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Abstract

Head pose estimation via embedding model has been demon-
strated its effectiveness from the recent works. However, most
of the previous methods only focus on manifold relationship
among poses, while overlook the underlying global struc-
ture among subjects and poses. To build a robust and effec-
tive head pose estimator, we propose a novel Pose-dependent
Low-Rank Embedding (PLRE) method, which is designed
to exploit a discriminative subspace to keep within-pose sam-
ples close while between-pose samples far away. Specifically,
low-rank embedding is employed under the multi-task frame-
work, where each subject can be naturally considered as one
task. Then, two novel terms are incorporated to align multi-
ple tasks to pursue a better pose-dependent embedding. One
is the cross-task alignment term, aiming to constrain each
low-rank coefficient to share the similar structure. The other
is pose-dependent graph regularizer, which is developed to
capture manifold structure of same pose cross different sub-
jects. Experiments on databases CMU-PIE, MIT-CBCL, and
extended YaleB with different levels of random noise are con-
ducted and six embedding model based baselines are com-
pared. The consistent superior results demonstrate the effec-
tiveness of our proposed method.

Introduction
Head pose estimation is an integral component in computer
vision system, which has a wide range of applications, such
as face recognition, person/face identification and human-
machine interaction. Although there are extensive works
studying head pose estimation from 2D images, it is still far
away from mature. The challenges are induced by changing
illuminations, various facial expressions, and subject vari-
ability. A generic algorithm for head pose estimation has to
be robust to such factors, e.g., occlusion, noise, lighting and
perspective distortion, which make it a challenging issue.

Recently, a number of algorithms have been proposed to
address head pose estimation problem, and a good survey
can be referred to (Murphy-Chutorian and Trivedi 2009). In
general, these existing methods can be categorized into the
following groups: template model (Kwong and Gong 2002),
regression model (Haj, Gonzàlez, and Davis 2012; Geng and
Xia 2014), embedding model (Wang and Song 2014), ac-
tive appearance model (Edwards et al. 1998; He, Sigal, and
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Figure 1: Conceptual illustration of the proposed PLRE
method. Head pose images distribute arbitrarily in the origi-
nal feature space due to the noise and/or some large corrup-
tions, e.g., illumination, etc. Here, for simplicity, we take
three subjects as an example marked by different colors.
Through the proposed PLRE method, low-rank embedding
is employed on each subject under the multi-task frame-
work, where each subject is a task. Regions with different
background colors (gray and purple) denote pose-dependent
regularizers across subjects, which couple data with same
pose but from different subjects. PLRE is optimized jointly
to seek the discriminative embedding space, with which the
testing head pose is estimated.

Sclaroff 2014) and geometric model (Wang and Sung 2007;
Fanelli, Gall, and Van Gool 2011). Among them, embedding
model attracts lots of attention recently because of the high
accuracy and good generalizability (Fu and Huang 2006;
Balasubramanian, Ye, and Panchanathan 2007; Wang et al.
2008; BenAbdelkader 2010; Wang and Song 2014). How-
ever, it is worth noticing that all the previous embedding
based methods fail to consider the underlying global struc-
ture among subjects and poses, which results in vulnerability
of noises or corruptions.

To better handle head pose estimation problem, we get in-
spiration from the fact that data from different poses within
the same subject should lie in separable subspaces, which
is independent of illuminations, expression, lighting con-
dition, etc. Correspondingly, low-rank representation (Liu
et al. 2013; Wang and Fu 2015; Shao, Kit, and Fu 2014;
Li and Fu 2014) is a promising way to uncover the pose-
specific subspaces within each subject. Low-rank repre-
sentation manages to find the lowest rank representation
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of data, therefore, it can discover the intrinsic multiple
subspace structure. Recently, low-rank representation has
been incorporated with subspace learning, whose goal is to
achieve a robust representation (Ding, Shao, and Fu 2014;
Wang, Xu, and Leng 2013). All these methods are designed
to uncover the multiple subject-specific subspaces, where
they treat each subject as one independent low-rank struc-
ture. However, for head pose estimation problem, exploring
pose relationship across subjects is the gist. In other words,
mining pose-dependent multiple structures plays a key role.

