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Abstract

Similar to the satisfiability (SAT) problem, which can be
seen to be the archetypical problem for NP, the quantified
Boolean formula problem (QBF) is the archetypical prob-
lem for PSPACE. Recently, Atserias and Oliva (2014) showed
that, unlike for SAT, many of the well-known decomposi-
tional parameters (such as treewidth and pathwidth) do not
allow efficient algorithms for QBF. The main reason for this
seems to be the lack of awareness of these parameters towards
the dependencies between variables of a QBF formula. In this
paper we extend the ordinary pathwidth to the QBF-setting
by introducing prefix pathwidth, which takes into account the
dependencies between variables in a QBF, and show that it
leads to an efficient algorithm for QBF. We hope that our ap-
proach will help to initiate the study of novel tailor-made de-
compositional parameters for QBF and thereby help to lift
the success of these decompositional parameters from SAT to
QBF.

Introduction

Many important computational tasks such as verification,
planning, and several questions in knowledge representa-
tion and automated reasoning can be naturally encoded
as the problem of evaluating quantified Boolean formu-
las (Egly et al. 2000; Otwell, Remshagen, and Truemper
2004; Rintanen 1999; Sabharwal et al. 2006), a general-
ization of the propositional satisfiability problem (SAT). In
recent years quantified Boolean formulas have become a
very active research area. The problem of evaluating quan-
tified Boolean formulas, called QBF, is the archetypical
PSPACE-complete problem and is therefore believed to be
computationally harder than the NP-complete propositional
satisfiability problem (Kleine Büning and Lettman 1999;
Papadimitriou 1994; Stockmeyer and Meyer 1973).

In spite of the close connection between QBF and SAT,
many of the tools and techniques which work for SAT are
not known to help for QBF, and this is especially true for
so-called decomposition-based techniques (Aschinger et al.
2011). Such techniques use various kinds of decomposi-
tions to capture the structure of the input, leading to effi-
cient algorithms for computing solutions with runtime guar-
antees. Decomposition-based techniques are tied to a nu-
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merical parameter k, which represents the fitness of the de-
composition. The goal is then to obtain algorithms whose
running time is polynomial in the input size n and expo-
nential only in k, i.e., with a running time of f(k) · nO(1)

where f is some computable function; such algorithms
are called FPT algorithms, and problems which admit an
FPT algorithm w.r.t. some parameter belong to the class
FPT. Prominent examples of decompositions used in such
techniques include decompositions for the structural pa-
rameters treewidth (Robertson and Seymour 1986), path-
width (Robertson and Seymour 1983), clique-width (Cour-
celle and Olariu 2000) and rank-width (Oum and Seymour
2006); all of these are known to support FPT algorithms
for SAT (Szeider 2004; Ganian, Hliněný, and Obdržálek
2013), but the same is not true for QBF (Atserias and Oliva
2014) under established complexity assumptions. As a con-
sequence, many classes of QBFs which have a natural and
seemingly “simple” structure remained beyond the reach of
current algorithmic techniques. For completeness, we re-
mark that formally our results consider QBFs which have
been transformed into so-called alternating prenex form (see
the Preliminaries).

In this work we introduce and develop prefix pathwidth,
which is the first decomposition-based parameter that allows
an FPT algorithm for QBF. Prefix pathwidth is an extension
of pathwidth which takes into account not only the structure
of clauses in the formula, but also the structure contained
in the quantification of variables. To achieve the latter, we
make use of the dependency schemes introduced by Samer
and Szeider (2009; 2014), see also the work of Biere and
Lonsing (2010). Dependency schemes capture how the as-
signment of individual variables in a QBF depends on other
variables, and research in this direction has uncovered a
large number of distinct dependency schemes. The most
basic dependency scheme is called the trivial dependency
scheme (Samer and Szeider 2009), which stipulates that each
variable depends on all variables with distinct quantification,
which come before it in the prefix. When using this depen-
dency scheme, our main result (Theorem 3) yields:

Theorem 1. QBF is FPT parameterized by the prefix path-
width with respect to the trivial dependency scheme.

