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Abstract

Tagging has become increasingly important in many
real-world applications noticeably including web appli-
cations, such as web blogs and resource sharing sys-
tems. Despite this importance, tagging methods often
face difficult challenges such as limited training sam-
ples and incomplete labels, which usually lead to de-
generated performance on tag prediction. To improve
the generalization performance, in this paper, we pro-
pose Regularized Marginalized Cross-View learning
(RMCV) by jointly modeling on attribute noise and
label noise. In more details, the proposed model con-
structs infinite training examples with attribute noises
from known exponential-family distributions and ex-
ploits label noise via marginalized denoising autoen-
coder. Therefore, the model benefits from its robustness
and alleviates the problem of tag sparsity. While RMCV
is a general method for learning tagging, in the evalua-
tions we focus on the specific application of multi-label
text tagging. Extensive evaluations on three benchmark
data sets demonstrate that RMCV outstands with a su-
perior performance in comparison with state-of-the-art
methods.

Introduction
Tagging has attracted a great attention in many real-world
applications noticeably including web applications such as
web blogs and resource sharing systems. It aims at improv-
ing the information organization and management by as-
signing textual descriptions or key-words (called tags) to in-
formation object. With typically explosive amount of data
to be tagged, it is very time-consuming and labor-intensive
for manually labeling data. Consequently, machine learning
techniques for tagging have become an effective alternative.
In order to reduce the manual effort, many fast tagging meth-
ods (Elisseeff and Weston 2001; Yu, Yu, and Tresp 2005;
Liu, Jin, and Yang 2006; Zhang and Zhou 2007; Hsu et al.
2009; Zhang and Zhou 2014; Liu and Tsang 2015) have been
developed. But most of these studies assume that the amount
of training data is sufficient and the given training labels are
complete. In contrast, the real-world applications of tagging
often face two challenges: limited training examples and in-
complete labels.
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For the problem of limited training data, a simple ap-
proach is to extend the training set explicitly with artificially
created examples (Burges and Schölkopf 1996). However, it
lacks elegance and the computational cost of processing the
extra corrupted examples is prohibitively expensive for most
real-world applications. Many algorithms have been devel-
oped to consider implicit approaches to tagging objects that
are subject to corruptions. (Bishop 1994) shows that training
with attribute noise is equivalent to adding a regularization
term to the error function. (Globerson and Roweis 2006) in-
troduces a minimax framework under a worst case scenario
of feature deletion at test time. (van der Maaten et al. 2013)
learns invariant predictors with marginalized corrupted fea-
tures (MCF), which aims to minimize the expected value
of the reconstruction error under the corrupting distribution.
MCF enjoys the property of scaling linearly in the number
of training samples while ignoring the influence of the in-
complete training label set.

On the other hand, recent studies, for example (Chen,
Zheng, and Weinberger 2013), consider training with label
noise to mitigate the influence of incomplete training label
set. It assumes that the given label set is incomplete and
proposes a co-regularized learning method to enrich the in-
complete user tags. The resulting algorithm significantly im-
proves over the prior state-of-the-art in reducing training and
testing time. However, it still suffers from learning with lim-
ited training examples, which makes it difficult to develop
robust predictors that generalize well to test data.

To improve the generalization performance of tagging, it
is necessary to consider both attribute noise and label noise.
To achieve this goal, we propose to train robust predictors
with attribute noise and label noise simultaneously. In partic-
ular, we present the Regularized Marginalized Cross-View
learning (referred as RMCV) model, which learns predictors
with marginalized corrupted features and labels together.
Conceptually, this is equivalent to training the model with
infinitely many (corrupted) training examples under attribute
noise and label noise together. On the one hand, RMCV ex-
tends the general cross-view learning with marginalized cor-
rupted features by corrupting training examples with noise
from known distributions within the exponential family; on
the other hand, it exploits label noise to enrich the incom-
plete training label set through a marginalized denoising
autoencoder regularization. In addition, it also leads to an
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optimization problem which is jointly convex and can be
solved through alternative optimization with simple closed-
form updates.

