Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

The Complexity of LTL on Finite Traces:
Hard and Easy Fragments

Valeria Fionda and Gianluigi Greco
DeMaCS, University of Calabria, Italy
{fionda, ggreco} @mat.unical.it

Abstract

This paper focuses on LTL on finite traces (LTLy) for which
satisfiability is known to be PSPACE-complete. However, lit-
tle is known about the computational properties of fragments
of LTLy. In this paper we fill this gap and make the following
contributions. First, we identify several LTL; fragments for
which the complexity of satisfiability drops to NP-complete
or even P, by considering restrictions on the temporal op-
erators and Boolean connectives being allowed. