Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

Deep Learning for Algorithm Portfolios

Andrea Loreggia
University of Padova
IBM Research, NY, USA
andrea.loreggia@gmail.com

Horst Samulowitz
IBM Research, NY, USA
samulowitz @us.ibm.com

Abstract

It is well established that in many scenarios there is no single
solver that will provide optimal performance across a wide
range of problem instances. Taking advantage of this obser-
vation, research into algorithm selection is designed to help
identify the best approach for each problem at hand. This seg-
regation is usually based on carefully constructed features,
designed to quickly present the overall structure of the in-
stance as a constant size numeric vector. Based on these fea-
tures, a plethora of machine learning techniques can be uti-
lized to predict the appropriate solver to execute, leading
to significant improvements over relying solely on any one
solver. However, being manually constructed, the creation of
good features is an arduous task requiring a great deal of
knowledge of the problem domain of interest. To alleviate
this costly yet crucial step, this paper presents an automated
methodology for producing an informative set of features uti-
lizing a deep neural network. We show that the presented ap-
proach completely automates the algorithm selection pipeline
and is able to achieve significantly better performance than a
single best solver across multiple problem domains.

Introduction

Over the last decade, it has become an accepted fact that
there is often no single approach that will dominate across
a wide range of problem instances. Techniques like algo-
rithm configuration (Hutter, Hoos, and Leyton-Brown 2011;
Ansétegui, Sellmann, and Tierney 2009; Fitzgerald, Malit-
sky, and O’Sullivan 2015) can certainly improve the aver-
age performance of any parameterized solver for a particular
dataset, such improvements are typically achieved by sacri-
ficing some performance on a subset of instances. Therefore,
if instead there are a number of highly specialized solvers
available, techniques like algorithm selection are designed to
automatically determine the most appropriate approach for
any newly presented instance (Rice 1976). When applied to
competitions in domains like SAT (Le Berre, Roussel, and
Simon 2014), MaxSAT (Argelich et al. 2014), and CSP (van
Dongen et al. 2009), it is commonly observed that a portfo-
lio properly utilizing solvers from one or even two years ago
can readily dominate over any new single solver. Developing

Copyright (© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1280

Yuri Malitsky
IBM Research, NY, USA
yuri.malitsky @ gmail.com

Vijay Saraswat
IBM Research, NY, USA
vijay @saraswat.org

new solvers is imperative and the only way to drive research
forward, but it is clear that rather than being general pur-
pose Jack-of-all-Trades programs, these new solvers need to
be highly specialized for only a small subset of problems. It
is then the job of algorithm selection techniques to identify
when each of the solvers should be used.

Yet while there is now a plethora of competing algorithm
selection approaches (Kotthoff 2014), all of them are fun-
damentally dependent on the quality of a set of structural
features they use to distinguish amongst the instances. If the
features are too noisy or uninformative, no selection tech-
nique will be able to make intelligent decisions. Over the
years, each domain has defined and refined its own set of
features, yet at their core they are mostly a collection of ev-
erything that was considered useful in the past. It is typically
the job of filtering techniques to identify the most represen-
tative feature set for each selection technique for a particular
set of solvers. In recent years, there have been a few attempts
to augment this shotgun generation of features through the
use of a systematic analysis of the latent features based on
solver performances (Malitsky and O’Sullivan 2014), but in
practice such approaches take a considerable amount of ex-
pertise to generate.

The focus of this paper is therefore to eliminate the hu-
man element from the feature generation process by using
a deep learning approach. The paper notes that for a ma-
jority of domains, the specifics of any problem instance is
typically expressed as a text document. For example, a SAT
problem is typically represented in the DIMACS CNF for-
mat (Trick et al. 1993) where after a header, each line in
the file describes the literals in each clause. Similarly, CSP
problems can be represented in the XCSP format (Roussel
and Lecoutre 2009) while MIPs can be represented in LP
or MPS formats (ILOG 2006). Regardless of the format, the
problem instances are represented in a text file. This paper,
therefore presents a way to automatically convert any such
text file into a grayscale square image, which can in turn be
used to train a deep neural network to predict the best solver
for the instance.

The proposed technique was applied across multiple
datasets in SAT and CSP domains. We first benchmark the
datasets by showing the performance of a state-of-the-art al-

gorithm selection strategy, CSHC (Malitsky et al. 2013), uti-
lizing the established set of features. We subsequently eval-
uate the performance of the deep neural network to predict
the best solver, as well as the quality of the output vector of
such a network to act as a new feature vector for an existing
selection strategy. Both of the new automated techniques are
considerably better than the best single solver in any of the
benchmarks, and while not quite at the level of the state-of-
the-art portfolio on features studied for over a decade, our
fully automated approach is shown to be competitive.

To the best of our knowledge this is the first tentative us-
age of deep learning in this area. Very recently introduced
approaches share the idea of extracting knowledge from raw
data without employing any crafted information. For exam-
ple, a novel approach shows how a deep neural network can
learn the semantic of simple arithmetic operations, such as
addition and subtraction, by simply training the network us-
ing images. The input consists of two images of numbers
while the output corresponds to the results of the selected
arithmetic operation (Hoshen and Peleg 2015). The concept
of number and arithmetic operator is left to be learnt by
the neural network. This work can be thought of as a com-
puter vision task of frame prediction and can be grouped
with other approaches in the same area such as (Vinyals et
al. 2014). Of a particular interest is another recent method
that applies a temporal convolutional networks to text under-
standing where the applied technique has no knowledge of
words, phrases or sentences nor any know-how about syntax
or semantic structure (Zhang and LeCun 2015). Yet results
evidence surprising achievement, even starting with only the
simple character level input.

These techniques, however, are specialized to their per-
spective domains whereas the approach presented here aims
to work across multiple problem representations, each with a
unique grammar and internal organization of data. In short,
a SAT file looks nothing like an XCSP file. Furthermore,
even the problems themselves can vary dramatically in terms
of their size, while most machine learning approaches rely
on constant sized feature vectors. This problem can be ab-
stracted away in text mining by relying on word counts or
other relations, but in our domain, we might care about more
than how frequently variable x; appears. Therefore, the work
in this paper is a proposed first step in developing a method-
ology of representing a diverse class of problem domains in
a finite representation.

Algorithm Selection

Algorithm selection is the study of choosing the most appro-
priate solver for the problem at hand based on a descriptive
set of features that describe the instance. In 2007, the SAT
community was rocked by the introduction of a new solver
that completely dominated their annual competition (Xu et
al. 2009). SATzilla was a a simple portfolio that relied on
ridge regression to predict the expected log-runtime of its
constituent solvers, executing the one with the lowest ex-
pected runtime. Yet this straightforward application dramat-
ically altered how we approach solver development. In the
subsequent years, increasingly better portfolios came to the

1281

scene. ISAC (Kadioglu et al. 2010) utilized clustering to dif-
ferentiate the instances, CPHydra (O’Mahony et al. 2008)
and 3S (Kadioglu et al. 2011) then used scheduling to find
the best sequence of solvers to evaluate. In 2012, SATzilla
came out with a new method utilizing a random forest, re-
claiming first place prizes in the SAT community (Le Berre,
Roussel, and Simon 2014). Now the range of techniques is
growing at a rapid rate and for an up to date list of related
research, we refer the reader to the constantly updated sur-
vey (Kotthoff 2014).

Currently, based on the latest results in the SAT
and MaxSAT competitions, a state-of-the-art portfolio is
CSHC (Malitsky et al. 2013), which is the technique we em-
ploy in this paper. An acronym for cost-sensitive hierarchi-
cal clustering, CSHC bases its decision by training a forest
of random trees. Each tree in the forest is trained with a split-
ting criteria that ensures that it divides the training data such
that the instances in each child node, maximally agree on the
solver they prefer. The partitioning stops when the amount
of data in a child node becomes too small. To ensure varia-
tion of the forest, each tree is trained on a random subset of
70% of the data and a random subset of considered features.
Therefore, whenever a new instance is presented, each tree
votes for the best solver based on its data.

From Text to Images to Selection

There are many file specifications utilized, each one specifi-
cally formulated to most conveniently represent a particular
problem. Satisfiability instances are typically represented in
cnf format:

c SAT EXAMPLE
p cnf 3 2
1 -30

23 -10

In this representation a line beginning with a “c” is consid-
ered a comment, while “p” signals the problem type, number
of variables and number of clauses. The subsequent lines list
the literals belonging to each clause, with a minus sign de-
picting a negation. In the example above, the mathematical
SAT problem represented is: (x1 V —x3) A (22 V x3 V —21).

