameter selection issues; (ii) is capable of han-
dling block separable CCSP problem.

2 Primal-dual Framework for CCSP

In (Chambolle and Pock 2011), the authors proposed a first-
order primal-dual method for (non-smooth) convex prob-
lems with saddle-point structure, i.e., Problem (1). We refer
this algorithm as PDCP. The update of PDCP in (t + 1)-th
iteration is as follows:

yt+1 = argminyg
∗(y)− 〈y,Axt〉+ σ

2
‖y − yt‖22 (8)

xt+1 = argminxf(x) + 〈yt+1,Ax〉+ h

2
‖x− xt‖22 (9)

xt+1 = xt+1 + θ(xt+1 − xt). (10)

When the parameter configuration satisfies σh ≥ ‖A‖2 and
θ = 1, PDCP can achieve a O(1/T ) convergence rate. For
the general CCSP problem, PDCP does not consider the
structure of matrix A and only applies constant stepsize for
all dimensions of primal and dual variables. Based on PDCP,
the authors in (Pock and Chambolle 2011) used the structure
of matrix A and proposed a diagonal preconditioning tech-
nique for PDCP, which showed better performance in sev-
eral computer vision applications. However, when the func-
tion f(x) has separable structure with many blocks of coor-
dinates, both these algorithms are batch methods and non-
stochastic, i.e. they have to update all the primal coordinates
in each iteration. This influences empirical efficiency.

Inspired by the recent success of coordinate descent meth-
ods for solving separable optimization problems, we incor-
porate a stochastic block coordinate descent technique into
above primal-dual methods and propose adaptive stepsizes
for the chosen blocks via the structure of the matrix A.

3 Our Method: SP-BCD for Sep-CCSP

The basic idea of our stochastic parallel block coordinate
descent (SP-BCD) method for solving the saddle point prob-
lem (2) is simple; we optimize L(x,y) by alternatively up-
dating the primal and dual variables in a principled way.
Thanks to the separable structure of f(x), in each iteration
we can randomly select K blocks of variables whose indices
are denoted as St, and then we only update these selected
blocks, given the current y = yt, in the following way. If
j ∈ St then

xt+1
j = argminxj

fj(xj) + 〈yt,Ajxj〉+ 1

2
‖xj − xt

j‖2hj
,

(11)
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otherwise, we just keep xt+1
j = xt

j . In the blockwise update,
we add a proximal term to penalize the deviation from last
update xt

j , i.e.,

1

2
‖xj − xt

j‖2hj
=

1

2
(xj − xt

j)
T diag(hj)(xj − xt

j), (12)

where the diagonal matrix Hj = diag(hj) is applied for
scaling each dimension of xj , and each hj is a subvector of
h =
[
hT
1 , . . . ,h

T
J

]T
. We configure the each dimension of h

as

hd =

m∑
j=1

|Ajd|, d = 1, 2, . . . , n. (13)

Intuitively, hd in our method can be interpreted as the cou-
pling strength between the d-th dimension of the primal vari-
able x and dual variable y, measured by the L1 norm of
the vector A:,d (i.e., the d-th column of matrix A). Smaller
coupling strength allows us to use smaller proximal penalty
(i.e., larger stepsize) for updating the current primal variable
block without caring too much about its influence on dual
variable, and vice versa.

Then for those selected block variables, we use an extrap-
olation technique given in Eq.(10) to yield an intermediate
variable xt+1 as follows,

xt+1
j =

{
xt+1
j + θ

(
xt+1
j − xt

j

)
if j ∈ St

xt
j otherwise,

(14)

where θ = K/J to account for there being only K blocks
out of J selected in each iteration.

Assuming g∗(y) is not separable, we update the dual vari-
able as a whole. A similar proximal term is added with the
diagonal matrix Σt = diag(σt):

yt+1 = argminyg
∗(y)−〈y, rt+ J

K

∑
j∈St

Aj(x
t+1
j −xt

j)〉

+
1

2
‖y − yt‖2σt , (15)

where rt =
∑J

j=1 Ajx
t
j . We configure the dual proximal

penalty σt adaptively for each iteration,

σt
k =

J

K

∑
j∈St

|Akj |, k = 1, 2, . . . ,m. (16)

This configuration adaptively accounts for the coupling
strength between the dual variable and the chosen primal
variable blocks in St through measuring the structure of the
matrix A. Later we show that the usage of the proposed
adaptive proximal penalty for both primal and dual update
contributes to significantly improve the convergence perfor-
mance for many machine learning applications.

