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Abstract

Noisy and incomplete data restoration is a critical preprocess-
ing step in developing effective learning algorithms, which
targets to reduce the effect of noise and missing values in
data. By utilizing attribute correlations and/or instance sim-
ilarities, various techniques have been developed for data
denoising and imputation tasks. However, current existing
data restoration methods are either specifically designed for a
particular task, or incapable of dealing with mixed-attribute
data. In this paper, we develop a new probabilistic model
to provide a general and principled method for restoring
mixed-attribute data. The main contributions of this study are
twofold: a) a unified generative model, utilizing a generic ran-
dom mixed field (RMF) prior, is designed to exploit mixed-
attribute correlations; and b) a structured mean-field varia-
tional approach is proposed to solve the challenging inference
problem of simultaneous denoising and imputation. We eval-
uate our method by classification experiments on both syn-
thetic data and real benchmark datasets. Experiments demon-
strate, our approach can effectively improve the classification
accuracy of noisy and incomplete data by comparing with
other data restoration methods.

Introduction

Real world data usually contain noise and missing values,
which could severely degrade the performance of learning
algorithms (Maimon and Rokach 2010; Chen et al. 2015;
Wang and Oates 2015). The task of data restoration is to
reduce the effect of noise and missing values, and plays a
critical preprocessing step in developing effective learning
algorithms. Attribute-level noise and missing values are two
of the major concerns in data restoration. In the literature,
attribute-level noise refers to undesirable incorrect measure-
ments in some specific attribute of all instances. Different
from the characteristics of noise, missing values are unavail-
able measurements. In practice, there are various reasons
leading to noise and missing values, such as incaution or un-
willingness in manual data entry process, equipment failure
and high acquisition cost.

Data denoising targets to estimate the true value from
noisy measurements based on certain assumptions. Unlike
popular image denoising research (Buades, Coll, and Morel
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2005b; 2005a), the research on attribute-level data denois-
ing has long been limited. One possible reason is that im-
ages usually have strong local smoothness which can ben-
efit denoising, but such local smoothness rarely exists in
general data, such as survey reports. To achieve good lo-
cal smoothness, (Li et al. 2002) proposed to use cluster la-
bels to rearrange all the instances in Ecoli dataset (Lichman
2013). Then a wavelet shrinkage method is employed to fil-
ter certain attribute across instances. Although such “ad hoc”
smoothness could make sense, it is intrinsically unfounded
and prone to random instability. Different from determinis-
tic approaches, probabilistic models provide a more ratio-
nal approach for handling noisy data. The key assumption
is the observed corrupted data are generated by adding ran-
dom noise to latent noise-free data. Through such generative
models, one can exploit informative priors over latent vari-
ables so as to encode attribute correlations.

Data imputation aims at providing good estimates of
missing values. Deterministic approaches resort to modify
classical regressors/classifiers to impute missing attributes.
For example, K nearest neighbors imputation (KNNI) (Troy-
anskaya et al. 2001) imputes missing values with the
mean/mode of K nearest neighbors for continuous/discrete
attributes, as well as other techniques including local least
squares imputation (LLSI) (Kim, Golub, and Park 2005),
support vector machine imputation (SVMI) (Honghai et al.
2005), multiple kernel learning imputation (MKLI) (Zhu
et al. 2011), and random forest imputation (Stekhoven and
Bühlmann 2012). On the other hand, probabilistic latent
variable models are employed to find the most probable im-
putation. For example, (Ghahramani and Jordan 1994) ad-
dressed the imputation problem by learning mixture mod-
els from an incomplete dataset. (Schneider 2001) designed
a regularized expectation-maximization imputation (REMI)
method by modelling the latent variables with multivariate
Gaussian. Singular value decomposition imputation (SVDI)
(Troyanskaya et al. 2001) combined principle component
(PC) regression and EM estimation to estimate missing val-
ues. Some researchers also developed Bayesian principle
component analysis based imputation (Oba et al. 2003),
which jointly conducts PC regression, Bayesian estimation
and EM learning.

