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Abstract

We have earlier shown that the standard mappings from ac-
tion languages B and C to logic programs under answer set
semantics can be captured by sets of properties on transition
systems. In this paper, we consider action language BC and
show that a standard mapping from BC action descriptions
to logic programs can be similarly captured when the action
rules in the descriptions do not have consistency conditions.

Introduction

Logical formalization of the effects of actions has been a
main concern in knowledge representation (e.g. (McCarthy
and Hayes 1969; Fikes and Nilsson 1971; McCarthy 1977;
Finger 1987; McCarthy 1980; Reiter 1980)). There been
many approaches proposed (e.g. (McCarthy and Hayes
1969; McCarthy 1980; Lifschitz 1987; Reiter 1991; Shana-
han 1995; Lin 1995; McCain and Turner 1995; Thielscher
1998; Giunchiglia et al. 2004)). In this paper we consider
various action languages (Gelfond and Lifschitz 1993; 1998;
Giunchiglia and Lifschitz 1998; Lee, Lifschitz, and Yang
2013).

Recently Zhang and Lin (2015) proposed a set of prop-
erties for characterizing action languages B (Gelfond and
Lifschitz 1998) and C (Giunchiglia and Lifschitz 1998).
They considered static causal rules of the form (l, G), where
l is a fluent literal and G a set of fluent literals. What
these rules mean depends on the underlying semantics, and
is best understood by a mapping to logic programs un-
der the answer set semantics (Gelfond and Lifschitz 1988;
1991). When these rules are interpreted under the B seman-
tics, a rule like (l, G) corresponds to the logic program rule

l′ ← G′, (1)

where the primed propositions represent the truth values of
the corresponding fluents in the successor states. If they are
interpreted under the C semantics, a rule like (l, G) corre-
sponds to the logic program rule

l′ ← not G′, (2)

where G′ denotes the set of complements of the literals in
G′. The differences between these two types of logic pro-
gram rules under the answer set semantics are well-known.
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The use of the default negation operator in (2) makes it
stronger than (1) in the sense that (2) can be applied even
when (1) cannot. For instance, the singleton program {p ←
q} has the empty set as its only answer set, but the singleton
program {p← not ¬q} has {p} as its only answer set.

While these rules can be interpreted by either B’s seman-
tics or C’s semantics, they cannot be mixed. This is reflected
in incompatible sets of postulates that we used for capturing
B and C in (Zhang and Lin 2015). However, this presents a
problem if one tries to capture the language BC (Lee, Lif-
schitz, and Yang 2013). In BC, a static causal rule has the
form:

l if G ifcons H, (3)

and means that in every state, if G and it is consistent to
assume H , then l. This is like a default rule (Reiter 1980)
with G as premises and H justifications. In terms of logic
programs, such a rule is translated as

l← G, not not H

or

l← G, not H

using strong negation. Thus the semantics of BC is a combi-
nation of B and C: G is translated according to B while H
according to C. However, given that a static causal rule in
(Zhang and Lin 2015) is a pair (l, G), the semantics of BC
cannot be captured in their framework.

To address this problem, we propose to extend static
causal rules in (Zhang and Lin 2015) to triples (l, G,H),
with G as premises and H justifications. We’ll show with
this extension, the mixed semantics of BC on static causal
rules can be similarly characterized.

The rest of this paper is organized as follows. First we
introduce the syntax of our causal action theories. We then
relate these theories to BC action descriptions, and this pro-
vides the BC semantics to these theories. We then formu-
late four properties on transition systems and show that they
are all satisfied by the BC semantics. We then show that
these four properties provide a unique characterization of
the BC semantics under the so-called permissible mappings.
We then relate our result to those in (Zhang and Lin 2015)
for action languages B and C, and conclude the paper.
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Causal action theories
Lee, Lifschitz and Yang (2013) introduced action language
BC as a generalization of both languages B and C. They de-
fined the semantics for their language by a mapping to logic
programs under answer set semantics. Our main objective of
this paper is to show that this mapping1 can be characterized
by a set of postulates (properties).

