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Abstract

When dealing with images and semantics, most computa-
tional systems attempt to automatically extract meaning from
images. Here we attempt to go the other direction and au-
tonomously create images that communicate concepts. We
present an enhanced semantic model that is used to gener-
ate novel images that convey meaning. We employ a vector
space model and a large corpus to learn vector representations
of words and then train the semantic model to predict word
vectors that could describe a given image. Once trained, the
model autonomously guides the process of rendering images
that convey particular concepts. A significant contribution is
that, because of the semantic associations encoded in these
word vectors, we can also render images that convey concepts
on which the model was not explicitly trained. We evaluate
the semantic model with an image clustering technique and
demonstrate that the model is successful in creating images
that communicate semantic relationships.

Introduction
When considering the relationship between images and
meaning (or semantics), most computational systems fo-
cus on extracting meaning from images. For example, im-
age annotation (Wang 2011) and content-based image re-
trieval (Liu et al. 2007) are two major topics in computer
vision whose goal is to automatically understand the seman-
tics within images. Here we focus on going the other direc-
tion, that is to generate images based on semantics.

There are few systems we know of that attempt to au-
tonomously generate images that communicate meaning.
The WordsEye system tries to generate 3D scenes based on
written descriptions (Coyne and Sproat 2001). The Story
Picture Engine (Joshi, Wang, and Li 2006) and the Text-
to-Picture Synthesis System (Zhu et al. 2007) are both sys-
tems built to do automatic text illustration (i.e., to visually
tell a story or to graphically communicate the gist of text).
AARON (McCorduck 1991) and The Painting Fool (Colton
2011) are both systems designed to autonomously create vi-
sual art in ways meaningful to human viewers.

Our own system, DARCI, is designed to create novel,
artistic images that explicitly express a given concept (Nor-
ton, Heath, and Ventura 2015). Central to the design phi-
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losophy of DARCI is the notion that the communication of
meaning in visual art is a necessary part of eliciting an aes-
thetic experience in the viewer (Csı́kzentmihályi and Robin-
son 1990). In this paper we present a sophisticated semantic
model that allows DARCI to internally represent the mean-
ing of concepts and to express these concepts through im-
ages in novel ways.

It is commonly agreed that a word (or concept), at least
in part, is given meaning by how the word is used in con-
junction with other words (i.e., its context) (Landauer and
Dumais 1997; Erk 2010). Vector Space Models (VSMs) are
common methods for automatically learning vector repre-
sentations of word meaning from a large corpus (Turney and
Pantel 2010). These models are based on the idea that sim-
ilar words will occur in similar contexts and words that are
often associated together will often co-occur close together.
These models reduce words to a vector representation that
can be compared to other word vectors.

VSMs have been successfully used on a variety of tasks
such as information retrieval (Salton 1971), multiple choice
vocabulary tests (Denhière and Lemaire 2004), multiple
choice synonym questions from the TOEFL test (Rapp
2003), multiple choice analogy questions from the SAT
test (Turney 2006), and object recognition systems (Frome
et al. 2013). Additionally, an approach called the ACI (As-
sociative Conceptual Imagination) framework has recently
been proposed as a way to use VSMs for imaginative and
generative tasks (Heath, Dennis, and Ventura 2015).

We apply the ACI framework to DARCI by incorporat-
ing a VSM and building a visual semantic model that uses a
large neural network to learn associations between low-level
image features and adjective vectors from the VSM. This
visual semantic model allows DARCI to create images that
convey the meaning of adjectives to the viewer. It also allows
DARCI to take advantage of the semantic structure between
words and render images according to adjectives on which
it was never explicitly trained. For example, DARCI could
be trained on ‘scary’ and ‘dark’ images, but not ‘creepy’ im-
ages. DARCI could then “imagine” what a ‘creepy’ image
would look like because ‘creepy’ is similar in meaning to
‘scary’ and ‘dark’. Even higher level concepts (e.g., ‘love’,
‘freedom’) can be partially expressed through the images
DARCI renders.

Clustering techniques have been previously developed to
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Figure 1: The two major components of DARCI. The se-
mantic model first learns vector representations of words by
analyzing a corpus (vector space model). The visual seman-
tic model then learns to predict these word vectors using a
neural network trained with labeled images. The image gen-
erator uses the vector space model to identify other words
associated with a given concept. The nouns are composed
into a source image (image composer) that is rendered to
convey the original concept using a genetic algorithm (im-
age renderer) that is governed in part by the visual semantic
model. The final product is an image that reflects the given
concept.

measure how well rendered images convey descriptive con-
cepts (Heath, Norton, and Ventura 2014). We apply these
clustering methods here and show that the new semantic
model successfully enables DARCI to render images that
convey a larger variety of concepts in ways that accurately
reflect their semantic relationships.