The CNF format efficiently captures all the necessary de-
tails about the SAT problem, but at the same time is unable
to capture the requirements of a full constraint satisfaction
problem. For something like that, the XCSP format is a bet-
ter fit, which uses xml to first specify the domains, then the
variables, and then the relations between the variables. The
example below defines a problem with variables A; and Ao
that can take a value 1 or 2 and must each must be different.

<domains nbDomains="1">
<domain name="d0" nbValues="2">1..2</domain>
</domains>

<variables nbVariables="2">

domain="d0"/>

domain="do"/>

<variable name="Al"
<variable name="A2"
</variables>
<constraint name="cO"
scope="Al A2"

arity="2"

reference="global:alldifferent"/>

Certainly the SAT problem could be represented as a CSP.
Albeit not always practical, one could even encode any NP
complete problem into any other NP complete problem in
polynomial time. But for our approach we want to be able
to take potentially any problem definition and encode into
something usable by a machine learning approach like a
deep neural network. Therefore, this section shows how to
take the above presented formats and convert them to gray-
scale images with a predefined dimension n. We subse-
quently show how these images can be used to train and
test a deep neural network using 10-fold-cross validation.
In our specification, the output of the network represents a
scoring of all solvers on the provided input instances, which
can either be used directly as a selection approach, or as new
features to be used by existing selection strategies.

Image generation

Converting text documents into images of a fixed size is a
well studied topic for identification and prediction, but is not
readily applicable to our scenario. For one, note that the vo-
cabulary and grammar is vastly different between the CNF
and XCSP formats, preventing us from taking any advantage
of known structures. We particularly avoid such structures
because we want our approach to be as general as possible.
We similarly cannot take advantage of the typical approach
of counting the frequency of words, since in most cases we
do not care how frequently words appear together but the
relations of which words they appear next to. Finally, prob-
lems can be of widely different sizes, with SAT instances
ranging from hundreds to millions of clauses and CSP in-
stance consisting of just dozens of lines. Ultimately the core
issue is that we need a way to represent

The employed conversion process works as follows: For
each available instance, the plain text file is read character by
character and replaced with its corresponding ASCII code.
Each such code is stored in a vector of length IV, where N is
the number of total characters in the input file. After reading
the entire file, the vector is reshaped using the new dimen-
sion v/N. We can now draw a square gray scale image for
each instance using the ASCII code value for a shade of gray.
For example, the following snippet of a CNF file:

88 1134 1972 0
699 81 -1082 O
-239 -1863 1594 0

is represented as the following vector of ASCII codes:
[56,56,32,49,49,51,52,32,49,57,55,...1.
Note that all characters are mapped — including spaces and
line break symbols. Since ASCII codes range between 0
and 255 they can be mapped conveniently to gray scale. q
While this initial image representation is loss-free since
there exists a one-to-one mapping from the original text to
the image and vice versa, we now rescale the image to a
predefined size (e.g., 128x128) using standard image scaling
operators. Hence the process produces a set of images which
are all of the same size. This is one key point of this work:

1282

Figure 1: Image extracted from SAT problem instance.

o :-:-5;: e e ey

R e

:5%;‘5-““’*“15 S ﬁ:ﬂ"-%:ﬁ

Figure 2: Image extracted from CSP problem instance.

we strongly believe that instances expose structure and self-
similarity (Ansétegui et al. 2014) (patterns can easily been
visualized using images) and that these properties can be
maintained once we rescale the images. The images can be
useful to visualize and to analyze these structures, regardless
of the considered domain. While scaling the images incurs
a high loss in information it seems to be the case that the
retained structure is sufficient to address decision problems
such as algorithm selection. Figures 1 and 2 show an image
extracted from a SAT and CSP instance: patterns are easily
visible in each image.