Despite their effectiveness in exploiting attribute correla-
tions and/or instance similarities, existing methods have two
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main limitations: (1) they are specifically designed for a par-
ticular task, either denoising or imputation; (2) most of them
are incapable of dealing with mixed-attribute data directly,
and a prerequisite conversion step can inevitably cause infor-
mation loss. In this paper, we formulate the mixed-attribute
data restoration problem with a random mixed field (RMF)
model. Moreover, to solve the resulting challenging infer-
ence problem, we derive a structured variational approach
based on the mean field assumption. By exploiting mixed-
attribute correlations, the proposed framework is capable of
mixed-attribute data denoising and imputation at the same
time.

Related Works

Recently, mixed graphical models have attracted increasing
attentions (Lee and Hastie 2013; Cheng, Levina, and Zhu
2013; Yang et al. 2014) to meet the need for heterogeneous
multivariate data modelling and analysis (Wang et al. 2015;
Lian et al. 2015; Ding, Ming, and Fu 2014). In general,
mixed graphical models extend classical graphical models
by letting nodes to emerge from different types of random
variables, such as continuous, discrete and count.

In the literature, mixed graphical models were first pro-
posed in (Lauritzen and Wermuth 1989) to model mixed
continuous and discrete variables. In this seminal work, the
multinomial and conditional Gaussian distributions are used
to represent the joint heterogeneous multivariate distribu-
tion. However, the number of model parameters scales ex-
ponentially with the number of discrete variables. To reduce
the number of model parameters, (Lee and Hastie 2013)
considered only pairwise interactions and fixed precision
matrix for continuous variables. (Cheng, Levina, and Zhu
2013) further explored triple interactions between two dis-
crete and one continuous variable. (Yang et al. 2014) con-
sidered mixed graphical models via a unified exponential
family distribution to handle mixed continuous, discrete and
count variables.

Though an RMF model belongs to general mixed graph-
ical models, we propose to investigate the inference and
parameter learning aspects of RMF model which is in-
deed complementary to the latest structure learning research.
Specifically, 1) a structured mean field approach is derived
to solve the inference problem of RMF model; 2) a varia-
tional expectation maximization algorithm is implemented
to estimate the noise parameters given a fixed RMF prior.

Random Mixed Field Model

An RMF model is usually constructed by a hidden network
playing the prior part and a corresponding set of observed
nodes playing the likelihood part. See Figure 1 for a general
example of RMF model. Note that, RMF model can be re-
garded as a specification of general mixed graphical models.
In the following, we first describe the general framework of
RMF model, and then give derivations of the inference al-
gorithm. Parameter learning and data restoration algorithms
will also be discussed. To simplify discussion, we will con-
sider a fully-connected, pairwise, and continuous-discrete
mixed graph in the next part of the paper.

(a) Mixed-net

Observed continuous variable

Observed discrete variable

Latent continuous variable

Latent discrete variable

Directed edges

Continuous-continuous edge

Discrete-discrete edge

Continuous-discrete edge

(b) Symbol explanations

Figure 1: An example of random mixed field model. (a) The
hidden network is a “mixed-net” consisting of both contin-
uous and discrete nodes. (b) explains all the four types of
nodes and five types of edges.

Representation

Given a general mixed pairwise graph G = (V, E), we have
the vertex set V = Vu ∪ Vv ∪ Vx ∪ Vy representing latent
continuous/discrete, observed continuous/discrete variables,
and the edge set E = Euu ∪ Evv ∪ Euv ∪ Eux ∪ Evy denot-
ing the union of continuous-continuous, discrete-discrete,
continuous-discrete connections and emissions. Consider
the mixed-net example in Figure 1(a) which consists of four
types of nodes and five types of edges. In detail, Vu and Vv

are represented by cyan and red circles, Vx and Vy are de-
noted by cyan and red filled circles. On the other hand, Euu,
Evv and Euv correspond to green, purple and yellow line seg-
ments; Eux and Evy correspond to cyan and red directed line
segments.

An RMF model defines a joint distribution over the latent
and observed variables according to some specific graphical
configuration. In general, the joint distribution can be factor-
ized into the prior and likelihood parts as below,

p(u, v, x, y|Θ) = p(u, v|Θp)p(x, y|u, v; Θn), (1)

where Θ = Θp ∪Θn represents the union of prior and noise
parameters.

