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Abstract

In computer vision, a complex entity such as an image or
video is often represented as a set of instance vectors, which
are extracted from different parts of that entity. Thus, it is
essential to design a representation to encode information
in a set of instances robustly. Existing methods such as FV
and VLAD are designed based on a generative perspective,
and their performances fluctuate when difference types of in-
stance vectors are used (i.e., they are not robust). The pro-
posed D3 method effectively compares two sets as two dis-
tributions, and proposes a directional total variation distance
(DTVD) to measure their dissimilarity. Furthermore, a robust
classifier-based method is proposed to estimate DTVD ro-
bustly, and to efficiently represent these sets. D3 is evaluated
in action and image recognition tasks. It achieves excellent
robustness, accuracy and speed.

Introduction

In visual recognition, a complex entity (e.g., image or video)
is usually represented as a set of instance vectors. Each in-
stance vector is extracted using part of the entity (e.g., a lo-
cal window extracted from an image or a time-space sub-
volume from a video). Various features have been used to
extract instance vectors, such as dense SIFT (Lowe 2004)
and CNN features for images (Jia et al. 2014), or im-
proved dense trajectory features (Wang and Schmid 2013)
for videos (Gkioxari and Malik 2015). Recent works have
shown that if a set of CNN features are extracted from enti-
ties and classify images or videos based on these sets, higher
accuracy can be obtained (Gong et al. 2014; Cimpoi, Maji,
and Vedaldi 2015; Xu, Yang, and Hauptmann 2015).

Because most existing learning algorithms assume that an
entity is represented as a single vector instead of a set of
vectors, we need to find a suitable visual representation that
encodes the set of instance vectors into one single vector. It
is desirable that the representation will capture useful (i.e.,
discriminative) information from the set.

Fisher Vector (FV) and VLAD are the most widely used
representations for this task. FV (Sánchez et al. 2013) is
based on the idea of Fisher kernel in machine learning. It
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models the distribution of instance vectors in training en-
tities using a Gaussian Mixture Model (GMM). Then, one
training or testing entity is modeled generatively, by a vec-
tor which describes how the GMM can be modified to gen-
erate the instance vectors inside that entity. A GMM with
K components has three sets of parameters (wi,μi,Σi),
1 ≤ i ≤ K. VLAD (Jégou et al. 2012), another popular vi-
sual representation, can be regarded as a special case of FV,
by using only the μ parameters. The classic bag-of-visual-
words (BOVW) (Csurka et al. 2004) representation is also a
special case of FV, using only the w parameters.

However, FV and VLAD share two major limitations.
First, recognition performance based on them are not robust.
For some tasks, FV may have high accuracy but VLAD has
poor performance, while the trend may be reversed in other
tasks (cf. the experimental results section). Since we do not
know a priori which representation (FV or VLAD) is better
for a specific task, we prefer a novel representation which is
robust (i.e., always has high accuracy) in all tasks. Second,
they both focus on modeling how one entity or one distri-
bution is generated. Given the fact that the task in hand is
recognition, we argue that we need to pay more attention to
how two entities or two distributions are separated. In other
words, we need a visual representation that pays more atten-
tion to the discriminative side.

In this paper, we propose a discriminative distribution dis-
tance (D3) representation that converts a set of instance vec-
tors into a vector representation. D3 explicitly considers two
distributions: a density T which is estimated from the train-
ing set as a reference model, and one entity forms another
distribution X . D3 then uses the distribution distance be-
tween T and X as a discriminative representation for the en-
tity X . Technically, D3 has the following contributions.
• We propose DTVD, a directional total variation distance,

to measure the distance between two distributions, which
contains more discriminative information than classic
distribution distances by considering the direction;

• Directly calculating DTVD is problematic because T or
X may be non-Gaussian or only contains few items. We
propose to estimate DTVD in a discriminative manner,
by calculating robust misclassification rates when we try
to classify every dimension of T from X;

• We show by experiments that D3 has robustly achieved
high accuracy. We also show that D3 and FV are com-
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plementary to each other. By combining D3 and FV, we
achieve the highest accuracy.