Another crucial component of the dual update is the con-
struction of the term rt + J

K

∑
j∈St

Aj(x
t+1
j − xt

j), which
is inspired by a recently proposed fast incremental gradient
method for non-strongly convex functions, SAGA (Defazio,
Bach, and Lacoste-Julien 2014). We use the combination
of the cached sum of all Ajx

t
j , i.e., rt, and the newly up-

dated sample average 1
K

∑
j∈St

Aj(x
t+1
j − xt

j) to obtain a

Algorithm 1 SP-BCD for Separable Convex-Concave Sad-
dle Point Problems

1: Input: number of blocks picked in each iteration K,
θ = K/J , the configuration of h and σt as given in
Eq. (13) and (16), respectively.

2: Initialize: x0, y0, x0 = x0, r0 =
∑J

j=1 Ajx
0
j

3: for t = 1, 2, . . . , T do
4: Randomly pick set St of K blocks from {1, . . . , J}

each chosen with probability K/J .
5: for each block in parallel do
6: Update each primal variable block using Eq.(11),

and extrapolate it using Eq.(14);
7: end for
8: Update dual variables using Eq.(15) and update rt+1

using Eq. (17).
9: end for

variance reduced estimation of E[r], which is essentially the
spirit of SAGA. After the dual update, rt is updated to rt+1

using,
rt+1 = rt +

∑
j∈St

Aj

(
xt+1
j − xt

j

)
. (17)

The whole procedure for solving Sep-CCSP problem (2)
using SP-BCD is summarized in Algorithm 1. There are sev-
eral notable characteristics of our algorithm:
1. This algorithm is amenable to parallelism for large-
scale optimization, which is suitable for modern comput-
ing clusters. Our method possesses one of key advantages of
stochastic parallel coordinate descent method (Richtárik and
Takáč 2015): providing the flexibility that in each iteration
the number of selected blocks can be optimized completely
in parallel according to available number of machines or
computational cores. This could make use of all the com-
putational availability as effectively as possible.
2. The related non-stochastic primal-dual algorithms
(Chambolle and Pock 2011; 2014) need evaluation of the
norm of A. For large problem size, the norm evaluation can
be time-consuming. The parameter configuration in our al-
gorithm avoids norm estimation, but maintains a O(1/T )
convergence rate.
3. Although an augmented Lagrangian framework, such as
ADMM, can implement an effective optimization for many
problems with linear constraints (3), the selection of the
penalty parameter has a dramatic influence on its perfor-
mance. Current selection rules rely on various heuristics
or exhaustive search, and no theoretical justifications exist.
This difficulty also occurs with other recent work (Zhang
and Xiao 2015) when f(x) and g∗(y) are not strongly con-
vex. Our method avoids this issue.

Convergence Analysis

For a convergence analysis, we employ the following gap
for any saddle point (x,y), G(x′,y′) � maxy L(x

′,y) −
minx L(x,y

′). As discussed by (Chambolle and Pock
2011), this gap will practically measure the optimality of
the algorithm if the domain of the (x′,y′) is “ large enough”
such that (x′,y′) could lie in the interior of their domains.
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The following theorem establishes the convergence of our
algorithm.
Theorem 1. Given that all fi(xi) and g∗(y) are convex
functions, and we set θ = K/J , proximal parameters for
primal and dual update as Eq.(13) and (16), respectively.
Then for any saddle point (x,y), the expected gap decays
as the following rate:

E

[
L

(
T∑

t=1

xt/T,y

)
− L

(
x,

T∑
t=1

yt/T

)]
≤ 1

T
M(0),

where M(0) =

J

2K
‖x0 − x‖2h +

1

2
‖y0 − y‖2σ0 − 〈y0 − y,A

(
x0 − x
)〉

+
J −K

K

(
f(x0) + 〈y,Ax0〉 − (f(x) + 〈y,Ax〉)) .

The proof of the above theorem is technical and given in
the full version of this paper in (Zhu and Storkey 2015b).