The prior distribution is defined over latent variables via
a Gaussian-Potts mixed potential,

p(u, v|Θp) ∝ exp

(
m∑
s=1

m∑
t=1

−1

2
βstusut +

n∑
s=1

αsus

+

m∑
s=1

n∑
j=1

ρsj(vj)us +

n∑
j=1

n∑
k=1

φjk(vj , vk)

⎞
⎠ , (2)

where Θp = [{βst}, {αs}, {ρsj}, {φjk}] denotes the prior
parameters. In particular, βst, αs, ρsj and φjk parameter-
izes continuous-continuous edge potential, continuous node
potential, continuous-discrete edge potential, and discrete-
discrete edge potential, respectively. Upon this mixed
Gaussian-Potts prior distribution, we can also obtain node-
wise conditional distributions for each variable. Specifically,
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the conditional distribution of a continuous variable us given
all its neighboring variables is a Gaussian distribution with
a linear regression model for the mean and β−1

ss being the
unknown variance,

p(us|u\s, v) =
√
βss√
2π

exp(ζ), (3)

ζ =
−βss

2

⎛
⎝us −

(
αs +

∑
j ρsj(vj)−

∑
t�=s βstut

)
βss

⎞
⎠

2

.

Note that, the backslash operator \ is used to exclude vari-
able s in defining the set of neighboring variables. The con-
ditional distribution of a discrete variable vj given its neigh-
bors is a multinomial distribution with Lj states,

p(vj |v\j , u) =
exp(ξvj )∑Lj

l=1 exp(ξl)
, (4)

ξl =

⎛
⎝∑

s

ρsj(l)us + φjj(l, l) +
∑
k �=j

φjk(l, vk)

⎞
⎠ .

The likelihood is defined based on the assumption that
all observed variables are independent to each other condi-
tioned on the latent variables,

p(x, y|u, v; Θn) =

m∏
s=1

p(xs|us)

n∏
j=1

p(yj |vj), (5)

where Θn = [{σs}, {ϕj}] denotes the noise parameters of
Gaussian and multinomial distributions. In other words, the
continuous emission corresponds to additive white Gaussian
noise (AWGN), and the discrete emission represents random
flipping noise (RFN). Consequently, the distribution of xs

conditioned on us is modelled as a Gaussian with the noise
parameter σs,

p(xs|us) =
1√
2πσs

exp

(
− 1

2σ2
s

(xs − us)
2

)
. (6)

And the distribution of yj given vj is modelled as a multino-
mial distribution parameterized by noise parameter ϕj ,

p(yj |vj) = exp(ϕj(yj , vj))∑Lj

l=1 exp(ϕj(l, vj))
. (7)

Structured Mean Field

With an RMF model, data restoration can be achieved by the
inference over posterior distribution p(u, v|x, y; Θ). Since
the calculation of the likelihood p(x, y; Θ) is intractable,
we seek to approximate inference approaches. Specifically,
we use the variational approach, which is considered to be
more efficient than sampling methods. Based on the mean
field assumption, the optimal variational approximation of
p(u, v|x, y; Θ) is given by

q∗(u, v) = arg min
q(u,v)=
q(u)q(v)

KL[q(u, v)‖p(u, v|x, y; Θ)]. (8)

(
)

2
(
,
)

(
)

2
(

,
)( , )
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2

(
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]
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[

(
)]

Figure 2: The proposed structured mean field approximation
can be regarded as cutting off those mixed-type edges and
absorbing the interactions in the form of expected sufficient
statistics, i.e., Eq(us)[us] and Eq(vj)[ρsj(vj)], respectively.
Such a posterior approximation will result in two separate
subgraphs, which are much easier to handle. In addition, it
is required to alternately update each of the two subgraphs’
joint distributions until convergence.

The minimization of the Kullback-Leibler divergence in (8)
can be achieved by maximizing a lower bound,

L(q) = Eq(u)q(v)

[
ln

p(x, y, u, v)

q(u)q(v)

]
(9)

of the log evidence ln p(x, y) = ln
∑

v

∫
u
p(x, y, u, v) w.r.t.

q(u) and q(v), respectively. Accordingly, the update formula
for q(u) and q(v) are given by (Bishop 2006),

q(u) ← 1

Zu
expEq(v)[ln p(u, v, x, y)] (10)

q(v) ← 1

Zv
expEq(u)[ln p(u, v, x, y)], (11)

where Ep[f ] calculates the expectation of function f w.r.t.
distribution p, and Zu and Zv are the normalization terms.