In this paper, we develop a novel Pose-dependent Low-
Rank Embedding (PLRE) method, which incorporates the
cross-task alignment and pose-dependent regularizer into
multi-task learning framework, as shown in Figure 1. The
core of PLRE is to learn a discriminative subspace, where
different poses within the same subject intend to share the
similar low-rank structure through a cross-task regularizer,
and same poses from different subjects are coupled tightly.
Therefore, the learned subspace is more pose-dependent and
robust to noise, illumination, subject variations, etc. The
main contributions are summarized as follows:

• Low-rank embedding is incorporated into each subject to
discover the global structure of pose data under multi-
task learning framework. Each subject correlates with one
task. This practice reduces the subject-dominant influence
in pose data.

• Cross-task alignment term is introduced to impose all the
low-rank representations to a similar structure. That is, the
low-rank representation in each task is guided by other
tasks to achieve the structured coefficients.

• A novel pose-dependent regularizer is designed to couple
data with same pose but from different subjects. Thus a
more discriminative subspace is learned to keep within-
pose samples close while between-pose sample far away.

Pose-dependent Low-Rank Embedding

Problem Formulation

Given a training dataset X = [X1, . . . , Xi, . . . , XK ] with K
subjects and Xi ∈ R

d×n, where n is the sample size of Xi,
d is the dimension of the features. Each subject contains sev-
eral kinds of poses. Thus, X ∈ R

d×N , where N = K×n de-
notes the total number of training samples. The high similar-
ity across different poses within one subject would definitely
destroy the performance in head pose estimation. Regarding
each subject as a task, our goal is to seek a discriminative
subspace P ∈ R

d×m (m is the reduced dimensionality) to
better separate within-task (within-subject) samples across
different poses, whilst keep those between-task (between-
subject) samples in the same pose close to each other. There-
fore, it is the key to find the intrinsic subspaces of different
poses in the same task. We employ low-rank constraint in or-
der to find the multiple subspace structure within each task.
Specifically, we introduce low-rank constraint on the low-
dimensional projected data. Since we learn low-rank repre-
sentation for each task separately, for this paper, we formu-

late the multi-task embedding problem as:

min
P,Zi,Ei

K∑
i=1

(‖Zi‖∗ + λ‖Ei‖2,1),

s.t. PTXi = PTXiZi + Ei,

PTP = Im, i = 1, . . . ,K

(1)

where λ is the balancing parameter, and Zi ∈ R
n×n is the

low-rank representation of the i-th subject data Xi. ‖Zi‖∗
is the trace norm of Zi, which denotes the sum of singu-
lar values of matrix Zi and is a good surrogate of rank(Zi)
(Candès et al. 2011). Following the previous works (Zhao
and Fu 2015; Ding and Fu 2014), �2,1-norm is proposed to
model the error Ei ∈ R

m×n 1, since �2,1-norm can better
detect the corrupted samples caused by partial occlusion,
extreme illuminations, or others. Im ∈ R

m×m denotes the
identity matrix. The constraint PTP = Im enforces the pro-
jection matrix P to be orthogonal to avoid the trivial solution
and eliminate redundancy. Note that when data sampling is
sufficient, X itself works well as the dictionary (Liu et al.
2013). In the following part, two novel regularizers are intro-
duced to the current formulation to achieve a discriminative
pose-dependent subspace.

Cross-task alignment regularizer: Inspired by the fact
that different subjects should share the similar structure in
term of the pose information, we specifically design a cross-
task alignment regularizer. For simplicity, we assume the
size of same pose in different subjects is equivalent in the
training stage. Therefore, each Zi should have the similar
structure, since the pose labels for different subjects are the
same. Our target is to align different tasks by constraining
the learned Zi to share the similar structure. To this end, we
design a cross-task alignment term

∑K
j=1,j �=i ‖Zi−Zj‖2F in

our objective to constrain each Zi as:

min
P,Zi

K∑
i=1

(‖Zi‖∗ + λ‖Ei‖2,1 + γ

K∑
j=1,j �=i

‖Zi − Zj‖2F),

s.t. PTXi = PTXiZi + Ei,

PTP = Im, i = 1, . . . ,K,
(2)

where γ is the trade-off parameter.
Remark 1: The dual regularization term ‖Zi − Zj‖2F, (i �=
j) imposes any two different subjects to share the analogous
structure. Equivalently, all the low-rank embedding coeffi-
cients are similar when the model reaches optimization.
Remark 2: ‖Zi − Zj‖2F is not oversimplification. In the
training stage, due to the accessibility to pose/indentity la-
bel, we supervise sort the data samples in order without loss
of generality. While in the testing stage, there is no need to
know any label information.