However, prefix pathwidth can be used in conjunction
with any dependency scheme that is cumulative (Samer and
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Szeider 2009), which holds for almost all known depen-
dency schemes; this is reflected in all of our technical results,
where we do not fix any particular dependency scheme. In
practice, using different dependency schemes may lead to
better prefix path-decompositions, in turn resulting in sig-
nificantly faster algorithms.

Our use of dependency schemes is also related to the rea-
son we use prefix pathwidth instead of a prefix extension of
treewidth, even though treewidth has generally seen more
use than pathwidth in other fields of computer science. For
the trivial dependency scheme, as well as for any QBF and
dependency scheme where we can efficiently compute pre-
fix path-decompositions, our Theorem 6 establishes that us-
ing an analogously defined prefix version of treewidth would
not lead to any substantial advantages over the conceptually
simpler prefix pathwidth. Furthermore, we show that prefix
pathwidth is closely related to the notion of directed path-
width studied on directed graphs.

In their full generality, our main results on solving QBF
using prefix pathwidth can be separated into two steps:
1. using a prefix path-decomposition of small prefix path-

width to solve the given QBF I , and
2. finding a suitable prefix path-decomposition to be used

for step 1.
We resolve the first task by applying advanced dynamic

programming techniques on partial existential strategies for
the Hintikka game (see e.g. the work of Grädel et al. (2005))
played on the QBF. Essentially, the game approach allows
us to translate the question of whether a QBF is true to the
question of whether there exists a winning strategy for one
player in the Hintikka game. We show that although the
number of such strategies is unbounded, at each point in the
prefix path-decomposition there is only a small number of
partial strategies on the processed vertices that need to be
considered. Thus we obtain:

Theorem 2. QBF is FPT parameterized by the width of a
prefix path-decomposition w.r.t. any cumulative dependency
scheme, when such a decomposition is provided as part of
the input.

Resolving step 2 boils down to a graph-algorithmic prob-
lem which is related to the problem of computing vari-
ous established parameters of directed graphs, such as di-
rected pathwidth or directed treewidth. It is an important
open problem whether computing these parameters is FPT
or not (Tamaki 2011) and the same obstacles seem to also be
present for computing our parameter in the general sense. To
bypass this barrier, we develop new algorithmic techniques
to obtain two distinct algorithms for computing prefix path-
decompositions—one polynomial-time approximation algo-
rithm (Theorem 15) and one FPT algorithm (Theorem 14).
The efficiency of these algorithms depends on the poset-
width (i.e., the size of a maximum anti-chain) of the depen-
dency relation. On a high level, the poset-width captures the
density of dependencies between variables; for example, the
poset-width is always at most one when the trivial depen-
dency scheme is used, and hence our algorithms are highly
efficient for this dependency scheme. In combination with
the previous Theorem 2, Theorem 15 yields our main gen-

eral contribution, formalized in Theorem 3 below. Observe
that here we do not require a decomposition to be part of the
input.

Theorem 3. Let τ be a fixed cumulative dependency
scheme. There exists an FPT algorithm which takes as
input a QBF I and decides whether I is true in time
f(k,w) · |I|O(1), where f is a computable function, k is the
prefix pathwidth and w is the poset-width of I w.r.t. τ .

We remark that our results have implications for the
tractability of QBF with respect to already established struc-
tural parameters. We provide an example of this in the Con-
cluding Notes, where we show that QBF is FPT when pa-
rameterized by the vertex cover number of the matrix (irre-
spective of the prefix). The full version of proofs marked as
proof sketches can be found in the full version of this paper.

Related Work

We are not aware of many successful attempts making use
of decompositional parameters for QBF. Chen and Dal-
mau (2012) showed that QCSP becomes fixed-parameter
tractable parameterized by the length of the formula given
that a specific width notion is bounded by a constant in the
input graph. Other structural parameters such as backdoors
have also been studied in the context of QBF (Samer and
Szeider 2009).

Preliminaries

For i ∈ N, we let [i] denote the set {1, . . . , i}. We refer to
the book by Diestel (2012) for standard graph-theoretic ter-
minology. Given a graph G, we denote by V (G) and E(G)
its vertex and edge set, respectively. We use ab as a short-
hand for the edge {a, b}. For a set of vertices V ′ ⊆ V (G) the
guards of V ′ are the vertices in V ′ with at least one neighbor
in V (G) \ V ′.