To simplify our presentation, instead of considering BC
descriptions, we follow Zhang and Lin (2015) and use a no-
tion of causal action theories as discussed in the introduc-
tion. This choice is not material but we made it for several
reasons: it allows us to concentrate on the issues regarding
possible semantics to static causal rules without explicitly
introducing actions, and it makes it easier to compare our
result to those in Zhang and Lin (2015). All the definitions
and results in this paper can be restated in terms of a class
of BC descriptions that are about one action and have no
justifications in dynamic causal rules.

We assume a propositional language F and call elements
inF fluents. A fluent literal is then either a fluent or negation
of a fluent.

Our notion of causal action theories is the same as that
from (Zhang and Lin 2015) except that now static causal
rules are triples instead of pairs, as we mentioned in the in-
troduction. In particular, we also assume that there is just
one action whose effects we are interested in. A dynamic
causal rule will be a pair (l, G), meaning that if initially G
holds, then after the (unnamed) action is performed, l be-
comes true.

Formally, a causal action theory is a pair (S,D), where S
is a set of static causal rules, and D a set of dynamic causal
rules. A static causal rule is a triple of the form (l, G,H),
where l is a fluent literal, and G and H are sets of fluent
literals such that G ∪ H is consistent, i.e. it does not con-
tain both a fluent and its negation, for any fluent. A dynamic
causal rule is a pair of the form (l, G), where l is a fluent
literal, and G a consistent set of fluent literals.

Intuitively, a dynamic rule (l, G) means that if initially
all formulas in G are true, then the (unnamed) action will
cause l to be true. As we discussed in the introduction, the
static causal rule (l, G,H) is modelled after the static causal
rule (3) in BC, and in the following we call l the head, G
the premise and H the justification of the rule. Similarly, if
(l, G) is a dynamic causal rule, then we call l the head and
G the premise of the rule.

Notice that the premise G (in both types of rules) and the
justification H are sets of fluent literals. This means that the
orders of fluent literals in them are not material. In the fol-
lowing, to make our formula easier to read, when a set of
literals occurs in a formula, it stands for the conjunction of
literals in the set. So ¬G ∨H stands for

¬[
∧

l∈G

l] ∨
∧

l∈H

l.

For the special case when G is ∅, it is taken to be � (tautol-
ogy) when it occurs in a formula. We also use ⊥ to denote a

1They actually provided two equivalent mappings, one using
double default negation not not a and the other using strong nega-
tion not ¬a.

contradiction.
The semantics of a causal theory is defined by a set of

transitions. The following is basically from (Zhang and Lin
2015).
Definition 1 A state is a set of fluent atoms, and a transition
is a pair of states. A semantic function δ is a mapping from
causal action theories to sets of transitions.
In the following, we identify a state s with a truth assign-
ment: a fluent f is true in s iff f ∈ s. For a formula ϕ, we
write s |= ϕ if ϕ is true in the truth assignment s.

Intuitively, a transition (s, s′) means that the (unnamed)
action can be successfully executed in s to yield s′. Thus
given a semantic function δ and a causal theory T , δ(T ) is
the set of transitions that are possible under the theory T
for the action. In particular, if for some state s, there are
two states s1 and s2 such that both (s, s1) and (s, s2) are in
δ(T ), then the action is nondeterministic when performed in
s according to T under δ.

We say that two causal action theories T1 and T2 are
equivalent under δ if they have the same transitions: δ(T1) =
δ(T2).

The purpose of this paper is not to propose any specific
semantic function, but to study properties that a reasonable
semantic function should satisfy. In particular, we are inter-
ested in a set of properties that will capture the semantic
function given by the semantics of the action language BC
in (Lee, Lifschitz, and Yang 2013) under a natural embed-
ding of our causal theories to BC, which we now describe.

Embedding causal action theories in BC
We now describe a natural mapping from our causal theories
to BC that will provide the standard BC semantic function
that we will then try to capture by postulates.