Neural network

In machine learning, a neural network is a structure espe-
cially used for classification or regression tasks when the
high dimensionality and non-linearity of the data make these
tasks hard to accomplish. In the realm of visual data the
standard is to employ convolutional neural networks (CNN).
CNN s are directly inspired by the hierarchy of the cells in vi-
sual neuroscience (Hubel and Wiesel 1962). The same struc-
ture roughly resembles the one in the visual cortex (Felle-
man and Essen 1991). Nowadays it represents the state-of-
the-art in image classification area (Krizhevsky, Sutskever,
and Hinton 2012) and in many others such as speech recog-
nition (Sainath et al. 2013) and face recognition (Taigman et

32 conv. 3x3 64 conv. 2x2
Input layer Max pool 2x2 Max pool 2x2
128x128 Dropout 0.1 Dropout 0.2

Fully connected
1000 nodes
Dropout 0.5 Output layer

N solvers

Fully connected
200 nodes

128 conv. 2x2
Max pool 2x2
Dropout 0.3

Figure 3: Deep convolutional neural network structure.

al. 2014). Convolutional neural networks are specifically de-
signed to deal with multi-dimensions input such as images.
The modular approach of the deep network and the use of
convolutional layers allow the early stage of the network to
search for junctions of features while the use of pooling lay-
ers try to merge them semantically. The great success of con-
volutional neural networks on image related tasks inspired
our approach in the context of algorithm portfolios: could
an image representation of textual information leverage the
capabilities of CNNs to perform algorithm selection? While
the last section described how we converted textual repre-
sentations to images, we describe the employed CNN model.

Our deep CNN network starts with three convolutional
layers, each one followed by a max-pool layer and a dropout
layer. At the very end of the network there are two fully-
connected layers with a single dropout layer in the middle.
The output layer is composed of m nodes, where m is the
number of solvers. Dropout layers help to prevent overfit-
ting (Srivastava et al. 2014) and make the neural network
performances more stable in combination with other tech-
niques, such as adjusting momentum and learning rate dur-
ing the training phase.

The network uses the stochastic gradient descent (SGD)
algorithm to speed-up the back-propagation and during
the training phase it is updated using Nesterov momen-
tum (Sutskever et al. 2013). The minibatch size is set to
128, learning rate is initially set to 0.03 and momentum
is initially set to 0.9. Both are adjusted during the training
phase with step size of 0.003 for learning rate and 0.001 for
momentum. The non-linearity used is the rectify function
¢(x) = max(0,), while the output layer uses the sigmoid
function ¢(z) = 1/(1 + e %).

Figure 3 represents the structure of the convolutional neu-
ral network implemented and used in all experiments. The
figure also reports the number of filters used and their di-
mensions as well as the dimension for each convolutional
layers and the probabilities used by the dropout layers and
max-pool layers. Before training the neural network, the
data is preprocessed in the following way: For each feature
we subtract the mean and normalize each feature to have a
standard deviation equal to 1. This preprocessing step has
been shown to be beneficial for efficiency and performances

1283

of neural networks (LeCun et al. 1998).

The plain classification task (i.e. training the neural net-
work to predict which is the best solver to use for a given
instance) has resulted in poor performances. Consequently,
we moved to a slightly easier binary regression task, which
corresponds to train the neural network to predict whether a
solver can solve the given instance or not. The objective loss
function is the binary cross entropy:

L = —tlog(p) — (1 —t)log(1 — p)

where ¢ € {0, 1} is the ground truth value, and p € [0, 1] is
the predicted value.

Discussion As desired the proposed approach is oblivious
to any domain specific properties since its parsing problem
instances character by character and does not rely on any
given predefined structure. In general, the process exhibits
very little bias — except for the step that scales the initial
image to its miniature sized version. Our method relies on
the fact that the employed scaling function (e.g., the default
image scaling algorithm) retains the structure that is needed
to perform algorithm selection. Ideally one would want to
learn this reduction function so that the needed structure is
retained without depending on a somewhat arbitrary trans-
formation. In future work one could consider employing, for
example, an LSTM (Hochreiter and Schmidhuber 1997) to
learn the appropriate transformation function as well.

Experiments

We implemented the neural network described in Section

using Python 2.7 and Lasagne 0.1. Lasagne is a framework
based on Theano 0.7 (Bastien et al. 2012; Bergstra et al.
2010) which allows development of CNNs at a rather ab-
stract and transparent level. In addition the framework al-
lows exploitation of high performance GPUs. The main idea
of Lasagne is to compose the neural network using different
available layers stacking them on top of each other. For each
layer it is possible to alter various parameters based on the
layer’s type. This rather straightforwardly leads to the imple-
mentation of the deep neural network. We have limited the
training of the neural network to 100 epochs, since increas-
ing the number of epochs made the neural network overfit
due to the limited amount of data available in those domains.