Background: the FV representation

In the Fisher Vector (FV) representation, a large set of in-
stance vectors are extracted from training images or videos.
We treat this set as T and a Gaussian Mixture Model (GMM)
p with parameters λ = (wk,μk,Σk), 1 ≤ k ≤ K, is esti-
mated from T . When a test image or video is presented, we
extract its instance vectors to form a set X . The FV represen-
tation encodes X as a vector x. This is a generative model,
and each component in the vector representation x describes
how each parameter in λ should be modified such that p can
be tuned to fit data X properly. Given two entities X and
Y , the distance between them can be calculated using the
distance between the encoded representation x and y, a fact
that leads to high computational efficiency.1

Thus, the key issue is: given the set T (training entities)
and any entity X , how shall we generate x such that x en-
codes important information that distinguishes X from T ?

We have the following observations based on FV.
• The vector x in FV is formed under the generative as-

sumption that X can be generated by p if we are allowed
to modify the parameter set λ. Since what we are really
interested in is how different is X from T , we believe
that a discriminative distance between X and T is a bet-
ter option. That is, in this paper we will treat X and T as
sampled from two different distributions, and find their
distribution distance to encode the image or video X . A
representation of X that encodes the distance between
X and and the reference model T will contain useful
discriminative information about X;

• Diagonal Σk and linear classifiers are used in FV. Thus,
it is reasonable to approximately treat each dimension of
x as independent of other dimensions. Thus, in finding
a suitable representation for X , we can consider every
dimension individually. That is, given two sets of scalar
values X = {x1, x2, . . . , } and Y = {y1, y2, . . .} (sam-
pled from 1-d distribution pX and pY , respectively), how
do we properly compute the distance d(pX , pY )?2

Discriminative Distribution Distance

Directional Total Variation Distance

A widely used distance that compares two distributions is
the total variation distance, which is independent of the dis-
tributions’ parameterizations. Let νX and νY be two proba-
bility measures on a measurable space (O,B), the total vari-
ation distance is defined as

dTV (νX , νY ) � supA∈B |νX(A)− νY (A)| . (1)

While this definition is rather formal, dTV has a more intu-
itive equation for commonly used continuous distributions

1The details of VLAD are omitted, because VLAD can be con-
sidered as a special case of FV.

2We use X and Y to represent two distributions, instead of con-
fined to T and X in the FV context, because the DTVD distance
proposed in this paper is more general.
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Figure 1: Illustration of the total variation distance. 1a illus-
trates dTV for two Gaussians, and 1b reveals that direction
is essential to distinguish p1 from p2.

by the Scheffe’s Lemma (DasGupta 2011). For example, for
two normal distributions with p.d.f. pX = N(μX , σ2

X) and
pY = N(μY , σ

2
Y ),

dTV (pX , pY ) =
1

2

∫
u

|pX(u)− pY (u)| du . (2)

As illustrated in Fig. 1a, it is half the summed area of the red
and green regions, which clearly indicates how two distribu-
tions are separated from each other.

The classic total variation distance (Eq. 2), however, is
missing one most important information that captures the
key difference between pX and pY , as shown in Fig. 1b. In
Fig. 1b, p1 and p2 are symmetric with respect to the mean of
p, thus we have dTV (p, p1) = dTV (p, p2), in spite of the fact
that p1 and p2 are far apart. The missing of direction infor-
mation is responsible for this drawback. Thus, we propose a
directional total variation distance (DTVD) as

dDTV (pX , pY ) = sign(μY − μX)× dTV (pX , pY ) . (3)

DTVD is a signed distance. In Fig. 1b, we will (correctly)
have dDTV (p, p1) = −dDTV (p, p2), which clearly signifies
that p1 and p2 are on different sides (directions) of p and
hence they are far from each other.