To solve Eqn. (10) for updating q(u), we evaluate the ex-
pectation w.r.t. q(v),

Eq(v)[ln p(u, v, x, y)] ≡ −1

2

m∑
s=1

m∑
t=1

βstusut

+

m∑
s=1

αsus +

m∑
s=1

n∑
j=1

Eq(vj)[ρsj(vj)]us

+

m∑
s=1

[
− (xs − us)

2

2σ2
s

]
+

n∑
j=1

Eq(vj)[ϕj(yj , vj)]

≡ −1

2
uT B̂u+ γ̂(v, x)Tu, (12)
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where the notation ≡ denotes the two terms on the
left and right hand sides are equivalent up to a con-
stant, and B = {βst}, B̂ = B + diag{ 1

σ2
s
},

{γ̂(v, x)}s = αs +
∑

j Eq(vj)[ρsj(vj)] +
xs

σ2
s

. Fortunately,
q(u) follows a multivariate Gaussian distribution, q(u) =

N (u|B̂−1γ̂(v, x), B̂−1). Notice that, for the Gaussian-Potts
model defined in Eqn. (2), we do not need to calculate the
inverse of the updated precision matrix B̂. The reason is that
the continuous-discrete edge potentials are only absorbed
into the first-order term of q(u). In addition, the noise term
diag{ 1

σ2
s
} is added to the diagonal of B thus does not af-

fect the original graphical connections defined in B. Con-
sequently, algorithms such as Gauss elimination and GaBP
(Bickson 2008) can be employed to efficiently infer the
mean B̂−1γ̂(v, x) when B is sparse.

Regarding Eqn. (11), we have the expectation w.r.t. q(u),

Eq(u)[ln p(u, v, x, y)]

≡
n∑

j=1

n∑
k=1

φjk(vj , vk) +

n∑
j=1

m∑
s=1

ρsj(vj)Eq(us)[us]

+
m∑
s=1

Eq(us)

[
− (xs − us)

2

2σ2
s

]
+

n∑
j=1

ϕj(yj , vj)

≡
n∑

j=1

n∑
k=1

φjk(vj , vk) +

n∑
j=1

ϕ̂j(yj , vj , u), (13)

where ϕ̂j(yj , vj , u) =
∑

s ρsj(vj)Eq(us)[us] + ϕj(yj , vj).
In other words, q(v) follows a pairwise discrete MRF,
q(v) ∝ exp

{∑
j

∑
k φjk(vj , vk) +

∑
j ϕ̂j(yj , vj , u)

}
.

Note that, for the Gaussian-Potts model defined in Eqn. (2),
those interaction and emission terms {ϕ̂j} do not affect the
original graphical connection defined in {φjk}. Thus, we
can use the loopy belief propagation (Murphy, Weiss, and
Jordan 1999) algorithm to solve the pairwise discrete MRF
inference problem.

In the above derivations, the mixed-type edge terms ap-
peared in both q(u) and q(v) but in different forms. Figure
2 illustrates the process of formulating two interacting sub-
graphs via Eq(us)[us] and Eq(vj)[ρsj(vj)] when the hidden
network is a mixed-net. The alternative updating between
q(u) and q(v) is performed until convergence to a stationary
point. The stationary point corresponds to two completely
independent subgraphs that jointly approximate the whole
mixed graph.

Parameter Estimation

For the data restoration task considered in this paper, we
follow the setting of a clean training dataset and a cor-
rupted testing dataset (Saar-Tsechansky and Provost 2007).
Regarding “clean”, we mean the samples are noise-free and
complete and “corrupted” means the samples contain noise
and missing values. According to this setting, the RMF
prior parameters Θp can be learned from the clean training
dataset. Fortunately, several third-party learning techniques,
such as, variants of graphical LASSO (Friedman, Hastie,

and Tibshirani 2008), �1 regularized pseudo-likelihood (Be-
sag 1974; Lee and Hastie 2013) and �1 regularized node-
wise regression (Yang et al. 2012), can be utilized to learn
this generic prior. 1