Recall that our language does not have terms for actions.
A causal action theory in our formalism is supposed to ax-
iomatize the action that is of interests to the user. To map our
causal theories to BC descriptions, we need a name for the
action, which we denote by A below.

Given a causal action theory T = (S,D), consider the fol-
lowing action description TBC in language BC: if (l, G,H)
is in S, then the static causal rule

l if G ifcons H

is in TBC , and if (l, G) is in D, then the action rule

l after G ifcons �
is in TBC .

First thing to notice about this mapping is that when a
dynamic rule is translated to BC, the ifcons part, which rep-
resents the consistency condition or justification for the rule
to be applied, is empty. While both static causal rules and
action rules in BC can have non-empty ifcons parts, we con-
sider only those in static causal rules. Hence in our defini-
tion of causal theories, dynamic rules are pairs while static
causal rules triples. We did this in order to focus on static
causal rules. We believe the results in this paper can be ex-
tended to include action rules with non-empty ifcons parts
as well. We leave this as future work.
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This mapping induces a semantic function δ for our causal
action theories: (s, s′) ∈ δ(T ) iff (s,A, s′) is a transition of
TBC according to BC. In the following, we call this semantic
function the BC semantics. Thus we say that (s, s′) is a tran-
sition of T under BC semantics if (s,A, s′) is a transition of
TBC according to BC.

Properties

We now consider how the BC semantics can be captured by
a set of postulates on semantic functions.

The following properties on semantic functions are
adapted from (Zhang and Lin 2015).

Property 1 below says that states in a transition must sat-
isfy all static causal rules.
Property 1 (Static causal rules are state constraints) If
(s, s′) is a transition of a causal action theory (S,D), then

s |= G ∧H ⊃ l, (4)
s′ |= G ∧H ⊃ l (5)

for every static causal rule (l, G,H) in S.
Notice that this property is stated in terms of a given se-

mantic function δ. What the above property really means is
that a semantic function δ satisfies Property 1 iff for every
causal action theory (S,D), if (s, s′) ∈ δ(T ), then (4) and
(5) hold for every static causal rule (l, G,H) in S.

All the properties below are to be read the same way.
The next property says that if the premise or the justifica-

tion of a static causal rule contains the negation of its head,
then this rule is basically a constraint according to Prop-
erty 1.
Property 2 (Immediate negative loops can be eliminated)
For any causal action theory (S,D), any static rule
r = (l, {¬l} ∪ G,H) ∈ S or r = (l, G, {¬l} ∪ H) ∈ S
and any states s and s′ that satisfy (4) and (5) for all rules
in S (i.e. Property 1 holds for S), we have that (s, s′) is a
transition of (S,D) iff (s, s′) is a transition of (S \ {r}, D).

Before giving our next property we first define the depen-
dency graph of a causal action theory. Given a causal action
theory T = (S,D), its dependency graph is the directed
graph such that
• its vertices are arbitrary fluent literals, and
• it has a P -edge from l1 to l2 iff S contains a static causal

rule (l1, G,H) such that l2 ∈ G.
• it has a J-edge from l1 to l2 iff S contains a static causal

rule (l1, G,H) such that l2 ∈ H .
We call a loop L in a dependency graph a persistent loop
if all edges in L are P -edges, and a non-persistent loop if
there is at least one J-edge in L. In a dependency graph, a
fluent literal l is supported by a loop L if there is a directed
path from l to some fluent literal in L. In particular, a fluent
literal in a loop is supported by the loop itself. For a causal
action theory T , we define the persistent set of T , denoted
by Δ(T ), the set of all fluents f such that neither fi nor ¬fi
is supported by any non-persistent loop.

Our next property says that if there are no possible inter-
actions between the static and dynamic causal rules, then the

values of the fluents in the persistent set will not change. In
other words, there are no ramifications for them.