While RMCV is a general method, we demonstrate the
promise through extensive evaluations in the specific appli-
cation to multi-label text tagging using real data sets in com-
parison with the peer methods in the literature.

Related Work

The noise among the data is catergorized into two types: at-
tribute noise and label noise (Zhu and Wu 2004). On one
hand, previous work (Sietsma and Dow 1991) has demon-
strated that training with feature noise can lead to improve-
ment in generalization. It has been proved that such training
with feature noise is equivalent to a form of regularization
in which an additional term is added to the error function
(Bishop 1994; Webb 1994). Through modifying the error
criterion with a specific regularization term, (Webb 1994)
proposes a least square approach, which generalizes to sit-
uations in which data samples are corrupted by noise in the
input variables. (Burges and Schölkopf 1996) explicitly cor-
rupts the training samples to incorporate invariance with the
known transformations.

Further, minimax formulation is proposed to minimize
the loss under specific adversarial worst-case feature cor-
ruption scenario (Globerson and Roweis 2006). (Xu, Cara-
manis, and Mannor 2009) considers minimizing the worst
possible empirical error under adversarial disturbances on
samples. In addition, (Chechik et al. 2008) proposes a max-
margin learning framework to classify the incomplete data
without any completion of the missing features. (Teo et al.
2007) formulates invariant learning as a convex problem and
considers maximum margin loss with invariances.

Recent work proposes dropout training to combat over-
fitting by artificially corrupting the training data. Dropout
training is introduced by (Hinton et al. 2012) as a way to
control overfitting by randomly dropping subsets of fea-
tures at each iteration of a training process. By casting
dropout training as regularization, (Wager, Wang, and Liang
2013) present a semi-supervised algorithm, which uses un-
labeled data to produce an adaptive regularizer. (Srivastava
et al. 2014) shows that dropout improves the performance
of supervised neural network learning. In addition, (van der
Maaten et al. 2013) proposes to corrupt training examples
with noise from known exponential-family distribution.

On the other hand, there are a number of denoising meth-
ods for label noise problem. They can be further classified
into two categories: filtered preprocessing of the data and
robust design of the algorithms. In the former category, fil-
tered preprocessing is developed to remove the noise from
the training set as much as possible (Van Hulse and Khosh-
goftaar 2006). For the latter category, robust algorithms are
designed to reduce the impact of the noise in the classifica-
tion (Lin and de Wang 2004). (Biggio, Nelson, and Laskov
2011) investigates the robustness of SVMs against adversar-
ial label noise and proposes a strategy to improve the ro-
bustness of SVMs based on a kernel matrix correction. In
addition, tag refinement is considered as auxiliary work for

image noisy tagging in the literature (Wang et al. 2007). In-
spired by the recent success of denoising autoencoder (Vin-
cent et al. 2008; Chen et al. 2012), (Chen, Zheng, and Wein-
berger 2013) proposes to enrich the user tags with marginal-
ized denoising autoencoder.

Among the existing work, the closest work to ours are
FastTag (Chen, Zheng, and Weinberger 2013) and MCF
(van der Maaten et al. 2013). The former focuses on enrich-
ing the user tags with marginalized denoising autoencoder.
The latter learns robust predictors by corrupting the training
examples with a specific noise distribution. We note that the
difference from our work is significant as our method is to
combine both merits of the two methods by learning with
marginalized corrupted features and marginalized denos-
ing autoencoder regularization together. Consequently, our
method outperforms the above two models, which has been
demonstrated in the experiments.

Learning with Marginalized Corrupted

Features and Labels Together

In this section, we first develop a novel cross-view learn-
ing method, the Marginalized Cross-View learning (MCV).
Further, we incorporate the label noise into MCV through a
marginalized denoising autoencoder (MDA) regularization.
Consequently, RMCV is presented to solve the problem of
learning with marginalized corrupted features and labels to-
gether.