Dataset CSHC BSS CNN New Feat.

Industrial | 95.6 +2.56 | 92.6 +2.50 | 93.0 +£2.73 | 93.7 £ 2.56

Random | 965+ 1.89 | 774+ 1.74 | 90.7 £ 1.90 | 90.1 £+ 1.45

Crafted 91.6 £2.45 | 772 +4.75 | 782+ 6.32 | 79.9 +4.11

CSP 945+294 | 654+498 | 82.1 =231 | 78.2+2.97

Table 1: Percentage of solved instances.

We have also experimented with different image sizes (e.g., Dataset CSHC BSS CNN New Feat. VBS
32x32 and 256x256) and while for domains with the highest Industrial | 691 921 903 831 463
number of instances (e.g., random) larger images resulted in Eanf‘ioén 193093 é ;gg ; éi; é éi’g 17g i4

. . rarte 5 B > 5 s
better performances, we decided to choose 128x128 which CSP 489 1501 914 1022 301

seemed to have the best trade-off between number of input
parameters and performance.

We empirically evaluated this novel approach using dif-
ferent data sets coming from the satisfiability (SAT) and
constraint programming domains (CSP). The SAT datasets
are publicly available on the SAT competition website and
are usually divided into the following three sub-domains:
industrial, random and crafted. We have the performances
of 29 solvers for each of about 800 instances for indus-
trial, more than 2,200 instances of random and about 730 of
crafted. We also use the performances of 22 solvers for each
of the almost 1,500 instances in the CSP domain. The CSP
instances come from the CSP Competition (csp 2009) and
include non-trivial instances from problem classes such as
Timetabling, Frequency Assignment, Job-Shop, Open-Shop,
Quasi-group, Costas Array, Golomb Ruler, Latin Square,
All Interval Series, Balanced Incomplete Block Design, and
many others. This set includes both small and large arity
constraints and all of the global constraints used during the
CSP solver competitions: all-different, element, weighted
sum, and cumulative.

For each dataset we performed the prediction task using
a 10-fold cross validation approach. Hence, we first split
a dataset into a training and test set. The train set is then
split further into train and validation splits using a ratio of
75%/25%. The neural network was trained using the im-
ages corresponding to the instances of a given dataset. The
trained neural network was then used to predict which solver
could finish a given test instance within the timelimit. The
neural network outputs for each solver a value between 0
and 1, where O indicates that the solver cannot finish the
given instance and 1 means the opposite. For evaluation,
we select the solver whose output obtains the highest value.
This strategy will be referred to as CNN. Alternatively, in-
stead of relying solely on the neural network to make the
correct decision on which solver to use, it is also possible to
interpret the output layer as a new feature vector. A special-
ized approach for algorithm selection (e.g., (Xu et al. 2012;
Malitsky et al. 2013)) can then be used to try to refine the
selection process. We refer to this approach as “New Feat”
in the results that follow.

The results obtained by our methods are compared with
the ones obtained using regular manually crafted features
with CSHC (Malitsky et al. 2013), which represents a state-
of-the-art approach in the area of algorithm portfolios. We
use our own implementation of the classifier.

1284

Table 2: Average running time in seconds for various selec-
tion strategies.

Similar to a majority class in a plain classification task
the baseline in this setting is the following: after executing
all solvers on the train dataset and computing the average
running time elapsed by each one one chooses as prediction
the algorithm that behaves on average the best. This selec-
tion strategy we label the Best Single Solver (BSS).

Tables 1 and 2 summarize our empirical results. While
our approach is not able to achieve state-of-the-art perfor-
mance, it does give better performances than the baseline on
all considered domains. Note that this is without relying on
features crafted by expert humans.

In particular, Table 1 shows the percentage of solved in-
stances of a given domain using one of the before-mentioned
methods. The presented deviations are based on the statistics
after performing 10-fold cross validation. We believe that
the performance could be boosted further if more problem
instances would be available for training. While the perfor-
mance on random and CSP can be clearly distinguished from
the baseline, the difference in performance on the bench-
marks with a smaller set of available instances (industrial
and crafted) is not as pronounced.