Definition 2 A causal action theory T = (S,D) is said to
have no overlap between static and dynamic causal rules if
whenever (l, G) ∈ D and (l′, G′, H ′) ∈ S, the fluent in l
does not occur in G′ ∪H ′ ∪ {l′}.
Property 3 (No ramification for persistent set when
there is no overlap between static and dynamic causal
rules) For every causal action theory T = (S,D) that has
no overlap between static and dynamic causal rules, if a pair
(s, s′) of states is a transition of T , then
1. s+ ⊆ s′ and s− ∩ s′ = ∅, where s+ = {f | (f,G) ∈

D, s |= G} and s− = {f | (¬f,G) ∈ D, s |= G},
2. for all fluent fi such that fi ∈ Δ(T ) and fi 
∈ s+ ∪ s−,

we have that fi ∈ s iff fi ∈ s′,
3. s and s′ satisfy (4) and (5), respectively, for every rule in

S (i.e. Property 1 is satisfied).
Furthermore, if s− ∩ s+ = ∅, then (s, (s \ s−) ∪ s+) is a
transition of T provided that Property 1 is satisfied.

The next property is about how justifications can be com-
bined.

Property 4 (Justifications of static causal rules can be
combined) Let T = (S,D) be a causal action theory. If
both

r1 = (l, G,H ∪ {l1})
and

r2 = (l, G \ {l1}, (H \ {l1}) ∪ {¬l1})
are in S, and {l1} ∪ G ∪H is consistent, then T and T ′ =
(S′, D) are equivalent, where

S′ = (S \ {r1, r2}) ∪ {(l, G \ {l1}, H)}.
As expected, the BC semantics satisfies all the properties.

Proposition 1 Let δBC be the semantic function induced by
the BC according to the mapping from causal action theo-
ries to BC descriptions given in the last section. δBC satisfies
Properties 1, 2, 3 and 4.

We now show that in a sense, these are also characterizing
properties for BC.

Permissible mappings from causal action

theories to logic programs

Following Zhang and Lin (2015), we consider characterizing
an action semantics by a set of properties that uniquely de-
termines a mapping from causal theories to logic programs
with answer set semantics. This fits BC well as its semantics
was given by a mapping to logic programs (Lee, Lifschitz,
and Yang 2013). Briefly, we extend the notion of permissi-
ble mappings in (Zhang and Lin 2015) to our causal action
theories and show that there is a unique such permissible
mapping that satisfies the properties in the last section and
this permissible mapping yields exactly the BC semantics.
Given that BC is an extension of both B and C, we will dis-
cuss how this result relates to similar characterizations of B
and C in (Zhang and Lin 2015).
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The following definitions are adapted from those in
(Zhang and Lin 2015), by taking into account our new no-
tion of causal action theories.

Given a language consisting of a set F of fluents, we map
causal action theories to logic programs (with constraints
and classical negation) in the language

L = F ∪ ¬F ∪ F ′ ∪ ¬F ′,

where ¬F = {¬f | f ∈ F}, F ′ = {f ′ | f ∈ F}, and
similarly for ¬F ′. We assume that for each f ∈ F , f ′ is a
new atom.

Definition 3 Let ξ be a mapping from causal action theories
to logic programs. The induced semantic function by ξ is
defined as follows: a pair (s, s′) of states in F is a transition
of a causal action theory T iff there is an answer set A of
ξ(T ) such that

s = {f | f ∈ F , f ∈ A}, (6)
s′ = {f | f ′ ∈ F ′, f ′ ∈ A}. (7)

In the following, we say a mapping from causal action
theories to logic programs satisfies a property if the induced
semantic function of this mapping satisfies the property.
Similarly, we say that (s, s′) is a transition of T under such
a mapping if (s, s′) is a transition of T under the semantic
function induced by this mapping.

In addition to satisfying some semantic properties, we
also want a mapping to be “modular”, and in the case of
logic programs, to make use of a “standard way” of encoding
the frame axioms. This is the intuitions behind the following
definition of permissible mappings.