Notations. In this paper, matrices are written in bold up-
percase letters and vectors are written in bold lowercase
letters. Suppose that we have n samples and each sample
has T possible tags. Let the training data be denoted by
D = {(x1,y1), . . . , (xn,yn)} ⊂ R

D × {0, 1}T , where
each vector xi ∈ R

D represents the input features from
the ith sample and each yi is the corresponding tag vector.
Let W ∈ R

T×D denote the linear regression mapping and
B ∈ R

T×T represent the tag enrichment mapping.

Marginalized Cross-View Learning

To derive the framework of marginalized cross-view learn-
ing, we start by defining a corrupting distribution that speci-
fies how training examples x are transformed into corrupted
versions x̃. We assume that the corrupting distribution fac-
torizes over dimensions and that each individual distribution
belongs to the natural exponential family. Its particular form
is given by:

p(x̃|x) =
D∏

d=1

PE(x̃d|xd; ηd) (1)

where ηd indicates parameters of the corrupting distribution
on dimension d.

Based on the produced corrupted examples, we first pro-
pose a cross-view regularized learning by interpreting train-
ing data (corrupted samples with incomplete tags) as un-
labeled multi-view data. In particular, we obtain two sub-
tasks: 1) training a classifier x̃i → Wx̃i that predicts the
complete tag set from corrupted observations, and 2) train-
ing a mapping yi → Byi to enrich the existing incomplete
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Table 1: The probability density function (PDF), mean, and variance of several corrupting distributions. In particular, blankout
corruption is the unbiased version of regular feature dropout.

Distribution PDF E[x̃id]p(x̃|xid) V[x̃id]p(x̃|xid)

Blankout noise
p(x̃id = 0) = qd
p(x̃id = 1

1−qd
xid) = 1− qd

xid
qd

1−qd
x2
id

Gaussian noise p(x̃id|xid) = N (x̃id|xid, σ
2) xid σ2

Laplace noise p(x̃id|xid) = Lap(x̃id|xid, λ) xid 2λ2

Poisson noise p(x̃id|xid) = Pois(x̃id|xid) xid xid

tag vector yi by estimating a mapping function B which
captures the tags’ co-occurrence relationships. We train both
tasks simultaneously and force a cross-view agreement by
minimizing

1

n

n∑
i=1

||Byi −Wx̃i||2 (2)

where Byi is the enriched tag vector for the i-th training
sample and W represents the linear classifier which tries to
predict the enriched tags based on corrupted samples.

Taking inspiration from the idea of (Burges and Schölkopf
1996) by selecting each sample of the training set D =
{(xi,yi)}ni=1 and corrupting it m times by following the
corrupting distribution, we can create corresponding cor-
rupted examples x̃ij (with j = 1, . . . ,m) for each xi. Fur-
ther, we construct a new data set D̃ with |D̃| = mn. Thus,
the above cross-view learning loss function can be rewritten
as

1

n

n∑
i=1

1

m

m∑
j=1

||Byi −Wx̃ij ||2 (3)

where x̃ij ∼ p(x̃ij |xi).
When m → ∞, we can use the weak law of larger num-

bers and rewrite the loss function as its expectation (Duda,
Hart, and Stork 2001)

1

n

n∑
i=1

E[‖Byi −Wx̃i‖2]p(x̃i|xi)

=
1

n
trace

(
W

(
n∑

i=1

E [x̃i]E [x̃i]
�
+V [x̃i]

)
W�

− 2B

n∑
i=1

yiE
[
x̃�
i

]
W� +B

n∑
i=1

yiy
�
i B

�
)

(4)

where V [x] is a diagonal D × D matrix representing the
variance of x, and all the expectations are under p(x̃i|xi).

Marginalized cross-view learning is referred to minimiz-
ing the above expected value of the loss under a specific cor-
rupting distribution.