We refer to Flum and Grohe; Downey and Fellows (2006;
2013) for an in-depth overview of parameterized complexity
theory. Here, we only recall that a parameterized problem
(Q, κ) is a problem Q ⊆ Σ∗ together with a parameteriza-
tion κ : Σ∗ → N, where Σ is a finite alphabet. A param-
eterized problem (Q, κ) is fixed-parameter tractable (w.r.t.
κ), in short FPT, if there exists a decision algorithm for Q, a
computable function f : N → N, and a polynomial function
p : N → N, such that for all x ∈ Σ∗, the running time of the
algorithm on x is at most f(κ(x)) · p(|x|). Algorithms with
this running time are then referred to as FPT algorithms.

Quantified Boolean Formulas

For a set of propositional variables K, a literal is either a
variable x ∈ K or its negation ¬x, where v(x) = v(¬x) =
x denotes the variable of a literal. A clause is a disjunction
over literals. A propositional formula in conjunctive normal
form (i.e., a CNF formula) is a conjunction over clauses. We
say that a CNF formula φ is over a variable set K if each
literal x in φ satisfies v(x) ∈ K, and denote the set of vari-
ables which occur in φ by var(φ). For notational purposes,
we will view a clause as a set of literals and a CNF formula
as a set of clauses.
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A quantified Boolean formula is a tuple (φ, τ) where φ is
a CNF formula and τ is a sequence of quantified variables,
denoted var(τ), which satisfies var(τ) ⊇ var(φ); then φ is
called the matrix and τ is called the prefix. A QBF (φ, τ) is
true if the formula τφ is true. An assignment is a mapping
from (a subset of) the variables to {0, 1}.

To provide succinct proofs for our statements, it will later
be convenient to use an equivalent but more structured rep-
resentation of QBFs. A QBF is in alternating prenex form
if the prefix has the form ∀y1∃x1, . . . , ∀y�∃x�. Any QBF in
alternating prenex form can then be represented as a tuple
(φ, Y,X) where φ is the matrix and Y = (y1, . . . , y�) and
X = (x1, . . . , x�) are disjoint ordered sets of the variables
in the prefix. We remark that any QBF can be transformed
into alternating prenex form in linear time by the addition
of dummy variables, i.e., variables which do not occur in
the matrix. It is readily observed that if two dummy vari-
ables occur consecutively in the prefix, then they can both
be deleted without changing the truth value of the QBF. As
a consequence, we may freely assume that the number of
dummy variables will never be greater than 2 · |var(φ)|+ 1.

Given a QBF I = (φ, Y,X) and a partial assignment
ω : Q → {0, 1} where Q ⊆ X ∪ Y , we denote by Iω
the subinstance obtained by applying the partial assignment
ω; similarly, for a clause c ∈ φ we let cω denote the clause
obtained from c by applying ω.

The primal graph of a QBF I = (φ, Y,X) is the graph GI

defined as follows. The vertex set of GI consists of every
variable which occurs in φ, and st is an edge in GI if there
exists a clause in φ containing both s and t.

Dependency Schemes and Posets for QBF

We use dependency posets to provide a general and formal
way of speaking about the various dependency schemes in-
troduced for QBF (Samer and Szeider 2009). Intuitively,
a dependency scheme assigns to each variable x the set of
variables that depend on x. Here, we omit the formal defi-
nition of the dependency scheme and focus on dependency
posets, which can be obtained from any so-called cumulative
dependency scheme (Samer and Szeider 2009).

A partially ordered set (poset) V is a pair (V,≤V ) where
V is a set and ≤V is a reflexive, antisymmetric, and transi-
tive binary relation over V . A chain W of V is a subset of
V such that x ≤V y or y ≤V x for every x, y ∈ W . An
anti-chain A of V is a subset of V such that for all x, y ∈ V
neither x ≤V y nor y ≤V x. A chain partition of V is a tuple
(W1, . . . ,Wk) such that {W1, . . . ,Wk} is a partition of V
and for every i with 1 ≤ i ≤ k the poset induced by Wi is a
chain of V . The width (or poset-width) of a poset V , denoted
by width(V) is the maximum cardinality of any anti-chain of
V . A subset A of V is downward-closed if for every a ∈ A
it holds that b ≤V a =⇒ b ∈ A. For brevity we will often
write ≤V for the poset V := (V,≤V ).