Remark. For the parameter configuration in Theorem 1,
when θ = K/J , the key point for obtaining the convergence
of our algorithm is that we select one particular configura-
tion of h and σt to guarantee the positive semidefiniteness
of the following matrix,

P =

[
diag(hSt

) −AT
St

−ASt

K
J diag(σt)

]
� 0. (18)

Under the parameter configuration of h and σt in Theorem
1, we can guarantee matrix P is diagonally dominant, di-
rectly leading positive semidefiniteness. However, the pa-
rameter configuration to make P � 0 is not unique. We
find that other configurations are also valid, for instance,
for each block j, hj = ‖Aj‖I and σ = J

KσI, where
σ = max{‖Aj‖}Jj=1. Different parameter configuration
might provide some influence on the performance of the al-
gorithm. We leave the comparison between them and further
theoretical analysis as future work.

4 Applications

In this section, we provide examples of Sep-CCSP prob-
lems in machine learning. In each application, we select dif-
ferent methods to compare with that have already shown
strong performance in that particular scenario. Note that,
since the method in (Zhang and Xiao 2015) cannot handle
block separable CCSP problem, it is not applicable for the
first and third experiment. To provide a fair comparison with
other methods, all the experiments are implemented in one
core/machine. Each experiment is run 10 times and the av-
erage results are reported to show statistical consistency.

Robust Principal Component Analysis

Robust Principal Component Analysis (RPCA) is a variant
of PCA to obtain a low rank and sparse decomposition of
an observed data matrix B corrupted by noise (Wright et al.
2009; Candès et al. 2011), which could help to handle out-
liers existing in datasets. RPCA aims to solve the following
optimization problem,

min
{Xi}3i=1

1

2
‖X1‖2F+μ2‖X2‖1+μ3‖X3‖∗ s.t. B =

3∑
i=1

Xi,

Table 1: RPCA problem: performance of all compared meth-
ods (with ADMM, GSADMM and PDMM hyperparameters
set to the post-hoc optimal).

Methods Iteration Time (s)
Frobenus norm
of residual (10−4)

Objective (108)

ADMM 149 2191 9.71 1.924
GSADMM 23 448 8.69 1.924

PDCP 59 911 7.80 1.924
PDMM1 125 927 9.92 1.924
PDMM2 73 750 4.55 1.924
PDMM3 67 834 8.56 1.924
SP-BCD1 104 784 7.63 1.924
SP-BCD2 48 492 6.17 1.924
SP-BCD3 42 553 6.72 1.924
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Figure 1: RPCA problem: our method (with K = {1, 2, 3})
versus ADMM, GSADMM, PDCP and PDMM (with K =
{1, 2, 3}).

where B ∈ R
m×n, X1 is a noise matrix, X2 is a sparse

matrix, X3 is a low rank matrix, and ‖ · ‖∗ is the nuclear
norm of a matrix. We generate the observation matrix B in
the same way as (Parikh and Boyd 2014), where we have
m = 2000, n = 5000 and the rank is r = 100. The
regularization parameters are set as μ2 = 0.15‖B‖∞ and
μ3 = 0.15‖B‖. Note that RPCA problem with this matrix
size is non-trivial since there are in total 30, 000, 000 vari-
ables and 10, 000, 000 equality constraints to handle.

In this particular application, the parameter configuration
for SP-BCD with each different number of blocks K chosen
from the possible 3 in each iteration can be obtained: (1)
K = 1, (θ, h, σt) = (1/3, 1, 1); (2) K = 2, (θ, h, σt) =
(2/3, 1, 2); (3) K = 3, (θ, h, σt) = (1, 1, 3).

Our method SP-BCD is compared with (1) ADMM im-
plemented by (Parikh and Boyd 2013); (2) Gauss-Seidel
ADMM (GSADMM) (Hong and Luo 2012), which solves
the problem (3) in a cyclic block coordinate manner. How-
ever, GSADMM with multiple blocks is not well under-
stood and there is no theory guarantee, and GSADMM
has to be implemented sequentially and cannot be paral-
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lel; (3) PDCP (Chambolle and Pock 2011), for which the
recommended parameter configuration can be computed as
(θ, h, σ) =

(
1,
√
3,
√
3
)
; (4) PDMM (Wang, Banerjee, and

Luo 2014) with K = {1, 2, 3}. For each of the three compet-
ing methods (ADMM, GSADMM and PDMM) we run ex-
tensive experiments using different penalty parameter values
ρ, and report the results for best performing ρ, despite the
fact that knowledge of which ρ is optimal is not available
to the algorithms a priori. Hence the real-world performance
of SP-BCD relative to these methods is significantly greater
than these figures suggest.