Define Pxy =
∑n

i=1 yiE
[
x̃�
i

]
and Qx =∑n

i=1 E [x̃i]E [x̃i]
�

+ V [x̃i], and then we can rewrite
the loss in Eq.(4) as follows:

1

n
trace

(
WQxW

� − 2BPxyW
� +BYY�B�) (5)

To minimize the expected loss under the particular cor-
ruption model, we need to compute the variance of the
particular corrupting distribution, which is practical for all
the exponential-family distributions. The mean of corrupted
sample x̃i on dimension d is always xid itself as the corrupt-
ing distributions in this paper are unbiased. This assumption
is necessary as biases in the corrupting distribution may lead
to undesired difficulty in selection of corrupting distribution
parameter ηd. Table 1 gives an overview of some corrupting
distributions.

However, the marginalized cross-view learning loss func-
tion in Eq.(5) has a trivial solution when B = 0 and
W = 0, indicating that the current configuration is under-
constrained. It is necessary to incorporate an additional reg-
ularization on B to guide a reasonable solution.

Marginalized Denoising Autoencoder
Regularization

In this section, we introduce a marginalized denoising au-
toencoder regularization for estimating B. Our intention is
to enrich the incomplete user tags. In particular, the basic
building block of our regularization framework is a one layer
linear de-noising autoencoder. From a given set of input tag
set, we sample infinite tag vectors with replacement. We cor-
rupt these inputs by random tag removal: each tag is set to 0
with probability p. Then we reconstruct the original tag set
from the corrupted versions with a mapping B. If this cor-
ruption mechanism matches the true corruption mechanism,
then we can re-apply denoising transformation B to y so
that it is likely that a complete tag set can be recovered.

Corruption Our training of B is based on one crucial in-
sight: if a tag already exists in some input tag vector y, B
should be able to predict it from the remaining labels in y.
We therefore create a corrupted tag set by removing each
tag in y with probability p ≥ 0. In particular, for each
user tag vector y and dimension t, p(ỹt = 0) = p and
p(ỹt = yt) = 1− p.

Reconstruction A mapping B is then learned to recon-
struct the original tag vector y from the corrupted version ỹ
by minimizing the squared reconstruction error,

B∗ = argmin
B

1

n

n∑
i=1

||yi −Bỹi||2 (6)

Here, B can be considered as a regression matrix that pre-
dicts the presence of tags given the existing tags in ỹ. Fur-
ther, to reduce variance in B, we take repeated samples of
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ỹ. In the limit (with infinitely corrupted versions of y), the
expected loss function under the corrupting distribution can
be expressed as

R(B) =
1

n

n∑
i=1

E
[||yi −Bỹi||2

]
p(ỹi|yi)

=
1

n
trace

(
BQyB

� − 2PyyB
� +YY�) (7)

where Pyy =
∑n

i=1 yiE [ỹi]
�, Qy =

∑n
i=1 E[ỹi]E [ỹi]

�
+

V [ỹi], and

[Qy]α,β =

{
Sαβqαqβ if α 	= β
Sαβqα if α = β

(8)

[Pyy]αβ = Sαβqβ (9)

where qα = qβ = 1 − p and S = YY� is the covariance
matrix of the uncorrupted tag set.

Regularized Marginalized Cross-View Learning

In this section we combine the marginalized corrupted fea-
tures framework in Eq.(4) with the marginalized denoising
autoencoder regularization in Eq.(7) to solve the problem of
learning with marginalized corrupted features and labels to-
gether. The joint loss function can be written as follows:

J (B,W;x,y) =
1

n

n∑
i=1

E
[||Byi −Wx̃i||2

]
p(x̃i|xi)

+ γ
1

n

n∑
i=1

E
[||yi −Bỹi||2

]
p(ỹi|yi)

(10)

Regularized marginalized cross-view learning is referred to
minimizing the above objective function. The first term of
the right-hand side in Eq.(10) is the marginalized cross-view
learning, which treats sample features and tags as multi-
view data and attempts to find optimal transformations that
help obtain the best alignment between data from two dif-
ferent views. The second term is the marginalized denoising
autoencoder regularization, which ensures that a reliable en-
richment mapping B can be obtained.