Robust estimation of the DTVD

For two Gaussians pX and pY , their p.d.f. will have two in-
tersections if σX �= σY . For example, in Fig. 1a the second
intersection is in the far right end of the x-axis. A closed-
form solution to calculate dTV based on both intersections
is available (DasGupta 2011). However, this closed-form so-
lution leads to serious performance drop when used in visual
recognition in our experiments. We conjecture that two rea-
sons have caused this issue: The distributions are not neces-
sarily normal and the estimation of distribution parameters
are not robust. The shape of distributions resemble that of
a Gaussian, but still have obvious deviations. For one dis-
tribution estimated from a single entity (cf. the right figure
in Fig. 2b), it usually contains small number of instance vec-
tors, which leads to unstable estimation of its distribution pa-
rameters, and hence unstable dDTV (pX , pY ). Thus, we need
a more robust way to estimate the distribution distance.

Our key insight again arises from the discriminative per-
spective. It is obvious that the total variation distance dTV
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Figure 2: Typical distribution of feature values. 2a is calcu-
lated based on all training entities, and 2b is from a single
entity. The red curve is a normal distribution estimated from
the same data. This figure is generated using bag of dense
SIFT on the Scene 15 dataset with K = 64 VLAD encod-
ing. The dimension shown is the 37-th dimension in the 37-
th cluster of the codebook.

is equivalent to one minus the Bayes error of a binary clas-
sification problem, where the two classes have equal prior
and follow pX and pY , respectively. Thus, we can estimate
dTV (hence dDTV ) by robustly estimating the classification
error between the two sets of examples X and Y . Note that
this task is easy since X and Y only contain scalar examples.

A classifier is robust means that it can achieve good
(or at least reasonable) accuracy when its assumptions are
not precisely satisfied (e.g., the distributions are not Gaus-
sian and the estimation of distribution parameters are not
very reliable). We adopt the minimax probability machine
(MPM) (Lanckriet et al. 2002) to robustly estimate the clas-
sification error. MPM is robust because its objective is to
minimize the maximum probability of misclassification (i.e.,
to ensure the smallest error in the worst case scenario).

Given examples X with mean μX and covariance ΣX and
examples Y with μY and ΣY , the optimal MPM boundary
aT
� x− b� = 0 is determined as (Lanckriet et al. 2002)3

κ−1
� � min

a

√
aTΣXa+

√
aTΣY a (4)

s.t. aT (μX − μY ) = 1 , (5)

and
b� = aT

� μX − κ�

√
aT
� ΣXa� , (6)

where a� is an optimal solution of Eq. 5.
This is a second order cone problem (SOCP) that can be

solved by an iterative algorithm. However, since we are deal-
ing with scalar examples that (assumed to approximately)
follow normal distributions, it has a closed form solution.
Note that X ∼ N(μX , σ2

X) and Y ∼ N(μY , σ
2
Y ), Eq. 5

reduces to a(μX − μY ) = 1, hence a = 1
μX−μY

. Sim-
ilarly, aTΣXa = (aσX)2, and Eq. 4 reduces to κ−1

� =

3More details can be found in the supplementary material.

|a|(σX+σY ). Putting these results together and using Eq. 6,
we get (cf. the supplementary material for details)

a� =
1

μX − μY
, b� = a� × μXσY + μY σX

σX + σY
, (7)

κ� =
|μX − μY |
σX + σY

. (8)

The boundary ax− b is equivalent to x− b
a . Hence, the two

1-d distributions pX and pY are separated at the threshold
value

T =
b�
a�

=
μXσY + μY σX

σX + σY
. (9)

If we re-use Fig. 1a and (approximately) assume the red,
blue, and green areas intersect at T = μXσY +μY σX

σX+σY
, which

is guaranteed to reside in between μX and μY . Then, the
area of the blue region is:4

Area = 1− Φ

(
T − μX

σX

)
+Φ

(
T − μY

σY

)
. (10)

where

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2 dt (11)

is the cumulative distribution function (c.d.f.) of a standard
normal distribution N(0, 1). And, we have

dDTV (pX , pY ) =
1

2
(2− 2Area) = 2Φ

(
μY − μX

σX + σY

)
− 1 ,

(12)
making use of the fact that

T − μX

σX
=

μY − μX

σX + σY
= −T − μY

σY
,

and the property of Φ that Φ(−x) = 1− Φ(x).
Two points are worth mentioning about Eq. 12.
• Although our derivation and Fig. 1a is assuming μX <

μY , it is easy to derive that when μX ≥ μY , Eq. 12 still
holds. And, it always has the same sign as μY − μX .
Hence, Eq. 12 computes dDTV instead of dTV .