Figure 1 depicts the performance of all the methods on
the evolution of the objective and the residual (i.e., the de-
viation from satisfied constraints measured by ‖X1 +X2 +
X3−B‖fro) w.r.t. number of passes and consumed time. All
methods quickly achieve the consensus objective value in
20 passes. The key difference in performance is how fast
they satisfy the equality constraint. Our method SP-BCD
with K = 2 is the fastest, achieving almost the same per-
formance with GASDMM, while being fully parallelizable
whereas GSADMM can only be run sequentially. Although
PDMM2 obtains the lowest residual (measured by Frobe-
nus Norm of deviation of satisfied constraints), it spends
much longer time 750s, compared with 492s for SP-BCD2.
When we run the SP-BCD2 with the same amount of time as
that of PDMM2, SP-BCD2 could achieve Frobenus Norm of
residual as 2.36× 10−4, which shows better performance
than PDMM2. The real difference in performance is greater
as optimal hyperparameters are not actually available to the
competing methods.

Lasso

Lasso is an important l1 regularized linear regression, solv-
ing the optimization problem,

min
x

1

2
‖Ax− b‖22 + λ‖x‖1 (19)

where λ is a regularization parameter, and A ∈ R
m×n is

an observed feature matrix. In typical applications, there are
many more features than number of training examples, i.e.,
m < n. By dualizing the first quadratic loss function in (19),

Table 2: Lasso problem: performance of all compared meth-
ods.

Methods m,n, d Time (s) Passes Objective

ISTA
{1, 5, 0.5} × 103 2.27 100 111.405
{5, 20, 2} × 103 45.67 100 448.351

FISTA
{1, 5, 0.5} × 103 1.16 56 111.320
{5, 20, 2} × 103 19.00 49 448.271

ADMM
{1, 5, 0.5} × 103 0.69 63 111.318

{5, 20, 2} × 103 19.83 51 448.258

PDCP
{1, 5, 0.5} × 103 1.40 100 111.318

{5, 20, 2} × 103 26.80 100 448.263

SPDC
{1, 5, 0.5} × 103 3.76 100 117.518
{5, 20, 2} × 103 70.10 100 473.806

SP-BCD
{1, 5, 0.5} × 103 0.70 30 111.318

{5, 20, 2} × 103 13.32 30 448.263

we can have its Sep-CCSP form

min
x∈Rn

max
y∈Rm

λ‖x‖1 + 〈y,Ax〉 −
m∑
i=1

(
1

2
y2i + biyi

)
. (20)

Since ‖x‖1 is totally separable and non-strongly convex, we
can apply our SP-BCD method to the above saddle point
problem, i.e., in each iteration we randomly select K coor-
dinates of primal variable x to update. For the dual update,
the corresponding problem has a simple close-formed solu-
tion that can be updated directly.

Due to the vast literature for the Lasso problem, we only
choose several representative methods to compare with our
method, (1) ISTA (Iterative Shrinkage-Thresholding Algo-
rithm); (2) FISTA (Fast ISTA, (Beck and Teboulle 2009));
(3) ADMM (Boyd et al. 2011, Chap 6.4), note that the for-
mulation of ADMM for Lasso problem is different from
Eq.(19). ADMM splits the loss function and regularization
term using two separable variables, which needs to solve
a linear system in each iteration. When the problem size
is very large, the time complexity is high and even com-
putationally inacceptable. (4) PDCP (Chambolle and Pock
2011), which needs estimation of norm of matrix A. (5)
SPDC (Zhang and Xiao 2015) needs an extra regularization
parameter to adapt non-strong convexity. We choose optimal
regularization parameter by post-hoc selection.

We generate the data as in (Boyd et al. 2011, Chap 11.1).
For SP-BCD and SPDC, we randomly choose K = 100
coordinates per iteration to run the experiments.

Table 2 reports the performance of all these methods on
two problems with different sizes and sparsity. We can ob-
serve that SP-BCD uses the least number of passes and time
to achieve same objective value with other methods. For
smaller sized problems, ADMM also performs very well.
However, when the problem size is rising, the computational
burden from solving large linear systems becomes a serious
issue for ADMM. The issue of scalability also influences the
performance of PDCP since it needs the estimation of norm
of matrix A. Our method SP-BCD is not restricted heav-
ily by a large problem size. SPDC (Zhang and Xiao 2015)
even with optimal regularization parameter (by post-hoc se-
lection) still dramatically deteriorates its performance.