Pose-dependent graph regularizer: To make the sub-
space P more discriminative, we design to couple the same

1�2,1-norm is designed to model sample-specified error, which

is defined as ‖Ei‖2,1 =
∑m

k=1

√∑n
j=1 |Ei|2kj .
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pose data from different subjects, which is under the as-
sumption that pose image can be recovered by a linear com-
bination of those images from same pose across different
subjects. Consequently, we construct a binary graph G with
pose-dependent property, whose element is defined as:

G(k, l) =

{
1, k, l ∈ same pose but different subjects
0, otherwise

Then, we add a graph regularizer to align the same pose
data from different subjects, and the final objective function
is rewritten as:

min
P,Zi,Ei

K∑
i=1

(‖Zi‖∗ + λ‖Ei‖2,1 + γ

K∑
j=1,j �=i

‖Zi − Zj‖2F)

+ βtr(PTXLXTP ),

s.t. PTXi = PTXiZi + Ei,

PTP = Im, i = 1, . . . ,K,
(3)

where β is the weight of this regulation term. L is the Lapla-
cian matrix of G, defined as L = D − G. Here D is a di-
agonal matrix, its on-diagonal elements is computed as the
corresponding row sums of G. And tr(·) is the operator to
calculate the trace of matrix.
Remark 3: This graph term captures the manifold informa-
tion of pose data. We connect the same pose data and cut the
others, this practice can be seen as the “1-NN” version of
graph. Note that the binary graph G can be easily extended
to connect the most K similar poses.

Optimization

Obviously the proposed objective is hard to find the global
optimal solution for P,Zi, Ei jointly. Moreover, the trace
norm on Zi is non-smooth. To solve the problem (3), we em-
ploy Augmented Lagrangian Multiplier (ALM) (Lin, Chen,
and Ma 2009). For ease of the optimization, we introduce
auxiliary variables Ji to relax the problem (3) as:

min
P,Zi,Ji,Ei

K∑
i=1

(‖Ji‖∗ + λ‖Ei‖2,1 + γ

K∑
j=1,j �=i

‖Zi − Zj‖2F)

+ βtr(PTXLXTP ),

s.t. PTXi = PTXiZi + Ei, Ji = Zi,

PTP = Im, i = 1, . . . ,K,
(4)

whose Lagrangian function L is written as follows:

L =

K∑
i=1

(‖Ji‖∗ + λ‖Ei‖2,1 + γ

K∑
j=1,j �=i

‖Zi − Zj‖2F

+ 〈Πi, Zi − Ji〉+ 〈Λi, P
TXi − PTXiZi − Ei〉

+
μ

2
(‖PTXi − PTXiZi − Ei‖2F + ‖Zi − Ji‖2F)

)
+ βtr(PTXLXTP ),

(5)
where Λi and Πi are Lagrange multipliers and μ > 0 is a
penalty parameter, and 〈·〉 is the inner product of two ma-
trixes. Then by applying ALM, the variables are optimized

independently in an iterative manner. Specifically, Ji, Zi, Ei

and P are updated in (t+ 1)-th iteration as follows:
Update Ji,t+1: Fix Zi,t, Ei,t, Pt and solve

argmin
Ji

1

μt
‖Ji‖∗ + 1

2
‖Ji − (Zi,t +Πi,t/μt)‖2F. (6)

Here trace norm ‖·‖∗ is difficult to be optimized due to its
non-smooth property. However, it is the convex envelope of
rank function over the unit ball of spectral norm, which can
be recovered by several recently proposed solutions effec-
tively. Here, Singular Value Thresholding (SVT) proposed
by Cai et al. (Cai, Candès, and Shen 2010) is applied.

Update Zi,t+1: Fix Ji,t, Ei,t, Pt and solve the following
problem,

Zi,t+1 =
(
2γ(K−1)In+μt(R

T
i,tRi,t+In)

)−1

(
2γ

K∑
j=1,j �=i

Zj,t+RT
i,t(Λi,t+μtRi,t−Ei,t)−Πi,t+Ji,t+1

)
,

(7)
where Ri,t = PT

t Xi and In is the identity matrix with n-
dimension.

Update Ei,t+1: Fix Ji,t, Zi,t, Pt and solve the following
problem,

Ei,t+1 = argmin
Ei

λ

μt
‖Ei‖2,1 + 1

2
‖Ei − Êi,t‖2F. (8)

where Êi,t = PT
t Xi−PT

t XiZi,t+1+Λi,t/μt. This problem
can be solved by the off-the-shelf solver (Yang et al. 2009).