• In practice we use the error function, defined as

erf(x) =
1√
π

∫ x

−x

e−t2 dt , (13)

and it satisfies that

Φ(x) =
1

2

(
1 + erf

(
x√
2

))
. (14)

Thus, we have

dDTV (pX , pY ) = erf

(
μY − μX√
2(σX + σY )

)
. (15)

The error function erf is built-in and efficient in most
major programming languages, which facilitates the cal-
culation of dDTV using Eq. 15.

4Detailed derivations are in the supplementary material.
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Algorithm 1 Visual representation using D3

1: Input: An image or video X = {x1,x2, . . .}; and,
a dictionary (visual code book) with size K and cluster
mean μk and standard deviations σk (1 ≤ k ≤ K)

2: for i = 1, 2, . . . ,K do
3: X ′ = {xj |xj ∈ X, argmin1≤k≤K ‖xj − μk‖ = i}
4: Compute the mean and standard deviation vectors of

the set X ′, denote as μ′ and σ′, respectively
5: f i = erf

(
μ′−μi√
2(σ′+σi)

)
, f i =

f i

‖f i‖
Note that the operation of erf function and the vec-
tor division is applied to every component of the

μ′−μi√
2(σ′+σi)

vector(s) individually
6: end for
7: f = [fT

1 fT
2 . . . fT

K ], f = f
‖f‖

8: Output: The new representation f ∈ R
d×K

We also want to note there has been research to model the
discriminative distance between two sets of instance vectors.
In (Póczos et al. 2012), non-parametric kernels are estimated
from two sets, and use the Hellinger’s distance or the Rényi-
α divergence to measure the distance between two distribu-
tions. This method, however, suffers from one major limita-
tion. Non-parametric kernel estimation is very time consum-
ing, which took 3.3 days in a subset of the Scene 15 dataset,
a fact that renders it impractical for large problems. As a
direct comparison, D3 only requires less than 2 minutes.

The pipeline using dDTV for visual recognition

The pipeline using dDTV to generate image or video repre-
sentation follows three steps.

• Dictionary generation. We collect a large set of in-
stance vectors from the training set, and then use the
k-means algorithm to generate a dictionary that parti-
tions the space of instance vectors into K regions. We
compute the mean and standard deviation of the instance
vectors inside cluster k as μk and σk for all 1 ≤ k ≤ K.
Values in the standard deviation vector σk is computed
for every dimension independently.

• Visual representation. Given any image or video X , we
use Algorithm 1 to convert it to a vector representation.
In line 5 of this algorithm, the vectors f i are normal-
ized because k-means is not balanced. Some code word
will have a lot of vectors while some will have few. The
normalization removes the adverse effect caused by this
imbalance.

• Recognition. We use the linear SVM classifier.

In Algorithm 1, we use the k-means algorithm to generate
a visual codebook, and an instance vector is hard-assigned to
one visual code word. A GMM model can also be used as a
soft codebook, similar to what is performed in FV. However,
a GMM has higher costs in generating both the dictionary
and visual representation.

Efficiency and hybrid representation

Since the error function implementation is efficient, the
computational cost of D3 is roughly the same as that of
VLAD, which is much more efficient than the FV method.
The evaluation in (Peng et al. 2014) showed that the time
for VLAD is only less than 5% of that of FV. Thus, a visual
representation using D3 is efficient to compute.

It is also worth noting that although D3 and FV both
used first- and second-order statistics, they use them in very
different way (discriminative vs. generative). However, the
similarity between D3 and VLAD is much higher than that
between D3 and FV. The k-means method is used in both
D3 and VLAD.

By computing the D3 and FV representation separately
and then concatenate them together to form a hybrid one,
we utilize both discriminative and generative information,
and can get higher recognition accuracy than D3 and FV, as
will be shown in our experiments. D3 is robust (i.e., achiev-
ing high accuracy in different types of instance vectors).
The combination of D3 and FV is also robust, unlike FV
or VLAD.