We also consider how our approach performs in terms of
average run time per instance. To this end we compared the
prediction from the neural network not only in terms of num-
ber of solved instances but also in terms of average runtime
used by the prediction to solve the instance. Table 2 reports
these results. As before the first column reports the results
obtained with CSHC. The very last column “VBS” corre-
sponds to the oracle performance which corresponds to the
average runtime that one would achieve if for each instance
one would always select the fastest solver. Once again, this
new approach is performing better then the BSS in all of the
scenarios and the gap to the state-of-the-art is within reason-
able limits for a fully automated approach.

Table 3 reports the number of misclassifications that the
neural network incurred on SAT instances. As already said,
the very last layer of the neural network is a vector of val-
ues in [0, 1], where 0 in position ¢ means that the i-th solver
cannot solve the given instance, 1 otherwise. For any test in-
stance and for any solver, we know the actual ability of the
solver (e.g., solve or not solve). So given a test instance, we

Dataset Misclassification
Industrial 4.63
Random 4.93
Crafted 10.84

Table 3: Average number of misclassified solvers per in-
stance by the convolutional neural network.

counted how many output values of the neural network are
wrong by changing to O all the values less than equal to 0.5
and changing to 1 the others, comparing the outcomes with
reality. On the industrial and random benchmarks the neural
network makes very few errors where less than 5 out of 29
solvers are predicted incorrectly per instance. The number of
misclassifications grows to about 10 for the crafted dataset.
But note that as long as the CNN selects a solver that can
solve the instance the resulting portfolio will still yield good
performance. In addition existing algorithm selection tech-
niques can further learn patterns on top of the predictions
made by the neural network to automatically correct mis-
takes and improve overall predictions.

Given the presented results and considering the complex-
ity of our approach there are a number of alternate hypoth-
esis to which the rise in performance can be attributed to.
For one, it is possible to imagine that if the majority of the
solvers in the portfolio are reasonable, than simply randomly
guessing the best solver could achieve comparable behavior.
Table 4 shows that this is not the case in the examples we
presented. The random agent always performs worse than
the best single solver and its executions is far from the ones
of the neural network, suggesting that the neural network is
able to extract some structure from the data that enables it to
select the correct solver.

An alternate explanation for the performance can be that
our neural network is not really learning to differentiate be-
tween instances, but between the generators used to cre-
ate them. This is possible since certain random generators
can put larger clauses towards the top of the instance, or-
der clauses lexicographically, or subconsciously incorporate
some other kind of order. It is well know in the literature
that neural networks are notorious at picking up on these
external patterns, producing misleading results. To test this
hypothesis, we tried repeating the experiments with the SAT
instances but this time randomly shuffling the clauses of the
instances and ordering the variables in each clause lexico-
graphically. However, the performance of the resulting port-
folios was still comparable to the performance presented in
Table 1.

An interesting question is if combining the manually
crafted and automatically generated features results in fur-
ther improvements in terms of performance. To that end
we simply append the original and new features and use
the composed feature vector to train CSHC. However, the
achieved performance based on the combined feature vector
does not result in any improvements over just using the orig-
inal features. We have not yet explored if techniques like fea-
ture selection applied to the combined feature vector would
boost performance.

1285

Dataset BSS Random

Industrial 92.6 =2.50 62.1 +£4.28
Random 774 +1.74 31.64+1.96
Crafted 772 +475 55.1+9.53

Table 4: Average percentage of solved instances for an agent
that chose randomly.

Overall, the results seem to strongly suggest that the in-
troduced approach of converting textual representations of
problem instances into gray scale images does capture some
structure of the underlying instance. This structure can then
be picked up and exploited with the right tools. The result
means that we can completely remove human expertise from
the picture of algorithm selection, allowing the tools to be
readily applied to new fields.

Conclusion

Algorithm selection has drastically changed the practice
of research of algorithms. The significant amount of re-
search has shown that instead of creating Jack-of-all-Trades
methodologies, we should instead focus on highly special-
ized techniques, selecting the best strategy for the problem at
hand. However, in order to get selection techniques to work
to their full potential a substantial amount of human exper-
tise is required to create the features necessary to differen-
tiate between instances. In this work we take the first step
to fully automating this process in hopes to make algorithm
selection an easier tool for researchers to use off-the shelf.