Proposition 4 (Felsner, Raghavan, and Spinrad (2003)). Let
V be a poset. Then in time O(width(V) ·‖V‖2), it is possible
to compute both width(V) = w and a corresponding chain
partition (W1, . . . ,Ww) of V .

From now on, it is implicitly assumed that every QBF is

in alternating prenex form. To define dependency posets we
need also the notion of shifting, which takes some subset of
variables of QBF I in the prefix and moves them together
with their quantification, in the same relative order, to the
end (down-shifting) or to the beginning (up-shifting) of the
prefix. If a QBF is obtained by shifting, it is assumed to have
subsequently been transformed into alternating prenex form.

Given a QBF I = (φ, Y,X), a dependency poset V =
(var(φ),≤I) of I is a poset over var(φ) with the following
properties:
1. if x ≤I y, then x is before y in the prefix for all x, y ∈

var(φ) and
2. for every A ⊆ var(φ), if A is downward-closed w.r.t. ≤I ,

then the QBF I ′ obtained by up-shifting A is true iff I is
true.
The trivial dependency scheme assigns to each variable x

the closest variables on the right of x with different quantifi-
cation. This gives rise to the trivial dependency poset, which
forms a complete total ordering on the variables. However,
more refined dependency schemes which give rise to other
dependency posets are known to exist and can be computed
efficiently (Samer and Szeider 2009).

To illustrate these definitions, consider the following
QBF I:

∀x∃y∀u∃v(x ∨ ¬y ∨ v) ∧ (¬u ∨ ¬v ∨ y) ∧ (¬x ∨ u ∨ ¬v).
As an example, consider the following dependency poset

on variables of I: x ≤I u ≤I v and y. Up-shifting of the
downward-closed set {x, u} yields the QBF I ′:

∀x∃t1∀u∃y∀t2∃v(x∨¬y∨v)∧(¬u∨¬v∨y)∧(¬x∨u∨¬v),
where t1, t2 are new dummy variables, not occurring in the
matrix of I . One can readily see that I and I ′ are both true.
The trivial dependency poset over I is the poset given by the
chain x ≤I y ≤I u ≤I v, where every downward-closed set
cannot be further up-shifted.

Pathwidth and Treewidth

Definition 5 (Tree decomposition). A tree-decomposition
of a graph G is a pair (T, {Xt}t∈V (T )), where T is a rooted
tree whose every vertex t is assigned a vertex subset Xt ⊆
V (G), called a bag, such that the following properties hold:
(P1) ∪t∈V (T )Xt = V (G), (P2) for every u ∈ V (G), the set
Tu = {t ∈ V (T ) : u ∈ Xt} induces a connected subtree of
T , and (P3) for each uv ∈ E(G) there exists t ∈ V (T ) such
that u, v ∈ Xt.

To distinguish between the vertices of the tree T and
the vertices of the graph G, we will refer to the vertices
of T as nodes. The width of the tree-decomposition T is
maxt∈T |Xt| − 1. The treewidth of G, tw(G), is the mini-
mum width over all tree-decompositions of G.

A path-decomposition P is a tree decomposition where
the tree T is a path (rooted at one of the endpoints). Ob-
serve that any path-decomposition can be fully character-
ized by the order of appearance of its bags along T , and
hence we will consider succinct representations of path-
decompositions in the form P = (P1, . . . , Pd), where Pi

is the i-th bag in P . The width of a path-decomposition and
the pathwidth of G, pw(G), are defined analogously.

966



We say that a path-decomposition P = (P1, . . . , Pd) is
nice if P1 = Pd = ∅, and furthermore for all i = 1, . . . , d−1
either |Pi+1| = |Pi| + 1 and Pi ⊆ Pi+1 (in which case we
call the node Pi+1 an introduce node) or |Pi+1| = |Pi| − 1
and Pi ⊇ Pi+1 (in which case we call the node Pi+1 a for-
get node). We note that there exists a polynomial-time algo-
rithm that converts a given arbitrary path-decomposition into
a nice path-decomposition of the same width (Kloks 1994).

Prefix Pathwidth for QBF

Let G = (V,E) be a graph and ≤V be a partial order of V .
For a vertex v ∈ V , we denote by D≤V (v) the downward
closure of v w.r.t. ≤V , i.e., the set {u ∈ V (G) | u ≤V v }.
Similarly, for W ⊆ V we let D≤V (W ) =

⋃
v∈W D≤V (v).

Let T = (T, {Xt}t∈V (T )) be a tree decomposition of G.
For a node t of T we denote by Tt the subtree of T with t as
a root, by T≤t the set

⋃
s∈Tt

Xs, and by T<t the set T≤t\Xt.
For a vertex v ∈ V (G) we denote by fT (v) the unique node
t with v ∈ T≤t \ Xs, where s is the parent of t in T . For
a path decomposition P = (P1, . . . , Pn) of G we define Pi,
P≤i, P<i, and fP(v) analogously.

A prefix tree-decomposition of G = (V,E) w.r.t. ≤V is
a tree-decomposition T = (T, {Xt}t∈V (T )) that has the
downward closure property, i.e., for every vertex v ∈ V
it holds that D≤V (v) ⊆ T≤fT (v). Analogously, a prefix
path-decomposition of G = (V,E) w.r.t. ≤V is a path-
decomposition P that has the downward closure property.
The prefix treewidth of G w.r.t. ≤V , denoted by ptw≤V (G),
is then the minimum width over all prefix tree decomposi-
tions of G. The prefix pathwidth, denoted by ppw(G), is
then defined analogously.

We note that using the same technique as for path-
decomposition, one can show that every prefix path-
decomposition of G can be turned into a nice prefix path-
decomposition of the same width in polynomial time.

The following theorem shows us that if the width of the
dependency poset is small, then prefix pathwidth is actu-
ally a good approximation of the prefix treewidth w.r.t. the
same dependency poset and hence by using the simpler path-
decompositions we can get the same result.

Theorem 6. Let G = (V,E) be a graph and w the width of
the poset (V,≤V ). Then ppw≤V (G) ≤ w · ptw≤V (G).

We build on the above definitions to define the notions
we need on QBFs. A prefix path-decomposition of a QBF
I = (φ, Y,X) w.r.t. a dependency poset V = (var(φ),≤I)
is a prefix path-decomposition of the primal graph GI w.r.t.
≤I . The prefix pathwidth of I is then the minimum width
over all prefix path-decompositions of GI w.r.t. V .

Using Prefix Pathwidth

In this section we will show that deciding the satisfiability
of a QBF is fixed-parameter tractable parameterized by the
width of a prefix path-decomposition which is assumed to be
provided as part of the input. The next section will then show
how such a prefix path-decomposition can be computed ef-
ficiently.

Section Overview

The route to the main goal of this section, i.e., an FPT
algorithm for QBF, can be conceptually separated into
three parts, each corresponding to one subsection. First,
our techniques essentially rely on the well-known Hintikka
Games (E. Grädel et al. 2005), which we introduce in the
next subsection. In particular, the notion of a “winning ex-
istential strategy” will be crucial for the algorithm; a QBF
instance is true if and only if the existential player has a win-
ning strategy. Second, we show that even though the number
of existential strategies can be potentially unbounded, they
can be grouped into a small (i.e., bounded by k) number of
equivalence classes. This equivalence is formalized in Defi-
nition 10 via the use of so-called “signatures”. The final sub-
section then presents the dynamic programming algorithm
itself; the algorithm maintains and dynamically computes
records of relevant signatures, which contain all the needed
information about existential strategies on the dynamically
processed variables.

Hintikka Games

Given a QBF (φ, Y,X) such that |X| = |Y | = �, a strategy
for Eloise (an existential strategy) is a sequence of mappings
T = (τi : {0, 1}i → {0, 1})i=1,...,�. An existential strategy
T is winning if, for any mapping δ : {y1, . . . , yn} → {0, 1},
the formula φ is true under the assignment yi �→ δ(yi) and
xi �→ τi(δ(y1), . . . , δ(yi)) for 1 ≤ i ≤ �. A partial existen-
tial strategy is a sequence of mappings T = (τi : {0, 1}i →
{0, 1})i=1,...,�′ , for some �′ ≤ �.