Optimization and Extensions The loss in Eq.(10) can be
efficiently optimized using coordinate descent. When B is
fixed, the computation of regression matrix W reduces to
the problem in Eq.(5) and can be solved in closed form:

W = BPxyQ
−1
x (11)

where Pxy and Qx can be computed analytically following
the definition and the statistical properties of the corrupting
distributions in Table 1.

When W is fixed, the problem in Eq.(10) with respect to
B can be reformulated as

R (B) =
1

n
trace

(
BYY�B� − 2BPxyW

�)
+ γ

1

n
trace

(
BQyB

� − 2PyyB
� +YY�)

(12)

Table 2: Statistics of the three data sets.
Data set Examples Labels Attributes
Bibtex 7395 159 1836
Bookmarks 20000 208 2150
Enron 1702 53 1001

Similarly, when W is fixed, the solution of B in Eq.(12)
can be solved as follows:

B =
(
γPyy +WP�

xy

) (
γQy +YY�)−1

(13)
where Pyy and Qy can be computed analytically following
Eq.(9).

Importantly, the optimal mapping B can be derived un-
der a closed form and computed efficiently. Such conclusion
holds for most corrupting models with exponential-family
distribution. The loss in Eq.(10) is jointly convex with re-
spect to B and W. Consequently, it is guaranteed that the
coordinate descent converges to the global minimum.

Based on the above analysis, the algorithm of RMCV is
outlined in Algorithm 1.

Algorithm 1: RMCV Algorithm
Input : Data sets X, Y.
Output: Estimated mappings B and W.
Test : Given an image x, Wx is used to score the

dictionary of tags
1 Choose the corrupting distribution for X; obtain Pxy

and Qx with Eq.(5);
2 Choose the dropout probability p; obtain Pyy and Qy

with Eq.(9);
3 Repeat
4 Optimize W with Eq.(11);
5 Optimize B with Eq.(13);
6 until Convergence;

Stacked Tag Enrichment A key component of the suc-
cess of denoising autoencoder is the fact that they can be
stacked to create a “deep architecture”. With the marginal-
ized denoising autoencoder regularization, our framework
also has the same capability. We stack several layers by feed-
ing the enriched tag representation of the tth layer as the in-
put to the (t + 1)th layer. In particular, with the enriched
vector Byi as the tag representation for the i-th image, we
optimize another layer of J (B′,W′;x,By) to obtain new
mappings B′, W′. To find the optimal number of the stacked
layers, we perform model selection on a hold-out validation
set, adding layers until the F1 score cannot be improved.

Experiments
We evaluate RMCV on three standard multi-label text
benchmark data sets. All data sets are obtained from
http://mulan.sourceforge.net/datasets-mlc.html.

Experimental Setup

We begin with a detailed descriptions of data sets, evaluation
metrics, parameter setup, and baselines.
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Datasets We have used three multi-label datasets, namely
Bibtex, Bookmarks, and Enron for experimentation purpose.
Their statistics is described in Table 2.

Bibtex & Bookmarks data sets are from Bibsonomy1.
Bibsonomy is a social bookmarking and publication shar-
ing system; it allows users to store and organize Bookmark
(web pages) and Bibtex entries. Tagging is the main pro-
vided tool for content management in BibSonomy. Users can
freely assign tags to Bookmarks or Bibtex items when they
submit the items to the system. In particular, Bibtex data set
contains meta data for the bibtex items such as the title of
a paper and the authors. Bookmarks contain metadata for
bookmark items such as the URL of the web page and a de-
scription of the web page.

Enron dataset contains email messages. It is from Enron
corpus and is made public during the legal investigation con-
cerning the Enron corporation. For this experiment, we use
a subset of about 1700 labeled email messages.

Evaluation Metric Three metrics, precision, recall, and
F1 score, are often used to measure the performance of a
tagging algorithm. Here, we also use them as our evalu-
ation metrics. First, all the text data are labeled with the
five most relevant tags (i.e., tags with the highest prediction
value). Second, precision (P) and recall (R) are computed for
each tag. The reported measurements are the average across
all the tags. Further, both factors are combined in F1 score
(F1 = 2 P∗R

P+R ), which is reported separately. In all the met-
rics a higher value indicates a better performance.