Experimental Results

To compare the representations fairly, we compare them us-
ing the same number of dimensions. For example, the fol-
lowing setups will be compared to each other.
• D3 (or VLAD) with K1 = 256 visual words; the repre-

sentation has dK1 dimensions;
• FV with K2 = 128 components (2dK2 = dK1);
• A mixture of D3 and FV with K3 = 128 in D3 and
K4 = 64 in FV (dK3 + 2dK4 = 2dK2 = dK1).

We will use D3’s K size to indicate the size of all the above
setups (i.e., K = 256 in this example).

Two sets of experiments using different types of instance
vectors are presented. D3 is evaluated in action recognition
(with the ITF instance vectors) and in image recognition
(with CNN features as instance vectors). Discussions are
provided in the end.

Action recognition

For action recognition, improved trajectory features (ITF)
with default parameters (Wang and Schmid 2013) are ex-
tracted for one video and then converted to D3, VLAD, FV,
and two hybrid representations (D3+FV and VLAD+FV).

We experimented on three datasets: UCF 101 (Soomro,
Zamir, and Shah 2012), HMDB 51 (Kuehne et al. 2011) and
Youtube (Liu, Luo, and Shah 2009). For UCF 101, the three
splits of train and test videos in (Jiang et al. 2013) are used
and we report the average accuracy. This dataset has 13320
videos and 101 action categories. The HMDB 51 dataset has
51 actions in 6766 clips. We use the original videos and fol-
low (Kuehne et al. 2011) to report average accuracy of its
3 predefined splits of training / testing videos. Youtube is a
small scale dataset with 11 action types. There are 25 groups
in each action category and 4 videos are used in each group.
Following the original protocol, we report the average of the
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25-fold leave one group cross validation accuracy rates. Re-
sults on these datasets are reported in Table 1. We summarize
the experimental results into the following observations.

D3 is better than VLAD in almost all cases. In the 12 com-
parisons between D3 and VLAD, D3 wins in 11 cases. D3
often has a margin even if it uses half of number of dimen-
sions of VLAD (e.g., D3 K = 128 vs. VLAD K = 256).
It shows that the D3 representation is effective in capturing
useful information for classification.

D3’s accuracy is close to that of FV. When the ITF in-
stance vectors are evaluated in action recognition, FV has
higher accuracies than that of VLAD, usually 2–3% higher,
as shown in Table 1. On average, D3 is only 1% worse than
FV. On the Youtube dataset D3 is better than FV (91.55%
vs. 91.00%). In terms of computational efficiency, in prac-
tice there is no noticeable difference between the running
time of D3 and VLAD, and both are much faster than FV.
Although the accuracy of D3 is slightly lower than that of
FV, we will see that when FV performs poorly with the CNN
instance vectors, D3 still achieves high accuracy. That is, D3
is robust and efficient.

The hybrid D3 / FV representation (nearly) consistently
outperforms all other methods. Furthermore, we show that
the hybrid D3+FV method is the best performer in Table 1.
The D3+FV representation is very effective: it is the winner
in 8 out of 9 cases. With K = 128 in the Youtube set being
the only exception, D3+FV consistently beats other meth-
ods, including FV and VLAD+FV.

Three points are worth pointing out. First, the success of
D3+FV shows that the discriminative (D3) and generative
(FV) information are complementary to each other. Since
the running time of D3+FV is only roughly half of that of
FV in practice, D3+FV is attractive in both speed and ac-
curacy. Second, VLAD+FV is obviously inferior to D3+FV.
Its accuracy is almost identical to that of FV. This may sug-
gest that combining only generative information is not very
effective.