A mapping δ from a subset of Y to {0, 1} is called a uni-
versal play. It will sometimes be useful to view plays as
binary strings, and in this context we will use the symbol ◦
to denote the concatenation of two strings; for instance, if
δ(x1) = 1 and δ(x2) = 0, then one can represent δ as (1, 0),
and (1, 0) ◦ (0) = (1, 0, 0). It is easily observed that plays
on dummy variables do not need to be taken into account by
a winning existential strategy.

Proposition 7 (folklore). A QBF I is true iff there exists a
winning existential strategy on I .

Let α be a partial existential strategy restricted to X ′ =
(x1, . . . , xa) and let β be a universal play over Y ′ =
{y1, . . . , yb}. Then the pair (β, α) results in a par-
tial assignment δ of X ′ ∪ Y ′, formally given as follows
(for i up to min(a, b)): δ(yi) = β(yi) and δ(xi) =
α(β(y1), β(y2), . . . , β(yi)). We denote this as (β, α) � δ.
For brevity, we also sometimes just write (β, α) for the as-
signment δ given by (β, α)� δ.

For the remainder of this section, we fix the following
notions. Let I = (φ, Y,X) be a QBF, let ≤I be a partial
order forming a dependency poset of I (w.r.t. some cumu-
lative dependency scheme), and let P := (P1, . . . , Pn) be a
prefix path-decomposition of I w.r.t. ≤I of width k. More-
over, for every i with 1 ≤ i ≤ n, let Bi = Pi be a bag in
P , Di = D≤I (P<i), Ci = P<i (see Figure 1), and let I be
up-shifted on D.
Observation 8. For any i with 1 ≤ i ≤ n, Bi forms a sepa-
rator in GI and hence each clause in φ either contains only
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Bi

Ci

Di

GI \ (Bi ∪Ci)

Figure 1: Bi is a bag in P that separates Ci, i.e., vertices
forgotten in some bag before Bi, from the rest of the graph.
Di is the downward closure of Ci w.r.t. ≤I .

variables in P≤i or only variables in (Y ∪X) \Ci. Further-
more, Di ⊆ P≤i.

Hintikka games allow us to decide the truthfulness of a
QBF by computing all strategies for the existential player.
We will show next that even though the number of possible
strategies that can be used for the variables in each P≤i is
huge, it is sufficient to only remember a small number of
“representative strategies” that can be used on P≤i to allow
dynamic programming along the prefix path-decomposition.
The proof of this claim is based on considering two layers of
equivalences and showing that they both only have a small
number of equivalence classes.

Equivalence of Assignments and Strategies

The first equivalence, which serves as the building block for
the latter one, considers assignments of the variable set Di.
Definition 9. Let δ1 and δ2 be two partial assignments of
Di. Then δ1 ≈ δ2 iff Iδ1 = Iδ2 .

It can be proved that the number of equivalence classes
of ≈ can be upper-bounded by a function of k. Next,
for a partial existential strategy α on Di, we denote
by Sα (referred to as the signature) the set containing
each instance I such that there exists a universal play
β which together with α results in I; formally, Sα =
{ Iδ | ∃ universal play β such that (β, α)� δ }.
Definition 10. Let α1 and α2 be two partial existential
strategies on Di. Then α1 ≡ α2 iff Sα1 = Sα2 .

It can be shown that ≡ is an equivalence and that its num-
ber of equivalence classes is upper-bounded by a function
of k. Furthermore, it is possible to prove that the signature
of any partial existential strategy which is obtained from a
winning strategy must contain only true instances.

The Algorithm

In this subsection, we develop a dynamic programming
algorithm on a nice prefix path-decomposition P =

(P1, . . . , Pn) of I to decide whether I is true. For each
Di, we will compute the set Ki of all signatures corre-
sponding to any partial existential strategy on Di; formally,
Ki = {Sα | α is an existential strategy on Di }. We call Ki

the signature set of Di, and the algorithm proceeds by com-
puting the sets K1, . . . ,Kn for the bags P1, . . . Pn. One key
observation is that for the construction of the sets Ki one
only needs to consider a special type of partial existential
strategies on Di, which we will call oblivious.