When restoring the corrupted testing dataset, domain
knowledge can be employed to yield a good estimate of the
noise parameters Θn. If unfortunately this method fails, a
variational EM algorithm can be adopted to estimate noise
parameters given all testing data and the generic RMF prior.
In general, given N i.i.d. observation samples X = {x(i)}
and Y = {y(i)}, the variational EM algorithm iterates be-
tween variational inference (E-step) and parameter estima-
tion (M-step). Since the RMF prior parameters are fixed af-
ter learning from the training dataset, we can only iteratively
infer q(u, v) and estimate Θn on the testing dataset until
convergence. The corresponding noise parameter estimation
in M-step is achieved by taking derivatives of the objective
function Q(Θ) w.r.t. σ2

s and ϕj(a, b) respectively,

σ2
s ← 1

N

∑
i

(x(i)
s )2 − 2

N

∑
i

x(i)
s E

q(u
(i)
s )

[u(i)
s ]

+
1

N

∑
i

E
q(u

(i)
s )

[(u(i)
s )2]; (14)

exp(ϕj(a, b))∑
l exp(ϕj(l, b))

←
∑

i I(y
(i)
j = a)q(v

(i)
j = b)∑

i q(v
(i)
j = b)

. (15)

Note that we have made explicit the testing sample index i
for clarity.

So far, it seems that our derivation only considers noise.
However, it is very straightforward to modify the proposed
framework to handle missing values. Consider some of the
observed variables of sample i are missing, say x

(i)
m and

y
(i)
m , we can simply delete those p(x(i)

m |u(i)
m ) and p(y

(i)
m |v(i)m )

terms, and keep all the other terms totally unchanged. Then
the proposed variational inference procedure is modified ac-
cordingly. It is worth mentioning that our framework can re-
sort to the generic RMF prior even when heavy missingness
occurs. Thus, the simple deletion strategy is also applicable
when the missing values become prevalent.

Evaluation on Synthetic Data

We design a simulation study to show that mixed-attribute
correlations can effectively help reduce noise effects and
improve classification performance. Consider a mixed-net
graph consisting of 15 continuous and 10 discrete nodes with
correlation parameters defined as below,

αs = 1, βss = 1, ∀s ∈ Vu, βst = 4, ∀st ∈ Euu;
ρsj = [3 2 1], ∀sj ∈ Euv;

φjj = 0, ∀j ∈ Vv, φjk =

[
1.5 0.5 0.5
0.5 1.5 0.5
0.5 0.5 1.5

]
, ∀jk ∈ Evv.

1Although these techniques are originally designed for structure
learning, the resulting sparsified parameters will not only indicate
the graphical structure, but also provide a good parameterization of
the generic prior.
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(a) Ground truth (b) Noisy observation (c) Denoised result

Figure 3: The mixed-net graph used in our simulation contains 15 continuous (HSV-colored) and 10 discrete (grey-colored)
nodes. The nodes are colored according to attribute values of a representative example. The three types of edges (continuous-
continuous in red, discrete-discrete in black and continuous-discrete in light grey) are randomly chosen from all possible edges.

Figure 4: KNN (left plot) and SVM (right plot) classification
accuracies of noisy (black) and denoised (light grey) data
under different levels of random noise (the noise strength τ
ranges from 0.1 to 0.5). Each bar represents the mean and
standard deviation of 10 independent experiments.

In addition, we formulate two classes by adding two small
but different random numbers (δ1, δ2 ∈ [−0.5, 0.5]) to all
elements of ρsj . According to this setting, we generate 750
random examples for each class. Then we split all the ex-
amples into training and testing sets with a ratio of 2 : 1.
The training set is utilized to train RMF model and KNN,
SVM classifiers. And the testing set is used to generate
noisy testing sets by injecting different levels of AWGN
to continuous attributes and RFN to discrete attributes. In
addition, the corruption strength is defined at five differ-
ent percentages, i.e., τ = 0.1, 0.2, 0.3, 0.4, 0.5. For contin-
uous attributes, the noise standard deviations are σs = τ σ̌s,
s = 1, 2, . . . ,m, with σ̌s being the signal standard devi-
ations. For discrete attributes, the flipping probabilities are
formulated as p(yj 
= a|vj = a) = τ , j = 1, 2, . . . , n.