Image recognition

Now we test how D3 (and the comparison methods) work
with instance vectors that are extracted by state-of-the-art
deep learning methods. We use the DSP (deep spatial pyra-
mid) method (Gao et al. 2015), which spatially integrates
deep fully convolutional networks. A set of instance vec-
tors are efficiently extracted, each of which corresponds
to a spatial region (i.e., receptive field) in the original im-
age. The CNN model we use is imagenet-vgg-verydeep-
16 in (Simonyan and Zisserman 2015) till the last convo-
lutional layer, and the input image is resized such that its
shortest edge is not smaller than 314 pixels, and its longest
edge is not larger than 1120 pixels. Six spatial regions are
used, corresponding to the level 1 and 0 regions in (Wu and
Rehg 2011). (Gao et al. 2015) finds that FV/VLAD usu-
ally achieves optimal performance with very small K sizes
in DSP. Hence, we test K ∈ {4, 8}. The following image
datasets are used:
• Scene 15 (Lazebnik, Schmid, and Ponce 2006). It con-

tains 15 categories of scene images. We use 100 training
images per category, the rest are for testing.

• MIT indoor 67 (Quattoni and Torralba 2009). It has
15620 images in 67 indoor scene types. We use the
train/test split provided in (Quattoni and Torralba 2009).

• Caltech 101 (Fei-Fei, Fergus, and Perona 2004). It con-
sists of 9K images in 101 object plus a background cate-
gory. We train on 30 and test on 50 images per category.

• Caltech 256 (Griffin, Holub, and Perona 2007). It is a su-
perset of Caltech 101, with 31K images, and 256 object
plus 1 background categories. We train on 60 images per
category, the rest for testing.

• SUN 397 (Xiao et al. 2010). It is a large scale scene
recognition dataset, with 397 categories and at least 100
images per category. We use the first 3 train/test splits
of (Xiao et al. 2010).

Except for the indoor and SUN datasets, we run 3 ran-
dom train/test splits in each dataset. Average accuracy rates
on these datasets are reported in Table 2. As shown by the
standard deviation numbers in Table 2, the deep learning
instance vectors are stable and the standard deviations are
small in most cases. Thus, we tested with 3 random train/test
splits instead of more (e.g., 5 or 10). The same imagenet-
vgg-verydeep-16 deep network was used as the CNN base-
line.

D3 and D3+FV have shown excellent results when com-
bining with instance vectors extracted by deep nets. We have
the following key observations from Table 2, which mostly
coincide well with the observations concerning action recog-
nition in Table 1. The last row in Table 2 shows the current
state-of-the-art recognition accuracy in the literature, which
are achieved by various systems that depend on deep learn-
ing using the same evaluation protocol.

D3 is slightly better than FV. D3 is better than FV in 3
datasets (Scene 15, indoor 67 and SUN 397), but worse than
FV in the two Caltech datasets. It is worth noting that D3’s
accuracy is higher than that of FV by a larger margin in in-
door 67 (1–2%) and SUN 397 (1.5–2.2%), while FV is only
higher than D3 by 0.3–0.7% in the Caltech 101 and 256
datasets. Another important observation is that the win/loss
are consistent among the train/test splits. In other words, if
D3 wins (loses) in one dataset, it wins (loses) consistently
in all three splits.5 Thus, the CNN instance vectors lead to
stable comparison results, and we believe 3 train/test splits
are enough to compare these algorithms.

VLAD is better than both D3 and FV, but D3 is closer to
VLAD than FV. Although FV outperforms VLAD in Table 1,
a reversed trend is shown in Table 2 using CNN instance
vectors. That is, FV and VLAD are not very robust. VLAD
is almost consistently better than FV, up to 3.2% higher in
the SUN 397 dataset. The accuracy of D3, however, is much
closer to that of VLAD than that of FV. D3 is usually 0.3%–
0.6% lower than VLAD, with only two cases up to 1.1%
(K = 8 in Caltech 256 and SUN 397). In short, we find that
D3 is indeed robust, fulfilling its designing objective.

The D3+FV hybrid method is the overall recommended
method again. The second part of Table 2 presents results
of hybrid methods. D3+FV has the highest accuracy in 6
cases, while VLAD+FV has only one winning case. When

5Detailed per-split accuracy numbers are omitted.
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Table 1: Action recognition accuracy (%) comparisons. Note that the results in one column are compared with the same number
of dimensions in the representations. For example, the column K=256 means that K = 256 for D3 and VLAD, K = 128 for
FV, and in the hybrid representation, K = 128 for D3 or VLAD combined with K = 64 for FV. The best results are shown in
bold face.