Feature Selection with Group Lasso

We consider solving the following group Lasso prob-
lem (Yuan and Lin 2006):

min
x

λ
G∑

g=1

√
dg‖xg‖2 + 1

N

N∑
i=1

gi(a
T
i x, zi), (21)

where x is partitioned according to feature grouping, i.e.,
x = [xT

1 ,x
T
2 , . . . ,x

T
G]

T , each ai is d-dimensional feature
vector, zi ∈ {−1, 1} is the label, and gi(a

T
i x, zi) is a con-

vex loss function, such as the squared loss, logit loss, or
hinge loss. The regularizer is the sum of groupwise L2-
norm ‖xg‖2, and the trade-off constant λ is to balance be-
tween the loss and the regularization term. The value dg ac-
counts for the varying group sizes. We use hinge loss func-
tion gi(a

T
i x, zi) = max(0, 1 − zia

T
i x) for demonstration.
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Figure 2: Group Lasso on MEMset dataset with different regularization parameter λ.

By the conjugate dual transformation of hinge loss,

gi(a
T
i x, zi) = max

yi∈[0,1]
〈−yiziai,x〉+ yi, (22)

we can transform the group Lasso problem into the follow-
ing saddle point problem,

min
x

max
y∈[0,1]N

λ

G∑
g=1

√
dg‖xg‖2 + 1

N
〈−

N∑
i=1

yiziai,x〉

+
1

N

N∑
i=1

yi (23)

This reformulation of group Lasso makes both the dual and
primal update extremely simple and efficient, both of which
have closed-formed solution and can be easily derived.

To evaluate the performance of our method for the group
Lasso problem, we apply it to a real-world dataset for splice
site detection, which plays an important role in gene find-
ing. The MEMset Donor dataset is widely used to demon-
strate the advantages of the group Lasso models (Meier,
Van De Geer, and Bühlmann 2008; Roth and Fischer 2008).
From the original training set, we construct a balanced
training set with 8, 415 true and 8, 415 false donor sites.
Group lasso on this data with up to 2nd order interac-
tions and up to 4 order interactions has been analyzed by
(Meier, Van De Geer, and Bühlmann 2008; Roth and Fis-
cher 2008), respectively. As shown in (Roth and Fischer
2008), there is not much improvement using higher order

interactions. Therefore we only consider all three-way and
lower order interactions. This forms G = 63 groups or
d = 2604-dimensional feature space with {7, 21, 35} groups
of {4, 16, 64}-dimensional coordinate block, respectively.

We compare our SP-BCD with several recent competi-
tive optimization methods for the non-smooth regularized
problem: (1) OSGA (Neumaier 2014), a fast subgradient al-
gorithm with optimal complexity; (2) FOBOS (Duchi and
Singer 2009) based on Forward-Backward splitting; (3)
FISTA (Beck and Teboulle 2009), using a smoothing tech-
nique to make it applicable with smoothing parameter ε =
5× 10−4; (4) PDCP (Chambolle and Pock 2011).

In this application, we evaluate the performance of these
methods under different regularization parameter λ =
{10−4, 10−5, 10−6}. The first two columns in Figure 2 com-
pares our method SP-BCD (with K = 3) with other meth-
ods in terms of the evolution of the objective function in
Eq.(21) both w.r.t. the number of passes and w.r.t time. In
all these test cases, SP-BCD demonstrates its superiority on
both number of passes and consumed time. When the reg-
ularization is strong with large λ = 10−4, all the methods
tend to converge fast, but SP-BCD is the fastest one. PDCP
performs poorly in first hundreds or thousands of passes,
since it only applies the constant stepsize 1/‖A‖. Compared
with PDCP, our method considers the structure of matrix A
and scales each dimension of primal and dual updates, which
can achieve better empirical performance.

In order to investigate the effect of the number of chosen
blocks for our method, we implement it using different K
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values, K = {1, 3, 9, 21, 63}. The results are shown in the
third column of Figure 2. In all the tested cases, a smaller
number of blocks yields faster convergence, which shows
the advantage of the flexible stochastic update of our method
compared with (Pock and Chambolle 2011).

5 Conclusion and Future Work

The proposed SP-BCD for Sep-CCSP with non-strongly
convex functions shares the efficiency and flexibility of
block coordinate descent methods while keeping the sim-
plicity of primal-dual methods and utilizing the structure of
matrix A. Many machine learning models are covered and
we compare SP-BCD with other competitive methods in var-
ious applications. An immediate future direction is to inves-
tigate other valid parameter configurations.
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