Update Pt+1: Fix Ji,t, Zi,t, Ei,t and solve the following
problem,

Pt+1 = (

K∑
i=1

μtUi,t + 2βXLXT)−1
K∑
i=1

Vi,t, (9)

where Ui,t = (Xi−XiZi,t+1)(Xi−XiZi,t+1)
T and Vi,t =

(Xi−XiZi,t+1)(μtE
T
i,t+1−ΛT

i ). Then, we enforce Pt+1 to
be orthogonal via Pt+1 ← orthogonalize(Pt+1). The details
of the solution are outlined in Algorithm 1.

Algorithm 1 Solving PLRE using ALM
Input: Training sample X , parameter λ, γ, β
Initialize: Ji,0 = Zi,0 = Ei,0 = Λi,0 = Πi,0 = 0, t = 0,

μ0 = 10−3, ρ = 1.2, ε = 10−3, μmax = 106.
Output: Zi, Ji, Ei, P
while not converged do
1. Fix the others and update Ji,t+1 using Eq. (6)
2. Fix the others and update Zi,t+1 using Eq. (7)
3. Fix the others and update Ei,t+1 using Eq. (8).
4. Fix the others and update Pt+1 using Eq. (9),
Pt+1 ← orthogonalize(Pt+1).

5. Update multipliers Λi,t+1,Πi,t+1 by
Λi,t+1=Λi,t+μt(P

T
i,t+1Xi−PT

i,t+1XiZi,t+1−Ei,t+1)
Πi,t+1=Πi,t+μt(Zi,t+1−Ji,t+1),

6. Update parameter μt+1 by μt+1=min(ρμt, μmax)
7. Check the convergence condition by
‖PT

i,t+1Xi − PT
i,t+1XiZi,t+1 − Ei,t+1‖∞ < ε,

‖Zi,t+1 − Ji,t+1‖∞ < ε.
8. t = t+ 1.
end while
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Once we have the optimal solution P ∗, both training sam-
ples and test samples are projected onto P ∗, and then near-
est neighbor (NN) classifier is utilized to predict the label of
testing samples. We outline the procedures in Algorithm 2.

Algorithm 2 PLRE for Head Pose Estimation
Input: Training data X with the corresponding label LX

testing data Y .
Output: Predicted label vector LY for testing data.
1. Normalize the training samples xi by xi = xi/‖xi‖.
2. Solve problem (3) by Algorithm 1 and get the optimal

projection matrix P ∗.
3. Project X and Y to P ∗ via X̃ = P ∗TX, Ỹ = P ∗TY .
4. Predict the label vector LY of Ỹ using nearest

neighbor (NN) classifier with cosine distance.

Complexity Analysis

In this subsection, we analyze time complexity of our pro-
posed PLRE. The most time-consuming parts in Algorithm
1 are Steps 1, 2 and 4. The dimensions of the important
variables are listed as follows: Xi ∈ R

d×n, Zi ∈ R
n×n,

Ji ∈ R
n×n and P ∈ R

d×m. Accordingly, in the first step,
the SVT operator needs singular value decomposition of
matrices of O(n3). In Step 2 and 4, the matrix inversion
and multiplication consume O(n3) and O(n2d) respectively.
Suppose the numbers of two types of calculation are p and q,
the number of iterations in Algorithm 1 is r, and the num-
ber of subjects is K, the overall computational complexity
of this algorithm would be O(prKn3) +O(qrKn2d).

Experiments

Baseline: Since our method belongs to embedding model,
in this work we make a comparison with six embedding
model based algorithms. Specifically, these methods are two
unsupervised manifold embedding methods Neighborhood
Preserving Embedding (NPE) (He et al. 2005) and Local-
ity Preserving Projections (LPP) (He and Niyogi 2003), and
four supervised manifold embedding methods, Supervised
Locally Embedded Analysis (SLEA) (Fu and Huang 2006),
Supervised Locality Preserving Projections (SLPP) (Li et
al. 2007), Supervised Manifold Learning by Chiraz Ben-
Abdelkader (SML-B) (BenAbdelkader 2010), and the state-
of-the-art work, Supervised Manifold Learning method by
Wang et al. (SML-W) (Wang and Song 2014). To make a
fair comparison, for all the methods, nearest neighbour (NN)
is used for pose prediction after learning the embedding co-
efficients and parameters are fine-tuned to obtain the best
performance.