Methodology
DARCI is composed of two major subsystems, a semantic
model and an image generator as shown in Figure 1. We
outline in detail the semantic model, which includes a state-
of-the-art VSM that learns semantic relationships between
words, and an artificial neural network that does multi-target
regression to associate image features with the word vectors
inferred from the VSM. We then describe the image gener-
ator and how it interacts with the semantic model to create
meaningful images. Note that the image generator is not the
focus of this paper, and further details, including extensive
evaluation, can be found in prior work (Norton, Heath, and
Ventura 2015).

Semantic Model
In order for DARCI to express semantic information through
pictures, it must first have its own semantic knowledge that
can influence the images it creates. Our goal is to leverage
semantic information gained through written text and trans-
fer it to the task of meaningful image generation.

Vector Space Model We use a state-of-the-art VSM,
called the skip-gram model (Mikolov et al. 2013). The skip-
gram model is a neural architecture that analyses a large
corpus and learns to predict the surrounding words given a
current word. During training, the skip-gram model conse-
quently learns vector representations for each word, which
encode semantic information. Words similar in meaning
will have vectors that are close to each other in “vector
space”. These word vectors capture other interesting seman-
tic relationships that are consistent with arithmetic opera-
tions. For example, vector(“king”) − vector(“man”) +

vector(“woman”) results in a vector that is closest to
vector(“queen”).

These semantic vectors allow DARCI to find concepts re-
lated to a given word and to assess the similarity in meaning
between words, which will aid DARCI in creating meaning-
ful images. We use a publicly available implementation of
the skip-gram model1 and a lemmatized Wikipedia corpus
to learn the word vectors (Denoyer and Gallinari 2006). The
skip-gram implementation is used with out-of-the-box pa-
rameters except for the vector size, which is set to 300. The
choice of 300 provides a balance between encoding enough
semantic information to be useful and ease of prediction
when associating the vectors with image features.

Visual Semantic Model In order for DARCI to leverage
the word vectors for image creation, it must learn to asso-
ciate image qualities with the semantic vectors. Currently,
we limit the associated words to vectors representing adjec-
tives and use a neural network model to predict the adjective
vector for a given image.

We maintain a dataset of approximately 15,000 images
that have either been explicitly hand labeled or automatically
retrieved through Google image search. Once an adjective
has enough labeled images (20 positive and 20 negative), we
begin learning that adjective. As of this paper, there are 145
adjectives that meet this threshold. We extract from each im-
age 51 global and local features representing attributes like
color, lighting, texture, and local interest points, and have
been shown to work well for emotional and descriptive la-
bels (Norton, Heath, and Ventura 2016).

We train two separate neural networks, one with the pos-
itively labeled images, and one with the negatively labeled
images. The positive network tries to predict what adjective
an image IS, while the negative network tries to predict what
adjective an image IS NOT. These networks learn to predict
the appropriate adjective vector given an image. We treat
this as a multi-target regression problem and initialize each
neural network with 300 output nodes (one for each vector
element). The inputs are the 51 image features, the hidden
layer is non-linear (sigmoid), and the output layer is lin-
ear. The parameters for the neural networks were determined
through experimentation (see the Evaluation Section for the
metrics used) and include a learning rate of 0.01, a momen-
tum of 0.1, and 100 hidden nodes. We use standard back-
propagation with drop-out regularization to initially train the
weights. Since the output layer is linear, we improved each
model by solving for the least-squares solution as the final
training step.

Figure 2 shows how the networks are used to determine
how well an image matches an adjective. Let �vp and �vn
be the vectors predicted by the positive and negative net-
works, respectively. Let �va be the vector for adjective a from
the VSM and let sim(�v1, �v2) compute the cosine similarity
between two vectors. Given an image, we can compute its
score for a particular adjective using the following formula:

score =
(sim(�vp, �va)− sim(�vn, �va)) + 1.0

2.0
(1)

1https://code.google.com/p/word2vec/
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Figure 2: This diagram illustrates how the visual semantic
model determines to what degree an image matches a given
concept. It first extracts features from the image which are
passed to both the positive neural network and the negative
neural network. The word vector for the given concept is
retrieved from the vector space model and compared via co-
sine similarity to the predicted vectors from the two neural
networks. The similarity scores are combined and normal-
ized for an overall score.