Figure 3 illustrates the synthetic mixed-net graph struc-
ture and a representative example. We observe that the col-
ors of these denoised continuous nodes are much closer to
ground truth than noisy observation. In addition, the ob-
served wrong state values of the discrete variables (in dotted
circles) are also corrected after applying our inference algo-
rithm. Besides the qualitative result, we also conduct quan-
titative classification experiment and summarize the results
in Figure 4. According to the error bars, RMF improves the
performance of classification significantly.

Evaluation on Real Data

In this section, we present experimental results on four real-
world mixed-attribute datasets from the UCI machine learn-
ing repository (Lichman 2013), which are “Adult”, “Credit”,
“Statlog-Australian” and “Statlog-German”. The “Adult”
dataset has already been split into train/test in approxi-
mately 2/3, 1/3 proportions. As for the “Credit”, “Statlog-
Australian” and “Statlog-German” datasets, we simply se-
lect the first 2/3 proportion of all the instances as the train-
ing set and the remaining as the testing set.

Furthermore, to specifically consider the effect of all com-
parison methods on handling noise/missingness at testing
stage, the experimental setting is clean training data ver-
sus corrupted testing data. The same methodology has also
been widely employed in the literature, for example (Saar-
Tsechansky and Provost 2007; Dekel, Shamir, and Xiao
2010; Maaten et al. 2013). Consequently, all models and
classifiers are built using clean training data and applied to
handle corrupted testing data.

Except where no corruption is applied, each reported re-
sult is the average classification accuracy over 10 indepen-
dent experiments in which random noise and missingness
are injected into the testing data. More importantly, all com-
parison methods are carried out on the same random noisy
or incomplete testing data.

Data Denoising

For data denoising task, we employ the same noisy data
generation strategy used in previous simulation study.
More specifically, five different levels of noise strength
(τ = 0.1, 0.2, 0.3, 0.4, 0.5) are applied to all the four UCI
datasets. Table 1 presents the classification accuracies of
standard classifiers, before and after applying RMF denois-
ing. As expected, the classification accuracy decreases as the
noise strength increases compared to noise-free data classi-
fication. On the other hand, for most cases, the classifica-
tion accuracies are effectively improved after RMF denois-
ing. In addition, SVM classifier is more sensitive to noise
than KNN classifier as the performance drops faster. In fact,
SVM makes predictions using pre-trained fixed hyperplane
weights while KNN is a lazy learner which can make adjust-
ments for new instances.
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Table 1: Classification Accuracies with/without Data Denoising.

τ 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Method Adult Credit
KNN 0.8248 0.8174 0.8063 0.7944 0.7821 0.7694 0.8227 0.7727 0.7191 0.6605 0.6105 0.5273

RMF+KNN 0.8174 0.8083 0.7967 0.7865 0.7748 0.7700 0.7386 0.6936 0.6764 0.6455

SVM 0.8467 0.8356 0.8243 0.8084 0.7951 0.7817 0.8636 0.7895 0.7200 0.6455 0.5900 0.4968
RMF+SVM 0.8413 0.8317 0.8186 0.8053 0.7920 0.7895 0.7382 0.6859 0.6664 0.6336

Method Statlog-Australian Statlog-German
KNN 0.8783 0.8052 0.7274 0.6617 0.6148 0.5526 0.7417 0.7189 0.6895 0.6700 0.6703 0.6474

RMF+KNN 0.8091 0.7613 0.7396 0.7074 0.6635 0.7147 0.6970 0.6880 0.6757 0.6655

SVM 0.8478 0.7791 0.6948 0.6422 0.5752 0.4965 0.7688 0.7486 0.7204 0.6955 0.6778 0.6580
RMF+SVM 0.7974 0.7661 0.7361 0.7078 0.6657 0.7523 0.7411 0.7210 0.7270 0.7096

Table 2: Classification Accuracies with Noisy Data Imputation.