A (partial) existential strategy α on X0 = (x1, . . . , xj) is
oblivious if it does not distinguish between universal plays
that lead to the same reduced instance. Formally, α is obliv-
ious if it satisfies the following condition for every par-
tial existential strategy α′ obtained as a restriction of α to
(x1, . . . , xl), l < j, and for every two universal plays β1, β2

on (y1, . . . , yl) such that Iδ1 = Iδ2 where (β1, α
′) � δ1

and (β2, α
′) � δ2. Let p satisfy l < p ≤ j, and for

each βp = {0, 1}p−l let (β1 ◦ βp, α) � δ′′1 and similarly
(β2 ◦ βp, α) � δ′′2 . Then, for every xi where l < i ≤ p,
it holds that δ′′1 (xi) = δ′′2 (xi). The following shows we can
compute Ki, by merely considering signatures of oblivious
partial existential strategies.

Lemma 11. Let I be a QBF. For any partial existential
strategy there is an oblivious partial existential strategy that
has the same signature.

The algorithm consists of the following procedures:
1. Initialization: this is the procedure that is called at the

beginning of the algorithm, i.e., for the empty bag P1.
2. Introduce: this is the procedure that is called whenever

we have computed Ki−1 and Pi is an introduce node.
3. Forget: this is the procedure that is called whenever we

have computed Ki−1 and Pi is a forget node.
4. Termination: this is the procedure that is called when we

have computed Kn.
All procedures except for Forget are straightforward at

this point, since the signature set can only change if new
variables are added into Di. We develop an FPT algo-
rithm for Forget which proceeds as follows. We let Z be
the variables which were added into Di in this step, i.e.,
Z = Di \ Di−1. We show that |Z| ≤ k and we alter the
prefix of the instance so that Z comes immediately after
Di−1. Then for each signature S in Ki−1, we take each
instance Iδ ∈ S and loop over all possible partial existential
strategies on Z which play on Iδ; in other words, for each
signature in Ki−1 we consider all ways an oblivious strategy
could proceed on Z depending on the play in Di−1 and the
play of universal variables in Z. This allows us to compute
the signature set Ki. Observe that considering only oblivi-
ous strategies is crucial for the above to work—the number
of reduced instances in each signature S ∈ Ki−1 is bounded
by k, but the number of universal plays in Di−1 is not.

Having established the procedures for the individual
nodes of the path-decomposition, we can now prove the cor-
rectness of the whole dynamic programming algorithm.

Theorem 12. There exists an FPT algorithm which takes as
input a QBF I , an integer parameter k, and a prefix path-
decomposition P of I of width at most k and decides whether
I is true.
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Computing Prefix Pathwidth

This section is devoted to parameterized and approximation
algorithms for computing the prefix pathwidth. Observe that
if the given partial ordering is empty, then the prefix path-
width of the graph G is the same as the pathwidth of G.
Thus, computing the prefix pathwidth is NP-complete.

Before we present our algorithms, we will state some
interesting observations about prefix path-decompositions
(Please refer to the full version of this paper for a more de-
tailed exposition of the following observations). For the re-
mainder of this section let G be a graph and (V (G),≤V ) a
poset on V (G) of width w. The first observation relates pre-
fix pathwidth with a well-known decompositional parameter
for directed graphs, i.e., directed pathwidth (Barát 2006).
Observation 13. Let D be the directed graph obtained from
G by replacing every edge by two anti-parallel arcs and
adding an arc uv for every distinct u, v ∈ V (G) such that
u ≤V v. Then, ppw≤V (G) = dpw(D), where dpw(D)
denotes the directed pathwidth of D.

Since it has been shown (Tamaki 2011) that deciding
whether the directed pathwidth of a digraph is at most k
is solvable in polynomial-time for every fixed k, the above
observation implies that the same holds for the prefix path-
width. It is an important open question, however, whether
computing directed pathwidth is fixed-parameter tractable.

In the following we will give two algorithms that com-
pute a prefix path-decomposition of a graph that are effi-
cient in the case that the given poset has small width. Our
first algorithm shows that if the width of the poset ≤V is
bounded by a constant, then deciding whether G has a pre-
fix path-decomposition w.r.t. ≤V of width at most k is fixed-
parameter tractable (in k). Since the width of the trivial de-
pendency scheme is at most one, this in particular implies an
fpt-algorithm in the case of the trivial dependency scheme.