Learning to predict an adjective’s vector is a harder task
than learning to predict the adjective directly and, thus, in-
troduces a few trade-offs. First, labeling images with adjec-
tives is a multi-label classification problem (i.e., an image
can be described by more than one valid adjective) and our
new model can only predict one vector at a time, while nor-
mally each adjective could be predicted independently. The
second trade-off is that our visual semantic model is predict-
ing a 300 dimensional vector and has to account for every
adjective. This means that it may not predict the 145 adjec-
tives as accurately as using separate models for each adjec-
tive. The main advantage of learning the vectors, however,
is that we can do zero-shot prediction. In other words, it is
not limited to the 145 adjectives for which it was explicitly
trained and can predict vectors for any adjective. The model
can assess, how ‘glad’ an image is even if it has never seen
a ‘glad’ picture because the semantic relationships of many
adjectives are encoded in the vectors.

Image Generator
With the vector space and visual semantic models in place,
DARCI can now produce images. Figure 1 shows how this
process works. First, a concept/word/topic is given to the
system and the VSM finds semantically related concepts.
DARCI effectively makes use of these word associations
as a decomposition of a (high-level) concept into simpler
concepts that together represent the whole. The idea being
that in many cases, if a (sub)concept is simple enough, it
can be represented visually with a single icon (e.g., the con-
cept ‘rock’ can be visually represented with a picture of a
‘rock’). Given such a collection of iconic concepts, DARCI
composes their visual representations (icons) into a single
image. This source image is then passed to the image ren-
derer, which uses a genetic algorithm to render the image
in an artistic way that conveys the meaning of the original
concept. During rendering, the visual semantic model acts
as the fitness function to guide the rendering process.

For example, suppose the original concept given to
DARCI was ‘war’. The vector space model would send re-
lated words like ‘soldier’, ‘army’, ‘conflict’, and ‘battle’ to
the image composer. The resulting source image would be

some composition of simple iconic images of the related
words. The image renderer would then render this source
image according to the visual semantic model. In this case
the visual semantic model is telling the image renderer to
create images that are close to the semantic vector for ‘war’.
However, since the visual semantic model was only trained
on the 145 adjectives, this results in a rendering based on the
adjectives that are semantically related to ‘war’ (in this case,
‘bloody’, ‘violent’, ‘lonely’, etc).

DARCI can also forgo the image composer and go straight
to the image renderer, in which case the image produced
will be an abstract rendering of the given concept. The user
could also provide DARCI a source image of their own, like
a photograph, and DARCI will re-render the photograph in
an artistic way that expresses the given concept. Since the
new semantic model is the focus of this paper, the image
generator is simplified to create only abstract images (by
skipping the image composer) for all experiments.

Rendering images based on predicting word vectors in-
stead of predicting the adjectives directly makes it more
difficult for the image renderer to match a given adjec-
tive. However, the power comes in taking advantage of the
learned semantic structure encoded in the vectors. DARCI
can render images to convey any adjective that has at least
some semantic relationship with any of the 145 explicitly
trained adjectives. Even non-adjectives, such as ‘war’, can
be rendered this way and essentially get interpreted as an
adjective (i.e., ‘war-like’).

Evaluation and Results
We start with evaluating how well the semantic modeling
component learns to predict word vectors from images. We
then use clustering techniques to determine how well the im-
ages that DARCI produces actually reflect their intended ad-
jective. Finally, we evaluate how clusters of images relate to
each other and to the word vectors on which they are based.

Semantic Model Evaluation
We consider two metrics: coverage and ranking loss. For
each adjective, the model ranks each test image by the simi-
larity score obtained from the visual semantic model (Eq. 1).
Images labeled with the adjective (positive images) should
be ranked higher than images that are negatively examples
of the adjective. Coverage represents how far to go down the
list of ranked images in order to cover all positive images
(normalized between 0 and 1). Ranking loss represents the
percentage of negative images that are ranked higher than
positive images. These metrics are averaged across all 145
adjectives. We compare our visual semantic model (Vector)
with a binary relevance model (Binary) using 10-fold cross
validation. The results can be seen in Table 1.