Definition 4 A mapping ξ from causal action theories to
logic programs is said to be permissible if it is

1. (Compositional) For each T = (S,D),

ξ(T ) =
⋃

r∈S

ξs(r) ∪
⋃

r∈D

ξd(r) ∪B, (8)

where
• ξs(r) is the translation on static causal rules, and for a

rule (l, G,H), ξs(l, G,H) is a logic program consist-
ing of the following constraints:

← l, G,H (9)
← l′, G′, H ′ (10)

and some rules of form

l′ ← F ′
1, not F ′

2

where l is the complement of l: f = ¬f , and ¬f = f ,
W ′ = l′1, ..., l

′
n if W = {l1, · · · , ln}, and F ′

1 and F ′
2

are sets of atoms in F ′
G∪H ∪¬F ′

G∪H , where FG∪H are
all fluents that appear in G ∪H , and not {l′1, ..., l′k} is
not l′1, ..., not l′k;

• ξd(r) is the translation on dynamic causal rules, and
for a rule (l, G), ξd(l, G) is a set of rules of the form

l′ ← F,

where F is a set of fluent literals in F ∪ ¬F;

• B, the base, is the following set of rules that are inde-
pendent of the given theory T : for each f ∈ F ,

f ← not ¬f, (11)
¬f ← not f. (12)
f ′ ← f, not ¬f ′, (13)
¬f ′ ← ¬f, not f ′, (14)

2. (Uniform) Both ξs and ξd are homomorphic under any
permutation σ on the set F of fluents: ξs(rσ) = (ξs(r))σ ,
and ξd(rσ) = (ξd(r))σ , where rσ is obtained from r by a
fluent substitution according to σ, and for any logic pro-
gram P , Pσ is the program obtained from P by a fluent
substitution according to σ.
And Both ξs and ξd are also homomorphic under permu-
tation of any fluent f ∈ F with its negation: ξs(rf ) =
(ξs(r))f , and ξd(rf ) = (ξd(r))f , where rf is the causal
rule obtained from r by swapping f and ¬f , and for any
logic program P , P f is the program obtained from P by
swapping f and ¬f .

We can now state the main result of our paper, which basi-
cally says that there is exactly one permissible mapping that
satisfies the semantic properties given in the last section, and
this permissible mapping yields exactly the BC semantics.

Theorem 1 Let ξBC be the following mapping from causal
action theories to logic programs: for each T = (S,D),

ξBC(T ) =
⋃

r∈S

ξsBC(r) ∪
⋃

r∈D

ξdBC(r) ∪B, (15)

where
• B is the base,
• for each static causal rule (l, G,H), ξsBC(l, G,H) is the

set of rules consisting of constraints (9) and (10) and the
following rule

l′ ← G′, not H ′. (16)
• for each dynamic causal rule (l, G), ξdBC(l, G) is the sin-

gleton set consisting of the following rule

l′ ← G. (17)

We have
1. The mapping ξBC is permissible and satisfies Properties 1,

2, 3 and 4. Furthermore, for any causal action theory T ,
(s, s′) is a transition of T under ξBC iff it is a transition
of T under the BC semantics.

2. If ξ is a permissible mapping that satisfies Properties 1, 2,
3 and 4, then ξ is strongly equivalent to ξBC in the follow-
ing sense: for any static causal rule (l, G,H), ξs(l, G,H)
and ξsBC(l, G,H) are strongly equivalent under the base
B, and for any dynamic causal rule (l, G), ξd(l, G) and
ξdBC(l, G) are strongly equivalent under the base B as
well.

See the detailed proof in our supplemental material. One
can see that the mapping ξBC is essentially the same as the
one given in Section 8 of (Lee, Lifschitz, and Yang 2013)
using strong negation. They also gave a mapping using dou-
ble default negation (not not p) in Section 4 of their paper.
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While these two mappings yield the same semantics for lan-
guage BC, they are not strongly equivalent. Thus one can see
that our uniqueness result holds only because we do not have
double default negation. On the other hand, if double default
negation is allowed, one can add more constraints and rules
to the base B so that the two mappings given in (Lee, Lifs-
chitz, and Yang 2013) become strongly equivalent under the
new base.