Setup We use cross-validation to estimate the perfor-
mance of different methods. On the Bibtex and Enron data
sets, we follow the experimental setup used in Mulan2.
Since there is no fixed split in the Bookmarks data set in
Mulan, we use a fixed training set of 80% of the data, and
evaluate the performance of our predictions on the fixed test
set of 20% of the data. We follow the setup of (Chen, Zheng,
and Weinberger 2013) and weigh each example in a tf-idf-
like fashion to give more weight on the losses from rare tags
during training.

Baselines To demonstrate how RMCV improves the tag-
ging performance in comparison with the state-of-the-art
tagging methods, we compare it with the following repre-
sentative tagging methods from the recent literature:

• LeastSquare (Bishop 2006).

• FastTag, a model which uses marginalized denosing au-
toencoder regularization (Chen, Zheng, and Weinberger
2013).

• Marginalized corrupted feature with blankout corruption
(MCF (Blankout) in short) (van der Maaten et al. 2013).

• Marginalized corrupted feature with Poisson corruption
(MCF (Poisson) in short) (van der Maaten et al. 2013).

In addition, we also study various different configurations of
the proposed algorithm:

1http://www.bibsonomy.org
2http://mulan.sourceforge.net/datasets-mlc.html

• RMCV (Blankout): using the blankout distribution to cor-
rupt features.

• RMCV (Poisson): using the Poisson distribution to cor-
rupt features.

In particular, when we adopt the Gaussian distribution as the
corrupting distribution, RMCV reduces to FastTag.

Experimental Results

In Table 3, we summarize the precision, recall, and F1 score
of the Bibtex, Bookmarks, and Enron data sets, for Least-
Square, MCF (Blankout), MCF (Poisson), FastTag, RMCV
(Poisson), and RMCV (Blankout), respectively. On the task
of multi-label text tagging, compared with RMCV, Least-
Square uses the limited training example set as the training
set and mistakenly takes the incomplete training tag set as
the complete training tag set. Although MCF exploits the
marginalized corrupted features, it ignores the influence of
the incomplete training tag set. FastTag considers the train-
ing set as incomplete tagged dataset, but it cannot take ad-
vantage of the marginalized corrupted features to generalize
well to the test data. Consequently, from Table 3, we see that
RMCV performs better than leastSquare, MCF, and Fast-
Tag on the task of multi-label text tagging as the F1 scores
achieved by RMCV are much higher than those achieved by
the competing models in most cases. In particular, RMCV
improves over the competing models for both blankout cor-
ruption and Poisson corruption in most cases. The best per-
formance tends to be achieved by RMCV with blankout cor-
ruption with high corruption levels, i.e., when q is at about
0.8. In addition, part of the recall scores achieved by RMCV
are lower than those achieved by the competing models. For
the decreased recall values, we suppose this may be caused
by the label completion procedure, which may increase the
false negative rate while significantly decreasing the false
positive rate.

The experiments also reveal a number of interesting ob-
servations:
• Both RMCV and MCF models obtain a better perfor-

mance than the LeastSquare. This shows the importance
of considering learning with marginalized corrupted fea-
tures.

• Both RMCV and FastTag models outperform the Least-
Square. This indicates that learning with marginalized
corrupted labels helps improve the generalization perfor-
mance on the problem of multi-label text tagging.