As expected, our visual semantic model performs worse
than binary relevance on the 145 adjectives. However, the
benefit is that our new model can rank images based on ad-
jectives on which it was never trained. We chose 10 addi-
tional adjectives for which DARCI had not been trained and
created a hold-out set of test images for them. We evaluated
how well the model ranked images based on these new ad-
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Cross Validation Zero-shot
Random Binary Vector Random Vector

Coverage 0.768 0.533 0.628 0.709 0.444
Ranking Loss 0.502 0.297 0.357 0.502 0.199

Table 1: The 10-fold cross validation image ranking results
of learning the 145 adjectives (lower scores are better). We
compare our visual semantic model (Vector) with a binary
relevance model (Binary) that learns the adjectives directly.
The binary method performs better on the 145 adjectives.
However, the vector method allows the system to rank im-
ages based on adjectives it has never been trained on (Zero-
shot), which we test using a hold-out set for 10 adjectives
the model has never seen.

jectives (Zero-shot in Table 1). The results show that the vi-
sual semantic model is successful (i.e., better than random)
at ranking the test images for the 10 new adjectives.

Image Evaluation
Evaluating how well an image conveys an adjective is a sub-
jective task, especially for a system that is also trying to gen-
erate novel images. Usually, a human survey is necessary
to arrive at a general consensus in measuring the semantic
quality of images, but even then such a consensus is not al-
ways possible (or desirable).

Clustering techniques have been developed for evaluat-
ing how well images convey semantic relationships (Heath,
Norton, and Ventura 2014). The idea is that images should
cluster in ways that reflect the semantic similarity of the ad-
jectives on which they were based. For example, ‘scary’ and
‘creepy’ images should cluster together more closely (i.e.,
be harder to tell apart) than ‘cold’ and ‘happy’ images be-
cause ‘scary’ and ‘creepy’ are more similar in meaning than
‘cold’ and ‘happy’. By using clustering, we may not be able
to objectively tell if a specific image conveys a particular
adjective, but we can objectively see how well the system
in general is creating images that reflect the semantic re-
lationships learned by the vector space model. Heath et al.
showed that their clustering methods were consistent with
human evaluators.

Let SEEN refer to the set of 145 adjectives that DARCI
was trained on and let UNSEEN refer to adjectives not of
those 145. We selected two sets of 5 adjectives from SEEN.
The first set consisted of semantically similar adjectives,
while the second set consisted of semantically distinct ad-
jectives. We had DARCI render 10 separate images for each
adjective using the abstract rendering method (i.e., no source
image). The two sets of 5 adjectives are listed and example
images for each can be viewed in Figure 3.

The 51 global and local features from the visual seman-
tic model were extracted from each rendered image. We
used the EM (Expectation Maximization) algorithm found
in WEKA (Hall et al. 2009) to cluster each set’s collection
of images (using the extracted features). We then applied
two metrics, average entropy and average purity, to evaluate
the quality of the clusters. The results can be seen in Table 2.

The results verify that the images for the similar set of

Figure 3: Example abstract images created for the adjec-
tives referenced in Table 2. The top row (from left to right)
corresponds to the semantically similar adjectives ‘creepy’,
‘ghastly’, ‘scary’, ‘strange’, and ‘weird’. The bottom row
corresponds to the distinct adjectives ‘cold’, ‘fiery’, ‘peace-
ful’, ‘vibrant’, and ‘wet’.

Similar Distinct
Entropy 0.857 0.714
Purity 0.360 0.440

Table 2: The cluster entropy and purity results from clus-
tering images of semantically similar adjectives compared
to clustering images of semantically distinct adjectives (the
adjectives are listed in Figure 3). Lower entropy is better,
while higher purity is better. These results confirm that it is
harder to cluster the images of similar adjectives than it is to
cluster the images of distinct adjectives.

adjectives are harder to correctly cluster than are images for
the distinct set of adjectives. This is evidence that DARCI is
successful at rendering images that convey the meaning of
adjectives relative to each other. In this paper, we especially
want to focus on how well DARCI can render images based
on UNSEEN adjectives, or any word for which it has never
seen images.

We chose 10 UNSEEN adjectives and had DARCI render
10 separate abstract images for each. We also chose five non-
adjectives and again had DARCI render 10 abstract images
for each. The words are listed and example images for each
are shown in Figure 4. We again used clustering to evaluate
the the semantic quality of the rendered images. For each of
the 10 UNSEEN adjectives, we took a SEEN adjective that
was semantically similar and one that was dissimilar and had
DARCI generate 10 images for each of them. We then clus-
tered the images for the UNSEEN adjective and the images
for the SEEN similar adjective, while separately clustering
the UNSEEN images and the SEEN dissimilar images. Fi-
nally, we averaged the metrics of the 10 UNSEEN adjec-
tives. We repeated this process for the five non-adjectives
and the results are shown in Table 3.