Database: CMU-PIE (Sim, Baker, and Bsat 2003) in-
cludes 68 subjects of totally 41368 images. Each subject
has different poses, expressions and illuminations. As dis-
cussed in the previous section, our method takes cubic time
complexity in term of sample number in each subject. To re-
duce the computational cost, the first 15 subjects are used.
For each subject, there are 9 different poses in yaw direction
varying from -90 degree to 90 degree with the step of 22.5
degree. We crop each image and resize it to the size of 32 ×
32 pixels. MIT-CBCL (Rowley, Baluja, and Kanade 1998;

Alvira and Rifkin 2001) contains 3D synthetic facial im-
ages of 10 subjects. The head models are generated by fit-
ting a morphable model to high-resolution training images.
For each subject, there are 9 poses in yaw direction varying
from 0 degree to -32 degree at increments of approximate 4
degree. Each pose contains 36 different illuminations. Ex-
tended Yale B (Georghiades, Belhumeur, and Kriegman
2001) contains 16128 images of 28 human subjects under
9 poses and 64 illumination conditions. Different from the
previous two datasets, these 9 poses are neither in yaw nor
pitch direction, without precise pose angles (Please refer to
(Georghiades, Belhumeur, and Kriegman 2001) for more de-
tails). Instead of precise head pose estimation, we use ex-
tended Yale B for classification accuracy evaluation.

Note that in our experiments, we use gray-scale intensity
value as input feature, instead of HOG feature as some pre-
vious works did (Wang and Song 2014; Haj, Gonzàlez, and
Davis 2012). Two major reasons: first, HOG feature calcu-
lating the oriented gradients eliminates some noises, which
is not preferable in model robustness evaluation. To eval-
uate the robustness of different methods, six levels of ran-
dom noise are added, see Figure 2 as an example. Second,
from the aspect of computational cost, gray-scale intensity is
faster than HOG feature generation. For the data preprocess-
ing, we follow the similar strategy (Liu, Lin, and Yu 2010;
Lu et al. 2012) to reduce the data dimension to 200 via PCA
for further speedup.

Evaluation Metric: Mean absolute error (MAE) is a
well-known and popular used metric to evaluate the perfor-
mance of pose estimation model. It is calculated as MAE =
E[|p− g|], where p denotes the predicted pose angles in
vector form, and g denotes the ground-truth angles. The ex-
pectation E[·] measures the average error of the predictions.
Classification accuracy (ACC) is another evaluation metric
widely used in head pose estimation field (Haj, Gonzàlez,
and Davis 2012; Geng and Xia 2014). It is defined as ACC =∑N

i=0 δ(pi,qi)/N , where δ(x, y) is the delta function that
equals one if x = y and equal zero otherwise, and N is the
total number of predicted poses.

MAE measures the average absolute error between pre-
diction and ground-truth. However, an estimation with a
small MAE does not mean a high classification accuracy. It
happens when the few wrong classifications (i.e., high ac-
curacy) are far from ground-truth, which results in a bad
MAE result. With both metrics, a comprehensive evalua-
tion is provided. In our experiment described below, MAE is
calculated on CMU-PIE and MIT-CBCL, ACC is computed
on CMU-PIE and extended YaleB. As discussed above, ex-

original 5% 10% 15% 20% 25%

Figure 2: Illustration of noisy training data with different
random noise level from original (no noise) to 25% with the
step of 5%. Image sample belongs to database MIT-CBCL.

1425



Table 1: MAE (Degree) result on database CMU-PIE.
0% 5% 10% 15% 20% 25%

NPE 7.451 7.632 8.491 9.670 11.777 12.816
LPP 8.986 9.209 9.335 10.172 11.630 11.926

SLEA 7.472 7.940 8.749 9.105 9.258 10.416
SLPP 7.374 7.584 9.021 9.704 11.281 11.603

SML-B 7.242 7.765 9.014 9.523 9.990 10.695
SML-W 5.547 7.543 7.967 9.159 9.383 10.248

Ours 4.395 4.682 5.986 6.698 7.081 7.363

Table 2: MAE (Degree) result on database MIT-CBCL.
0% 5% 10% 15% 20% 25%

NPE 0.204 1.737 1.960 2.300 2.541 3.157
LPP 0.107 1.085 1.423 2.515 2.637 3.050

SLEA 0.109 0.873 1.689 2.062 2.076 2.408
SLPP 0.091 1.332 1.780 1.893 1.975 2.427

SML-B 0.080 0.982 1.440 1.678 1.961 2.055
SML-W 0.020 0.442 1.273 1.428 1.766 2.003

Ours 0.011 0.017 0.024 0.414 0.998 1.311

tended YaleB only includes poses but without precise groud-
truth angles, so only ACC can be computed. Due to the sim-
plicity of MIT-CBCL, we only show MAE result since ACC
is lack of discriminability.