UCF 101 HMDB 51 Youtube
K 512 256 128 64 512 256 128 64 512 256 128 64

D3 84.35 84.32 83.03 81.34 56.14 55.29 54.71 51.70 89.91 91.55 91.09 90.36
VLAD 82.81 82.54 81.59 79.78 55.45 55.14 53.92 50.22 90.00 89.73 89.18 89.09
FV 85.23 84.82 83.80 82.48 58.13 57.34 55.88 53.20 91.00 91.00 90.73 90.45
D3+FV 85.92 85.44 84.20 58.34 57.63 56.58 91.73 91.36 90.45
VLAD+FV 85.23 84.54 83.52 58.13 57.60 55.64 90.91 91.36 90.82

Table 2: Image recognition accuracy (percent) comparisons. The definition of K is the same as that used in Table 1. The best
results are shown in bold face. Standard deviations are also showed after the ± sign.

Scene 15 MIT indoor 67 Caltech 101 Caltech 256 SUN 397
K = 4 K = 8 K = 4 K = 8 K = 4 K = 8 K = 4 K = 8 K = 4 K = 8

D3 92.34±0.23 92.10±0.65 77.31 77.76 93.60±0.17 93.80±0.58 83.15±0.15 82.92±0.09 59.93±0.24 60.22±0.07

VLAD 92.58±0.60 92.61±0.42 77.61 78.13 94.20±0.39 94.11±0.57 84.01±0.02 84.00±0.10 60.61±0.25 61.22±0.33

FV 91.96±0.40 91.53±0.56 75.97 75.82 94.32±0.51 94.10±0.33 83.75±0.16 83.40±0.13 58.40±0.12 57.97±0.28

D3+FV 92.83±0.55 92.82±0.31 77.09 77.99 94.72±0.51 94.51±0.44 84.77±0.12 84.62±0.15 61.48±0.22 61.38±0.52

VLAD+FV 92.82±0.52 92.76±0.56 77.54 78.06 94.71±0.41 94.45±0.51 84.18±0.51 84.61±0.16 61.32±0.26 61.83±0.27

CNN baseline 89.88±0.76 69.78 90.55±0.31 82.02±0.12 53.90±0.45
State-of-the-art 91.59 (Zhou et al. 2014) 77.56 (Gong et al. 2014) 93.42 (He et al. 2014) 77.61 (Chatfield et al. 2014) 53.86 (Zhou et al. 2014)

comparing D3+FV with D3, FV or VLAD in detail, this hy-
brid method has higher accuracy than any single method in
all train/test splits in all 36 comparisons (4 datasets exclud-
ing the indoor 67 dataset × 3 individual representations × 3
train/test splits). The MIT indoor 67 dataset is a special case,
where VLAD is better than all other methods. We are not yet
clear what characteristic of this dataset makes it particularly
suitable for VLAD.

The fact that D3 is in general inferior to VLAD in this
setup also indicates that CNN instance vectors have different
characteristics than the ITF instance vectors in videos, for
which VLAD is inferior to D3.

This might be caused by the fact that D3 and VLAD used
very small K values (K = 4 or 8) with CNN instance vec-
tors, compared to K ≥ 64 in Table 1. Hence, both meth-
ods have much fewer number of dimensions now, and a few
VLAD dimensions with highest discriminative powers may
lead to better performance than D3. We will leave a careful,
more detailed analysis of this observation to future work.

Significantly higher accuracy than state-of-the-art, espe-
cially in those difficult datasets. DSP (Gao et al. 2015) (with
D3 or other individual representation methods) is a strong
baseline, which already outperforms previous state-of-the-
art in the literature (shown in the last row of Table 2). The
hybrid method D3+FV leads to even better performance,
e.g., its accuracy is 7.6% higher than the place deep model
of (Zhou et al. 2014) for SUN 397.