Theorem 14. Finding a prefix path-decomposition of G
w.r.t. ≤V of width at most k or deciding that no such
prefix path-decomposition exists can be done in time
O((|V (G)|wk2k)2|V (G)|). Hence, for any constant w
computing a prefix path-decomposition is fixed-parameter
tractable in k.

Proof Sketch. The main observation behind the algorithm is
that in any prefix path-decomposition of G w.r.t. ≤V , the in-
tersection between any two bags can be characterized by a
pair (D,C), where D is a downward closed set of vertices
of G and C is a minimal vertex cover of the bipartite graph
between the guards of D and the neighbors of these guards
in the remainder of G. Given this crucial observation, it is
then straightforward to define simple conditions for decid-
ing whether a pair (D,C) can be the intersection of two
bags in a prefix path-decomposition of width at most k as
well as conditions for deciding whether the intersection of
two bags corresponding to a pair (D,C) can be followed by
(in some prefix path-decomposition of width at most k) the
intersection of two bags corresponding to the pair (D′, C ′).
Computing an prefix path-decomposition then boils down
to deciding whether there is a directed path from the pair
(∅, ∅) to the pair (V (G), ∅) in the digraph whose vertex set

consists of all pairs (D,C) such that (D,C) can be the in-
tersection between two bags in some prefix path decomposi-
tion of width at most k and whose arcs are defined using the
above mentioned conditions. Because the number of down-
ward closed sets is bounded by |V (G)|w and one can show
that the number of possible minimal vertex covers (for each
downward closed set) is bounded by k2k, this then leads to
the required result.

Our second result shows that the prefix pathwidth of G
w.r.t. ≤V can be approximated in polynomial-time up to
2w(2k2 + k) + 1, where k is the optimum prefix pathwidth.
Note that this algorithm together with Theorem 12 implies
an FPT algorithm to decide a QBF parameterized by the
width of its poset and its prefix pathwidth.
Theorem 15. There is a polynomial-time algorithm that
outputs a prefix path-decomposition of G w.r.t. ≤V of width
at most 2w(2k2 + k) + 1 or outputs correctly that no prefix
path-decomposition of G w.r.t. ≤V of width at most k exists.

Proof Sketch. The algorithm starts from the empty prefix
path-decomposition and at each step it tries to extend the
current prefix path-decomposition by at least the currently
smallest (unprocessed) vertex (w.r.t. ≤V ) from some chain
of (V (G),≤V ). It does so as long as there is a chain such
that after adding its currently smallest (unprocessed) vertex
the number of vertices required to guard (separate) the al-
ready processed vertices on that chain from the set of all un-
processed vertices (on every chain) does not exceed 2k2+k.
A delicate argument then shows that in this manner the algo-
rithm is either able to compute a prefix path-decomposition
of width at most 2w(2k2 + k) + 1 or one can show that no
prefix path-decomposition of G w.r.t. ≤V of width at most k
can exist.

Concluding Notes
The notion of prefix pathwidth is, to the best of our knowl-
edge, the first decomposition-based parameter which sup-
ports an FPT algorithm for QBF. Our results, specifically
Theorem 12 and Theorem 15, together push the frontiers of
tractability for QBF to new natural classes of instances. We
provide one specific example of this below. A vertex cover
of a graph G is a vertex set of G which is incident to each
edge in G, and the vertex cover number of G is the mini-
mum size of a vertex cover in G. The vertex cover number
has often been used as a structural parameter for graph prob-
lems which do not have FPT algorithms parameterized by
treewidth (see for instance Fellows et al. (2008)).
Theorem 16. QBF is fixed parameter tractable parameter-
ized by the vertex cover number of the primal graph.

A number of interesting research questions still remain
open in the area. In particular, is it possible to compute (or
approximate) an optimal prefix path-decomposition in FPT
time parameterized only by the prefix pathwidth, i.e., regard-
less of the poset-width? And can our results be generalized
towards prefix treewidth on instances of unbounded poset-
width? Do there exist other natural structural parameters for
QBF? These and other questions form important challenges
for future research.
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