The B and C
The action language BC includes B and C as special cases:
if an action description in BC includes only static causal
rules of the form l if G ifcons � (those with the empty jus-
tification), then it is essentially a B action description, and
similarly if it only includes static causal rules of the form
l if � ifcons H (those with the empty premise), then it is es-
sentially a C action description. We now discuss what our
result suggests for B and C, and how they compared to the
results in (Zhang and Lin 2015).

Definition 5 A causal action theory (S,D) is called a B-
theory if for all (l, G,H) ∈ S, H = ∅. It is called a C-theory
if for all (l, G,H) ∈ S, G = ∅.

For B-theories, Property 4 trivially holds for every seman-
tic function. Furthermore, Property 3 can be much simpli-
fied.

Proposition 2 For B-theories, Property 3 is equivalent to
the following property:

Property 5 (No ramification when there is no overlap be-
tween static and dynamic causal rules) For every B-theory
T = (S,D) that has no overlap between static and dynamic
causal rules, then a pair (s, s′) of states is a transition of T
iff

• s′ = (s \ s−) ∪ s+,
• s+ ∩ s− = ∅,
• both s and s′ satisfy the static causal rules in S (Prop-

erty 1),

where s− = {f | (¬f,G) ∈ D, s |= G} and s+ =
{f | (f,G) ∈ D, s |= G}.
Proof: If T is a B-theory, then its dependency graph has no
J-edges. Thus its persistent set is the entire set of fluents.

Thus Theorem 1 suggests that for B-theories, the Prop-
erties 1, 2, and 5 would uniquely determine a permissible
mapping that would yield a semantics that is the same as the
one for B language. Indeed, we have the following result that
corresponds to Theorem 1 in (Zhang and Lin 2015).

Theorem 2 Let ξB be the following mapping from B-
theories to logic programs: for each T = (S,D),

ξB(T ) =
⋃

r∈S

ξsB(r) ∪
⋃

r∈D

ξdB(r) ∪B, (18)

where

• B is the base as in the definition of permissible mappings,

• for each static causal rule (l, G, ∅), ξsB(l, G, ∅) is the set
of rules consisting of constraints (9) and (10) (with H and
H ′ deleted) and the following rule

l′ ← G′. (19)

• for each dynamic causal rule (l, G), ξdB(l, G) is the sin-
gleton set consisting of the following rule

l′ ← G. (20)

We have

1. The mapping ξB is permissible and satisfies Properties 1,
2 and 5.

2. If ξ is a permissible mapping that satisfies Properties 1, 2,
and 5, then ξ is strongly equivalent to ξB on B-theories in
the following sense: for any static causal rule (l, G, ∅),
ξs(l, G, ∅) and ξsB(l, G, ∅) are strongly equivalent un-
der the base B, and for any dynamic causal rule (l, G),
ξd(l, G) and ξdB(l, G) are strongly equivalent under the
base B as well.

Proof:[Sketch.] We use the results in (Zhang and Lin 2015)
to prove. We call their causal action theories simple causal
action theories, to distinguish from those in this paper. And
we denote Property i in their paper as Pi. Let M be following
mapping from simple causal action theories to B-theories:
for T = (S,D), M(T ) = ({M(r) | r ∈ S}, D) where
for a static rule (l, G) in S, M(l, G) = (l, G, ∅). We call
a mapping from B-theories to logic programs a B-mapping,
and a mapping from simple causal action theories to logic
programs a simple mapping. And let η the following map-
ping from a B-mapping to a simple mapping: for any simple
causal theory T = (S,D),

η(ξ)(T ) =
⋃

r∈S

η(ξ)s(r) ∪
⋃

r∈D

η(ξ)d(r) ∪B, (21)

where η(ξ)s(r) = ξs(M(r)) for a static rule r, and
η(ξ)d(r) = ξd(r) for a dynamic rule r. It can be checked
that, considering only B-theories, ξ is a permissible mapping
iff η(ξ) is also permissible according to the definition of per-
missible mappings in (Zhang and Lin 2015). And Property 1
is essentially equivalent with P2, in the sense that a permis-
sible mapping ξ satisfies Property 1 iff η(ξ) satisfies P2. And
Property 2 is essentially equivalent with P3, and Property 5
is essentially equivalent with P4. According to Theorem 1 in
(Zhang and Lin 2015), we have

1. η(ξB) is permissible and satisfies P2, P3 and P4. So ξB is
permissible and satisfies Properties 1, 2 and 5.