We introduced the usage of deep learning techniques in
automated algorithm portfolios by training a neural network
using images extracted from problem instances. We show
how this new approach gives solid performances on different
domains, even though we have not used any domain knowl-
edge. Avoiding feature generation and the usage of domain
knowledge makes this new approach very appealing on a va-
riety of different domains.

While the presented approach continuously out performed
any single solver, it still naturally lags behind carefully con-
figured and specialized approaches. Nonetheless, there are
many subsequent lines of research to pursue. The effects
of introducing some domain knowledge to filter out repeti-
tive irrelevant words. Alternatively, another way of encoding
words rather than character by character could be possible.
Furthermore, learning how to compress the initial image in
order to retain the necessary structure could not only im-
prove performance further, but would also remove the bias
induced by the employed scaling function. Finally, could
one leverage existing knowledge representations such as the
one available from Imagenet (Deng et al. 2009) to improve
performance? Besides improving the current work two ad-
ditional directions seem worth pursuing. First, could one
use Deep Learning to actually solve combinatorial problems
directly? Can one learn and recognize patterns and lever-
age them in the resolution process? Second, while algorithm
portfolios seem to be one application domain of the pre-
sented approach, one could also try to apply it to other tasks
such as sentiment analysis within text understanding. All

these directions are now being considered for future work.

References

Ansétegui, C.; Bonet, M. L.; Girldez-Cru, J.; and Levy, J. 2014.
The fractal dimension of sat formulas. In Demri, S.; Kapur, D.;
and Weidenbach, C., eds., IJCAR, volume 8562 of Lecture Notes
in Computer Science, 107-121. Springer.

Ansétegui, C.; Sellmann, M.; and Tierney, K. 2009. A gender-
based genetic algorithm for the automatic configuration of al-
gorithms. In Proceedings of the 15th International Conference
on Principles and Practice of Constraint Programming, CP’09,
142-157. Berlin, Heidelberg: Springer-Verlag.

Argelich, J.; Li, C. M.; Manya, F.; and Planes, J. 2014. Max-
SAT Evaluation 2014.

Bastien, F.; Lamblin, P.; Pascanu, R.; Bergstra, J.; Goodfellow,
I.J.; Bergeron, A.; Bouchard, N.; Warde-Farley, D.; and Bengio,
Y. 2012. Theano: new features and speed improvements. CoRR
abs/1211.5590.

Bergstra, J.; Breuleux, O.; Bastien, F.; Lamblin, P.; Pascanu,
R.; Desjardins, G.; Turian, J.; Warde-Farley, D.; and Bengio, Y.
2010. Theano: A cpu and gpu math compiler in python. In
van der Walt, S., and Millman, J., eds., Proceedings of the 9th
Python in Science Conference, 3 — 10.

2009. CSP Solver Competition Benchmarks. http://www.cril.
univ-artois.fr/~lecoutre/benchmarks.html.

Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-Fei, L.
2009. ImageNet: A Large-Scale Hierarchical Image Database.
In CVPRO9.

Felleman, D. J., and Essen, D. C. V. 1991. Distributed hierarchi-
cal processing in the primate cerebral cortex. Cerebral Cortex
1:1-47.

Fitzgerald, T.; Malitsky, Y.; and O’Sullivan, B. 2015. Reactr:
Realtime algorithm configuration through tournament rankings.
In Proceedings of the Twenty-Fourth International Joint Confer-
ence on Artificial Intelligence, IJJCAI1S.

Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. In Neural Computation 9 (8), 17351780.

Hoshen, Y., and Peleg, S. 2015. Visual learning of arithmetic
operations. CoRR abs/1506.02264.

Hubel, D., and Wiesel, T. 1962. Receptive fields, binocular
interaction, and functional architecture in the cat’s visual cortex.
Journal of Physiology 160:106—154.

Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2011. Sequen-
tial model-based optimization for general algorithm configura-
tion. In Learning and Intelligent Optimization - 5th Interna-
tional Conference, LION 5, Rome, Italy, January 17-21, 2011.
Selected Papers, 507-523.

ILOG. 2006. Cplex 10.0 file formats.

Kadioglu, S.; Malitsky, Y.; Sellmann, M.; and Tierney, K. 2010.
Isac - instance-specific algorithm configuration. In Coelho, H.;
Studer, R.; and Wooldridge, M., eds., ECAI, volume 215 of
Frontiers in Artificial Intelligence and Applications, 751-756.
IOS Press.

Kadioglu, S.; Malitsky, Y.; Sabharwal, A.; Samulowitz, H.; and
Sellmann, M. 2011. Algorithm selection and scheduling. In

International Conference on Constraint Programming, volume
6876, 454-469.

1286

Kotthoff, L. 2014. Algorithm selection for combinatorial search
problems: A survey. Al Magazine 35(3):48-60.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Ima-
genet classification with deep convolutional neural networks. In
Bartlett, P. L.; Pereira, F. C. N.; Burges, C.J. C.; Bottou, L.; and
Weinberger, K. Q., eds., NIPS, 1106-1114.

Le Berre, D.; Roussel, O.; and Simon, L. 2014. SAT 2014
competition.

LeCun, Y.; Bottou, L.; Orr, G.; and Muller, K. 1998. Efficient
backprop. In Orr, G., and K., M., eds., Neural Networks: Tricks
of the trade. Springer.

Malitsky, Y., and O’Sullivan, B. 2014. Latent features for algo-
rithm selection. In The Seventh Annual Symposium on Combi-
natorial Search (SOCS).

Malitsky, Y.; Sabharwal, A.; Samulowitz, H.; and Sellmann, M.
2013. Algorithm portfolios based on cost-sensitive hierarchical
clustering. In IJCAI 2013, Proceedings of the 23rd International
Joint Conference on Artificial Intelligence, Beijing, China, Au-
gust 3-9, 2013.

O’Mahony, E.; Hebrard, E.; Holland, A.; Nugent, C.; and
O’Sullivan, B. 2008. Using case-based reasoning in an algo-
rithm portfolio for constraint solving. In Proceedings of the
19th Irish Conference on Artificial Intelligence and Cognitive
Science.

Rice, J. 1976. The algorithm selection problem. Advances in
Computers 15:65-118.

Roussel, O., and Lecoutre, C. 2009. XML representation of
constraint networks: Format XCSP 2.1. CoRR abs/0902.2362.

Sainath, T. N.; rahman Mohamed, A.; Kingsbury, B.; and Ram-
abhadran, B. 2013. Deep convolutional neural networks for
lvesr. In ICASSP, 8614-8618. IEEE.

Srivastava, N.; Hinton, G. E.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: a simple way to prevent neu-
ral networks from overfitting. Journal of Machine Learning Re-
search 15(1):1929-1958.

Sutskever, 1.; Martens, J.; Dahl, G. E.; and Hinton, G. E. 2013.
On the importance of initialization and momentum in deep
learning. In ICML (3), volume 28 of JMLR Proceedings, 1139—
1147. JMLR.org.

Taigman, Y.; Yang, M.; Ranzato, M.; and Wolf, L. 2014. Deep-
face: Closing the gap to human-level performance in face veri-
fication. In Conference on Computer Vision and Pattern Recog-
nition (CVPR).

Trick, M.; Chvatal, V.; Cook, B.; Johnson, D.; McGeoch, C.; and
Tarjan, B. 1993. The second dimacs implementation challenge.
van Dongen, M.; Lecoutre, C.; Manya, F.; and Planes, J. 2009.
CSP Evaluation 2009.

Vinyals, O.; Toshev, A.; Bengio, S.; and Erhan, D. 2014. Show
and tell: A neural image caption generator. cite arxiv:1411.4555.
Xu, L.; Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2009.
Satzilla2009: an automatic algorithm portfolio for sat. solver de-
scription. SAT Competition.

Xu, L.; Hutter, E.; Shen, J.; Hoos, H.; and Leyton-Brown, K.
2012. SATzilla2012: Improved algorithm selection based on
cost-sensitive classification models. Solver description, SAT
Challenge 2012.

Zhang, X., and LeCun, Y. 2015.
scratch. CoRR abs/1502.01710.

Text understanding from