• RMCV performs better than MCF and FastTag. This
shows that combining the marginalized corrupted features
and marginalized corrupted labels simultaneously may
lead to a more robust method for multi-label learning.
Figure 1(a), Figure 1(b), and Figure 1(c) show the test F1

scores of FastTag, MCF (Blankout), MCF (Poisson), RMCV
(Blankout), and RMCV (Poisson) as a function of the blank-
out corruption level q on Bibtex, Bookmarks, and Enron
data sets, respectively. Herein, corruption level q = 0 cor-
responds to a Gaussian corruption on features with non-bias
mean value and zero variance. The results show: 1) that
RMCV improves over standard predictors for both blankout
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Table 3: Comparison of RMCV and the competing models in terms of precision, recall, and F1 score on the three data sets.
Bibtex Bookmarks Enron

Methods precision recall F1 precision recall F1 precision recall F1
LeastSquares 0.2499 0.4975 0.3326 0.1439 0.2932 0.1931 0.2144 0.2396 0.2263

MCF (Blankout) 0.2896 0.5013 0.3671 0.1576 0.3136 0.2098 0.2084 0.2565 0.2301
MCF (Poisson) 0.2641 0.5240 0.3512 0.1572 0.3071 0.2080 0.2153 0.2500 0.2313

FastTag 0.3594 0.3948 0.3762 0.2439 0.2547 0.2492 0.2193 0.2512 0.2342
RMCV (Poisson) 0.3691 0.4128 0.3898 0.2459 0.2813 0.2624 0.2217 0.2591 0.2389

RMCV (Blankout) 0.3986 0.4274 0.4125 0.2517 0.2895 0.2693 0.2583 0.2468 0.2524
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(a) Bibtex.
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(b) Bookmarks.
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Figure 1: The F1 score for the testing set as a function of blankout corruption level q for FastTag, MCF (Poisson), MCF
(Blankout), RMCV (Poisson), and RMCV (Blankout), respectively.

corruption and Poisson corruption on almost all the cases;
2) that RMCV with Poisson corruption leads to significant
performance improvements over standard methods while in-
troducing no additional hyperparameters.

From Figure 1(a), Figure 1(b), and Figure 1(c), we ob-
serve that the F1 scores of the testing set for RMCV and
MCF models both increase when the corruption level in-
creases at the start, which shows that it is helpful to use the
marginalized corrupted features to improve the tagging per-
formance. It is also noted that after a certain point when the
the corruption level continues to increase, the performance
may substantially drop. This is due to the over corruption
issue, which loses much useful feature information.

Figure 2 demonstrates the comparison between RMCV
and the competing models at different levels of tag spar-
sity of the training set. We gradually stack the training data
into a larger tag sets, starting by giving each document only
one tag (down sampled from the full tag set if more tags are
available), then up to two tags, and so on. As we see from
Figure 2, for training set with the maximum number of tags
n ∈ [1, 3], RMCV (Blankout) outperforms MCF (Blankout)
with about 2% gain and FastTag with about 3% gain. With
the maximum number of tags increases, RMCV (Blankout)
outperforms the competing models with significant margins.
This is due to the fact that the more numbers of tags make the
marginalized denoising autoencoder regularization more ef-
fective and the learned tag enrichment mapping B more ac-
curate. Although FastTag performs worse than MCF models
when the maximum number of tags is small, its performance
improves fast with the increase of the maximum number
of tags and outperforms MCF models when the maximum

1 2 3 4 5
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0.33
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0.42

Maximum number of tags per document

F1
sc
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e

RMCV (Blankout)

RMCV (Poisson)

MCF (Blankout)

MCF (Poisson)

FastTag

Figure 2: Performance in terms of F1 score as a function
of the maximum number of tags provided for each training
document on the Bibtex data set.

number of tags is larger. This also shows the importance of
learning with marginalized corrupted labels.

Conclusion

Tagging has become an important means responsible for
many real-world applications noticeably including web ap-
plications. A robust tagging method must have the capabil-
ity to meet the two challenging requirements: limited train-
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ing samples and incomplete training labels. We have studied
this challenging problem by learning with marginalized cor-
rupted features and labels together and propose a discrim-
inative model, called RMCV, that is trained with artificial
feature noise and label noise through a regularized marginal-
ized cross-view learning. While RMCV is a general method
for learning tagging, in the evaluations we focus on the spe-
cific application of multi-label text tagging. Extensive evalu-
ations on three benchmark data sets demonstrate that RMCV
outstands with a superior performance in comparison with
the state-of-the-art literature.
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