Discussions

Overall, the proposed D3 representation method has the fol-
lowing properties:
• D3 is discriminative, efficient, and robust. D3 is not

the individual representation method that leads to the
highest accuracy. FV is the best in our action recognition
experiments with ITF instance vectors, while VLAD is
the best in our image categorization experiments using
CNN features. It is, however, the most robust one. It is
only slightly worse than FV in action recognition and
slightly worse than VLAD in image categorization. Al-
though VLAD is outperformed by FV by a large margin
in action recognition (Table 1) and vice versa for image
categorization (Table 2), D3 has stably achieved high ac-
curacy rates in both sets of experiments. Since we do not
know a priori whether FV or VLAD is suitable for a spe-
cific problem at hand, a robust representation such as D3
is useful. D3 is also as efficient as VLAD, and is much
faster than the FV method;

• D3+FV is the overall recommended method. Using
the same number of dimensions for all individual and hy-
brid methods, D3+FV has shown the best performance,
which indicates that the information encoded by D3 (dis-
criminative) and FV (generative) forms a synergy. Since
the FV part of D3 only uses half the number of Gaussian
components than that in individual FV, D3+FV is still
more efficient than FV alone.

In short, D3 and D3+FV are robust, effective and efficient
in encoding entities that are represented as sets of instance
vectors.

Conclusions and Future Work

We proposed the Discriminative Distribution Distance (D3)
method to encode an entity (which comprises of a set of in-
stance vectors) into a vector representation. Unlike existing
methods such as FV or VLAD that are designed from a gen-
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erative perspective, D3 is based on discriminative ideas to
make the representation robust (i.e., always achieving high
accuracy) when different types of instance vectors are used.
We proposed a new directional distance to measure how two
distributions (sets of vectors) are different with each other,
and proposed to use the MPM classifier to robustly estimate
this distance, even in worst-case scenarios.

These design choices lead to excellent classification ac-
curacy of the proposed D3 representation, which are verified
by extensive experiments on action and image categorization
datasets. D3 is also efficient, and the hybrid D3+FV repre-
sentation has achieved the best results among compared in-
dividual and hybrid methods.

In the same spirit as D3, we plan to combine D3 and FV
in a more principled way, which will add discriminative per-
spectives to FV, to make it more robust, and to further re-
duce the computational cost of the hybrid representation us-
ing D3+FV. Currently the hybrid representation D3+VLAD
is inferior to D3+FV. We conjecture this may be caused by
the similarity between D3 and VLAD. We will further study
how the benefits of VLAD can be utilized (e.g., when CNN
instance vectors are used).
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and Schmid, C. 2012. Aggregating local images descriptors
into compact codes. IEEE TPAMI 34(9):1704–1716.
Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.;
Girshick, R.; Guadarrama, S.; and Darrell, T. 2014. Caffe:
Convolutional architecture for fast feature embedding. In
ACM Multimedia, 675–678.
Jiang, Y.-G.; Liu, J.; Zamir, A. R.; Laptev, I.; Piccardi, M.;
Shah, M.; and Sukthankar, R. 2013. THUMOS: The first
international workshop on action recognition with a large
number of classes.
Kuehne, H.; Jhuang, H.; Garrote, E.; Poggio, T.; and Serre,
T. 2011. HMDB: a large video database for human motion
recognition. In ICCV, 2556–2563.
Lanckriet, G.; Ghaoui, L. E.; Bhattacharyya, C.; and Jordan,
M. 2002. A robust minimax approach to classification. Jour-
nal of Machine Learning Research 3:555–582.
Lazebnik, S.; Schmid, C.; and Ponce, J. 2006. Beyond bags
of features: Spatial pyramid matching for recognizing natu-
ral scene categories. In CVPR, volume II, 2169–2178.
Liu, J.; Luo, J.; and Shah, M. 2009. Recognizing realistic
actions from videos “in the wild”. In CVPR, 1996–2003.
Lowe, D. G. 2004. Distinctive image features from scale-
invariant keypoints. IJCV 60(2):91–110.
Peng, X.; Wang, L.; Qiao, Y.; and Peng, Q. 2014. Boosting
VLAD with supervised dictionary learning and high-order
statistics. In ECCV, LNCS 8691, 660–674.
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