The similar images are harder to cluster than the dissim-
ilar ones for both UNSEEN adjectives and non-adjectives.
This indicates that DARCI is successfully rendering the im-
ages to convey the intended words relative to each other,
even though DARCI has never seen any example images
of the words. DARCI is able to use the semantic structure
learned from the vector space model to interpolate, or more
colloquially “imagine”, what images of these unseen adjec-
tives could look like. The clustering results give us a mea-
surable indication of DARCI’s ability to render images con-
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Figure 4: Example abstract images created for adjectives
DARCI was never trained on and that correspond to the re-
sults in Table 3. The images of the first two rows from left to
right convey the adjectives ‘bizarre’, ‘brilliant’, ‘freezing’,
‘frightening’, ‘frigid’, ‘hazy’, ‘lively’, ‘lovely’, ‘luminous’,
and ‘somber’. The images of the third row convey the non-
adjectives ‘Alaska’, ‘crying’, ‘fear’, ‘love’, and ‘winter’.

Adjectives Non-adjectives
Similar Dissimilar Similar Dissimilar

Entropy 0.691 0.480 0.828 0.479
Purity 0.775 0.850 0.680 0.840

Table 3: The average cluster entropy and purity results from
clustering images conveying adjectives (and non-adjectives)
on which the system was never trained. The adjectives and
non-adjectives used are listed in Figure 4. Lower entropy is
better, while higher purity is better. The results show that it
is harder to cluster images from semantically similar words
than images from dissimilar words. This is evidence that
DARCI is successfully rendering images that convey the in-
tended word, even when it has never seen an example image
of that word before.

sistent with the semantic structure of the words for which
they were rendered.

Image Cluster Visualization
We can also visualize how the clusters of images relate to
one another and to the semantic vectors on which they are
based. We created a 2D visualization of how the words clus-
ter in vector space and compared it to a 2D visualization of
how their respective images cluster in image feature space.
We created the 2D visualizations by using agglomerative
clustering combined with multi-dimensional scaling (Pich
2009). We took the 10 UNSEEN adjectives and 5 non-
adjectives from the previous experiment and chose an ad-
ditional 15 SEEN adjectives that had variable semantic sim-
ilarity to the 15 UNSEEN words.

For the visualization in vector space, we used multi-
dimensional scaling to find an approximate 2D plot (from
300 dimensions) of the distances between each word’s vec-
tor. We then did agglomerative clustering (using EM) with
the 30 word vectors and drew the resulting clusters on the 2D
plot. For the visualization in image feature space, we calcu-
lated the average feature vector of the 10 separately rendered
images for each of the 30 words. We then performed multi-
dimensional scaling (from 51 dimensions) and agglomera-

(a) Vector Space (300 dimensions)

(b) Image Feature Space (51 dimensions)

Figure 5: A 2D visualization of the spacial relationships be-
tween the word vectors (a), compared to the spatial relation-
ships of their respective images (b). Red words are adjectives
on which DARCI was never trained, while green words are
non-adjectives. The image clusters/positions roughly corre-
spond to the word clusters/positions. This demonstrates that
DARCI was able to render images that at least partially con-
vey the meaning of adjectives, and even of words on which
DARCI was never trained, including non-adjectives.

tive clustering in the same way we did with the word vectors.
Both visualizations can be seen in Figure 5.

In vector space, note the distinct clusters of similar words.
Also note that the non-adjectives are generally more distant
from the larger groups of adjectives, likely due to their hav-
ing closer similarities to some other non-adjectives. Over-
all, the image clusters roughly correspond to the word clus-
ters. In both visualizations there exist relative groupings
for scary type words/images, and groupings for temperature
type words/images. Even in the clusters that don’t match ex-
actly, the relative positions of most words are similar. For ex-
ample, ‘bright’, ‘luminous’ and ‘glowing’ are still generally
near each other, even though they were absorbed into dif-
ferent neighboring clusters. Differences between the word
clusters and the image clusters are to be expected as the
visual semantic model learns from noisy data and multi-
dimensional scaling has to approximate 2D positions from
a high dimensional space. Also keep in mind that DARCI,
while trying to convey the adjective in the image, is also
trying to innovate and create novel images. For example,
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Figure 6: Five of the 10 abstract images rendered for the ad-
jective ‘fiery’. Notice the variation between different render-
ings as DARCI is trying to innovate, in addition to conveying
the adjective.