Result

For all experiments, five-fold cross-validation is applied as
(Haj, Gonzàlez, and Davis 2012). Table 1 and 2 tabulate the
MAE results on databases CMU-PIE and MIT-CBCL with
different levels of random noise from 0% (no noise) to 25%
at an increment of 5%. According to the observation, several
statements can be generalized as follows:

• Our proposed method PLRE consistently outperforms
all the other baselines. PLRE reduces the average error
across different noise settings from 8.308 degree to 6.034
degree in CMU-PIE and 1.155 degree to 0.463 degree in
MIT-CBCL, respectively.

• All the supervised methods SLEA, SLPP, SML-B, SML-
W and ours PLRE outperform the unsupervised methods
NPE and LPP.

• With more noise, the performances of all methods get
worse. However, as the noise level grows, more improve-
ments are achieved by our PLRE, i.e., from 1.152 degree
(no noise) to 2.885 degree (25% noise) in CMU-PIE.

Discussion: All the observations are in expectation, as
SLEA, SLPP, SML-B, SML-W and ours incorporate super-
vised information, thus more discriminative embedding co-
efficients are learned for pose estimation. It is our method
PLRE that firstly considers the subject-dominant influence,
and formulates pose estimation with different subjects un-
der multi-task learning framework. By uncovering the global
structure via low-rank embedding, our method PLRE out-
performs all the other competitors.

Table 3 and 4 show the classification accuracy on database
CMU-PIE and extended YaleB with different noise levels.
Same as MAE, our method PLRE performs best. The similar

Table 3: Classification ACC (%) on database CMU-PIE.
0% 5% 10% 15% 20% 25%

NPE 89.64 85.46 83.75 78.05 72.47 72.81
LPP 85.22 83.63 78.67 77.18 74.23 73.77

SLEA 89.36 87.75 86.39 82.39 80.50 78.23
SLPP 87.10 84.93 79.44 76.12 73.86 74.42

SML-B 89.63 87.11 86.74 84.07 83.25 80.43
SML-W 91.77 87.42 88.03 83.91 83.34 80.91

Ours 91.94 89.56 90.01 86.05 83.72 82.79

Table 4: Classification ACC (%) on extended YaleB.
0% 5% 10% 15% 20% 25%

NPE 79.91 79.58 79.11 78.40 78.21 77.32
LPP 81.01 79.74 79.67 78.17 77.70 77.43

SLEA 81.74 81.50 80.52 79.58 79.90 77.95
SLPP 82.70 81.93 82.21 79.74 80.47 79.41

SML-B 85.08 85.02 84.68 84.11 83.08 82.89
SML-W 86.34 85.96 85.49 85.27 83.65 83.42

Ours 88.17 87.91 86.34 86.05 84.78 84.26

trend is found that with higher level of noise, all the methods
perform worse. However by comparing the reported MAE
(Table 1) and ACC (Table 3) on CMU-PIE dataset, we find a
case that pose prediction is with better ACC but worse MAE,
e.g., SLEA and SLPP under 5% noise condition. It is re-
ported that SLEA and SLPP have 7.940 degree and 7.584
degree respectively, which means SLPP is better than SLEA
in term of MAE. While as for ACC, SLEA and SLPP re-
port 87.85% and 84.93%, denoting that SLEA overcomes
SLPP. This phenomenon is in accordance with the discus-
sion made in previous subsection. Under both evaluation
metrics, PLRE consistently outperforms all the competitors.