ρ 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Method Adult Credit

KNNI+KNN 0.8063 0.8018 0.7814 0.7543 0.7075 0.3577 0.7191 0.7114 0.6859 0.6377 0.5673 0.4645
REMI+KNN 0.8063 0.8043 0.7918 0.7683 0.7333 0.6929 0.7191 0.7136 0.7045 0.6705 0.6441 0.6005
RMFI+KNN 0.8083 0.7997 0.7794 0.7631 0.7553 0.7543 0.7386 0.7245 0.7041 0.6732 0.6355 0.6150

KNNI+SVM 0.8243 0.8144 0.7944 0.7703 0.7236 0.4947 0.7200 0.7095 0.6764 0.6300 0.5477 0.4555
REMI+SVM 0.8243 0.8190 0.8088 0.7889 0.7574 0.7032 0.7200 0.7150 0.6995 0.6668 0.6291 0.5327
RMFI+SVM 0.8317 0.8222 0.7972 0.7743 0.7589 0.7547 0.7382 0.7205 0.7091 0.6795 0.6377 0.6155

Method Statlog-Australian Statlog-German
KNNI+KNN 0.7274 0.7261 0.6952 0.6470 0.6000 0.5696 0.6895 0.6952 0.6913 0.6550 0.6057 0.5637
REMI+KNN 0.7274 0.7317 0.7222 0.6917 0.6596 0.6000 0.6895 0.7030 0.6874 0.6784 0.6604 0.5817
RMFI+KNN 0.7613 0.7635 0.7217 0.6926 0.6470 0.5857 0.6970 0.6913 0.6946 0.6712 0.6465 0.6141

KNNI+SVM 0.6948 0.7022 0.6800 0.6474 0.5896 0.4917 0.7204 0.7282 0.7015 0.6895 0.5844 0.4147
REMI+SVM 0.6948 0.7070 0.7017 0.7013 0.6600 0.5770 0.7204 0.7327 0.6994 0.6976 0.6838 0.6793
RMFI+SVM 0.7661 0.7700 0.7317 0.7009 0.6561 0.5857 0.7411 0.7312 0.7144 0.7129 0.7072 0.7081

Noisy Data Imputation

We further evaluate RMF’s capability on the task of data
imputation under noise. A little different from previous set-
ting, the corrupted testing data are generated by first in-
jecting noise (τ = 0.2), then adding different levels of
missingness. Missing completely at random (MCAR) strat-
egy is employed to randomly annihilate a percentage (ρ =
0.1, 0.2, 0.3, 0.4, 0.5) of continuous and discrete attributes
of each instance in the testing data. Table 2 compares classi-
fication accuracies of standard classifiers utilizing KNN im-
putation (KNNI), regularized-EM imputation (REMI) and
the proposed RMF imputation (RMFI) techniques. Accord-
ing to the experimental results, RMFI obtained better per-
formance with other imputation methods. Note that the pro-
posed RMFI framework is capable of reducing noise effect
during imputation, thus RMFI is very suitable for the noisy
data imputation task.

Note that, KNNI imputes missing values with the
mean/mode of K nearest neighbors for continuous/discrete
attributes, while REMI is to impute missing values via a
regularized expectation-maximization iterative procedure.
In all our experiments, we employ the KNNI implemen-
tation, “knnimpute.m”, from Matlab’s Bioinformatics tool-
box. For KNNI settings, we choose K = 3 and use
weighted Euclidean distance measure, which is also sug-

gested by the authors (Troyanskaya et al. 2001). The
REMI source code is available at the author’s homepage
http://www.clidyn.ethz.ch/imputation/, and the default set-
ting is used. Before applying the KNNI and REMI methods,
we first transform those nominal attributes into dummy vari-
ables. Then the imputed testing data are post-processed to
satisfy the constraint that the dummy vector of each nominal
attribute should contain exactly one numerical value “1”. It
is worth mentioning that we have also tried other methodolo-
gies, such as specially impute nominal attributes with mode,
but obtained no better results than the above one.

Conclusions

Data restoration is common and critical for real-world data
analysis practice. Although major problems, e.g, data de-
noising and imputation, have been widely studied in the lit-
erature, there still lacks a principled approach that is able
to dress the generic data restoration problem. The proposed
RMF model reduces this gap, by providing a principled
approach to jointly handle data denoising and imputation
within the probabilistic graphical model scope. An efficient
inference algorithm for the RMF model was derived based
on a structured variational approach. Empirical evaluations
confirmed the effectiveness of RMF and showed its compet-
itiveness by comparing with other data restoration methods.
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