Figure 7: Five of the 10 abstract images rendered for the
adjective ‘cold’. Notice that some of the images could easily
be confused with ‘warm’ due to ‘cold’ being semantically
related to ‘warm’.

Figure 6 shows variations across different renderings of the
same adjective (‘fiery’).

It should be noted that visual differences between words
don’t always correspond to their semantic differences. For
example, we would expect the adjectives ‘warm’ and ‘cold’
to have distinct visual qualities. However, in Figure 5(a) we
see that ‘warm’ and ‘cold’ are semantically similar and so
DARCI’s renderings of these adjectives can look similar.
Figure 7 shows five of the 10 rendered images for ‘cold’.
Notice that a few of them could easily be confused with a
‘warm’ image. This seems unfortunate, but it is actually an-
other indication that DARCI is accurately generating images
according to the semantic relationships learned by the VSM.

Conclusions and Future Work
We have introduced a sophisticated semantic model into
DARCI that enables it to create images that convey a wide
variety of concepts. We have shown that the similarity of
the resulting images correspond to the semantic similarity
of the concepts on which they were based, which is evidence
that the images do reflect their intended adjective. We have
also shown that DARCI can render adjectives (and even non-
adjectives) that it has never seen example images of. This
ability is a rudimentary form of imagination and is analo-
gous to a person being able to imagine, say, what a ‘majestic’
image might look like when told that ‘majestic’ is similar to
‘powerful’ and ‘beautiful’, even though the person may have
never experienced the word ‘majestic’ before.

This simple form of imagination is not limited to images
and could be applied to practically any domain. For example,
a system could generate music based on the same word vec-
tors (e.g., compose a ‘happy’ song), and could then produce
new music to match previously unheard concepts. The VSM
could even act as a bridge between different domains. A sys-
tem could listen to a ‘sad’ song, which would be mapped
near the ‘sad’ vector, and the system could then “imagine” a
sad-like image inspired by the song.

Using a VSM for these types of creative learning prob-
lems allows for more freedom, more autonomy, and demon-

Figure 8: Images DARCI rendered (bottom row) after being
provided a source image (top row) and a concept. From left
to right, the concepts are ‘fiery’, ‘Alaska’, and ‘hunchback’.
Although the source image was given, DARCI discovered its
own way to render the image to convey the given concept.

Figure 9: Images that DARCI has rendered after being given
only a concept. From left to right, the concepts are ‘bizarre’,
‘war’, ‘art’, ‘murder’ and ‘hunger’.

strates a more robust form of intelligence. In classical ma-
chine learning, models are typically rigidly confined to the
concept(s) explained by available training data, performing
poorly outside this scope. In contrast, the semantic model
presented here attempts a form of transfer learning from
written text to image understanding/generation, which gives
our system a chance to perform reasonably even for con-
cepts it has not explicitly learned. This flexibility is espe-
cially useful for problems in the field of computational cre-
ativity, where there may not be a “best” or “right” answer.

With the success of the semantic model, we can consider
the system as a whole and move beyond abstract images by
having DARCI create more sophisticated art that conveys
meaning for more advanced concepts. For example, a user
could provide a source image and DARCI could then re-
render the source image to convey any given concept. Fig-
ure 8 shows several examples of this method of rendering.

As outlined in the Image Generator Section, DARCI can
also create a source image of simple icons by finding nouns
semantically related to the provided concept. This collage of
icons can then be artistically rendered to communicate the
original concept, as shown in Figure 9. DARCI chooses to
include icons based on what it has learned through the vector
space model, and the result is an original image that conveys
the given concept. We intend to evaluate the DARCI system
as a whole to determine its creative ability to communicate
meaning through visual art.

We noted that semantic differences between words don’t
always correspond to visual differences. One idea to over-
come this is to use a hierarchical approach that locates differ-
ent densities or clusters within the word vector space: a top-
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level visual semantic model that learns to identify different
clusters, and separate visual semantic models for each clus-
ter that focus on distinguishing among the individual words
in a given cluster.

We would eventually like to extend the ideas in this pa-
per beyond adjectives to include nouns. We want to en-
able DARCI to create actual (non-abstract) pictures of nouns
without relying on a provided source image or a database
of icons. This will most likely require a deep learning sys-
tem that leverages semantic information to discriminate be-
tween pictures of nouns, as done in other studies (Frome
et al. 2013). A deep generative model could potentially
generate images by visualizing how the model has learned
features at various levels. Recently, deep neural systems
have already had success in automatically generating im-
ages (Gregor et al. 2015; Leon A. Gatys and Bethge 2015;
Denton et al. 2015).
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