To better demonstrate the effectiveness of our method,
confusion matrix is used to specify the exact classification
result between the estimated pose angle and ground-truth as
shown in Figure 3. The matrices are generated on database
CMU-PIE with three different noise levels, 0%, 10%, 20%,
respectively. Each number represents the frequency of oc-
currence when prediction is correct. Since five-folder cross-
validation is applied, the sum of all numbers in the matrix
is the total number of images. Then the accuracy rate can
be calculated as the sum of diagonal number divided by
the total number, i.e., ACC =

∑
i(diag(Mii))/

∑
ij(Mij),

where M denotes the confusion matrix, i and j index the
row and column, respectively. As expected, from no noise
(Figure 3(a)) to 20% noise (Figure 3(c)), the accuracy drops
from 91.94% to 83.72%. We also observe that when small
noise is added, our method works very well for large-angle
pose estimation. For example, under 0% and 10% noise cir-
cumstances, the prediction accuracies are 100% for -90 and
90 degrees. While for more frontal cases, such as -22.5, 0,
and 22.5 degrees, there are a lot of misclassifications. This
is because side faces are quite different from frontal faces.
Moreover, it is difficult to distinguish the near-frontal faces
with corrupted face images when large noise is added. Al-
though some exceptions happen, we can still observe the
trend from Figure 3(c) that our model produces the close
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Figure 3: Confusion Matrices of dataset CMU-PIE with different noise levels, i.e., (a) no noise, (b) 10% and (c) 20%, respec-
tively. The number represents the occurrence frequency between prediction and groundtruth.
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Figure 4: Convergence study
of stop condition with re-
spect to iteration time on
CMU-PIE database. Here,
stop condition is defined as
max(‖PT

i,tXi−PT
i,tXiZi,t−

Ei,t‖∞, ‖Zi,t − Ji,t‖∞).

estimations for those misclassification cases.

Convergence and Parameter Analyses

To test the stability and robustness, five experiments are con-
ducted to study the pose estimation performance in terms of
convergence and model parameters. Without explicit spec-
ification, all the analytical experiments are conducted on
CMU-PIE with the parameters set as m = 100, β = 10,
γ = 1 and λ = 0.1.

Convergence analysis. To show the convergence prop-
erty, we compute stop condition as max(‖PT

i,tXi −
PT
i,tXiZi,t−Ei,t‖∞, ‖Zi,t−Ji,t‖∞) in t-iteration, the con-

vergence curve is plotted in Figure 4. From the observa-
tion, the whole process can be generalized into two stages.
In the first stage (#1 ∼ #30), the stop condition fluctuates
sharply. Then (after #30), it drops smoothly until the final
convergence. Note that with different parameter settings, the
convergence curves might not be exactly the same, but the
trends are similar. From this experiment, it is well demon-
strated that our method is robust from convergence aspect.

Parameter analysis. A coarse-to-fine strategy is adopted
to find the proper range of each parameter. In our model,
there are four major parameters, i.e., the dimension m of
projection matrix, trade-off parameter β for pose-dependent
regularizer term, γ for cross-task alignment term and λ for
error term. Projection matrix P plays the crucial role in head
pose estimation task. Accordingly, analysis on the dimen-
sion m of P is critical to show the effectiveness and robust-
ness of our method. We set the dimension m in the range
of [10, 100] with a step of 10. Figure 5(a) reports the per-
formance in terms of MAE and ACC results. It is clearly
observed that as the dimension m grows, the performance
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Figure 5: Parameter analyses on CMU-PIE database. (a)
MAE (red curve) and ACC (blue curve) with respect to the
dimension m of projection matrix P . (b-d) show the MAE
and ACC curves with respect to trade-off parameters β, γ
and λ, respectively. The default values of four parameters
are set to be {100, 10, 1, 0.1}.

gets better, and eventually keeps steady when m reaches 90.
Note that when m gets larger, the computational cost also
becomes more expensive. Thus in our experiments, we set
m = 100 as default.

Figure 5(b-d) show the performance with respect
to three different balancing parameters of PLRE.
The values of parameters are selected in the grid of
[103, 102, 101, 1, 10−1, 10−2, 10−3]. We can observe that
when β, γ and λ are set around 10, 1 and 0.1, we get a rela-
tively good MAE and ACC result. Note that there is a drop
when γ = 1 in term of ACC (see Figure 5(c)). However as
for MAE, γ = 1 performs best. This phenomenon is similar
with the case of SLEA/SLPP that we discuss above.
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Conclusion

In this paper, we proposed a Pose-dependent Low-Rank Em-
bedding (PLRE) method for head pose estimation. Inspired
by several empirical observations, we designed cross-task
alignment term and pose-dependent graph regularizer un-
der low-rank multi-task framework. The superior results on
three benchmarks with different levels of random noise had
shown our superiority.
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