2. If ξ is a permissible mapping that satisfies Properties 1, 2
and 5, then η(ξ) satisfies P2, P3 and P4, so η(ξ)s(l, G) is
strongly equivalent with η(ξB)s(l, G) under B ∪Q where
Q is the constraints for (l, G), i.e. ξs(l, G, ∅) is strongly
equivalent with ξsB(l, G, ∅) under B ∪ QM where QM is
the constraints for (l, G, ∅), which is the same with Q,
and ξd(l, G) is strongly equivalent with ξdB(l, G) for a dy-
namic rule (l, G).
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For C language, the set of properties in (Zhang and Lin
2015) includes Property 1, 2, 4, and the following property
which is weaker than Property 3:

Property 6 (No ramification when there is no loop and
no overlap between static and dynamic causal rules) For
every C-theory T = (S,D) that has no overlap between
static and dynamic causal rules, and there is no loop in the
dependency graph, a pair (s, s′) of states is a transition of
T iff

• s′ = (s \ s−) ∪ s+,
• s+ ∩ s− = ∅, and
• both s and s′ satisfy the static causal rules in S (Prop-

erty 1),

where s− = {f | (¬f,G) ∈ D, s |= G} and s+ =
{f | (f,G) ∈ D, s |= G}.
Proposition 3 For C-theories, Property 3 implies Prop-
erty 6

Proof: If T is a C-theory whose dependency graph is
acyclic, then its persistent set is the entire set of fluents.

The following result corresponds to Theorem 2 in (Zhang
and Lin 2015)

Theorem 3 Let ξC be the following mapping from C-
theories to logic programs: for each T = (S,D),

ξC(T ) =
⋃

r∈S

ξsC(r) ∪
⋃

r∈D

ξdC(r) ∪B, (22)

where

• B is the base as in the definition of permissible mappings,
• for each static causal rule (l, ∅, H), ξsC(l, ∅, H) is the set

of rules consisting of constraints (9) and (10) (with G and
G′ deleted) and the following rule

l′ ← not H ′. (23)

• for each dynamic causal rule (l, G), ξdC(l, G) is the sin-
gleton set consisting of the following rule

l′ ← G. (24)

We have

1. The mapping ξC is permissible and satisfies Properties 1,
2, 4 and 6.

2. If ξ is a permissible mapping that satisfies Properties 1, 2,
4 and 6, then ξ is strongly equivalent to ξC on C-theories
in the following sense: for any static causal rule (l, ∅, H),
ξs(l, ∅, H) and ξsC(l, ∅, H) are strongly equivalent un-
der the base B, and for any dynamic causal rule (l, G),
ξd(l, G) and ξdC(l, G) are strongly equivalent under the
base B as well.

Proof:[Sketch.] Let M be following mapping from sim-
ple causal action theories to C-theories: for T = (S,D),
M(T ) = ({M(r) | r ∈ S}, D) where for a static rule
(l,H) in S, M(l,H) = (l, ∅, H). We call a mapping from

C-theories to logic programs a C-mapping. And let η the fol-
lowing mapping from a C-mapping to a simple mapping: for
any simple causal theory T = (S,D),

η(ξ)(T ) =
⋃

r∈S

η(ξ)s(r) ∪
⋃

r∈D

η(ξ)d(r) ∪B, (25)

where η(ξ)s(r) = ξs(M(r)) for a static rule r, and
η(ξ)d(r) = ξd(r) for a dynamic rule r. ξ is permissible
iff η(ξ) is also permissible according to the definition of
permissible mappings in (Zhang and Lin 2015). As ξ is a
permissible mapping, η(ξ) satisfies P1. And as ξ satisfies
Properties 1, 2, 4 and 6, η(ξ) satisfies P2, P3, P4′ and P5 in
(Zhang and Lin 2015). According to Theorem 2 in (Zhang
and Lin 2015), we have

1. As η(ξC) is permissible and satisfies P1, P2, P3, P4′ and
P5, ξC is permissible and satisfies Properties 1, 2, 4 and 5.

2. If ξ is a permissible mapping that satisfies Properties 1,
2, 4 and 5, then η(ξ) satisfies P1, P2, P3, P4′ and P5.
So η(ξ)s(l,H) is strongly equivalent with η(ξC)s(l,H)
under B ∪ Q where Q is the constraints for (l,H), i.e.
ξs(l, ∅, H) is strongly equivalent with ξsC(l, ∅, H) under
B ∪QM where QM is the constraints for (l, ∅, H), which
is the same with Q, and ξd(l, G) is strongly equivalent
with ξdC(l, G) for a dynamic rule (l, G).

Concluding remarks

We considered the action language BC, which is recently
proposed by Lee et al. (2013) as a generalization of both B
and C. By extending Zhang and Lin’s results for B and C,
we showed that the mapping from BC action descriptions to
logic programs can be uniquely captured up to a notion of
strong equivalence by four properties, provided that the ac-
tion rules in these action descriptions do not have non-empty
consistency conditions. We believe these results can be ex-
tended to include action rules with non-empty consistency
conditions by allowing dynamic causal rules to be triples
like static causal rules, and then extending corresponding
cancepts like permissible mappings and dependency graphs.
We leave this as a future work.

Besides providing an alternative characterization for the
semantics of action language BC, this work serves as an-
other evidence that the approach advocated by Zhang and
Lin (2015) to study causal action theories by postulates is
fruitful and further work is needed for a systematic study of
these postulates as a whole, not just as a means to capture
some known action languages.

References

Fikes, R. E., and Nilsson, N. J. 1971. Strips: A new approach
to the application of theorem proving to problem solving. In
Proceedings of the 2nd International Joint Conference on
Artificial Intelligence (IJCAI–71), 608–620.
Finger, J. J. 1987. Exploiting Constraints in Design Synthe-
sis. Ph.D. Dissertation, Stanford University, Stanford, CA,
USA. UMI Order No. GAX87-20386.

1121



Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In Proceeding of Fifth Inter-
national Conference and Symposium on Logic Programming
(ICLP–88), 1070–1080.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 9:365–385.
Gelfond, M., and Lifschitz, V. 1993. Representing action
and change by logic programs. Journal of Logic Program-
ming 17:301–322.
Gelfond, M., and Lifschitz, V. 1998. Action languages.
Electronic Transactions on Artificial Intelligence 3:195–
210.
Giunchiglia, E., and Lifschitz, V. 1998. An action language
based on causal explanation: preliminary report. In Pro-
ceedings of National Conference on Artificial Intelligence
(AAAI–98), 623–630.
Giunchiglia, E.; Lee, J.; Lifschitz, V.; McCain, N.; and
Turner, H. 2004. Nonmonotonic causal theories. Artificial
Intelligence 153(1-2):49–104.
Lee, J.; Lifschitz, V.; and Yang, F. 2013. Action language
BC: preliminary report. In Proceedings of the 23rd Inter-
national Joint Conference on Artificial Intelligence (IJCAI–
13), Beijing, China, August 3-9, 2013.
Lifschitz, V. 1987. Formal theories of action (preliminary
report). In Proceedings of the 10th International Joint Con-
ference on Artificial Intelligence (IJCAI–87). Milan, Italy,
August 1987, 966–972.
Lin, F. 1995. Embracing causality in specifying the indirect
effects of actions. In Proceedings of the Fourteenth Inter-
national Joint Conference on Artificial Intelligence (IJCAI–
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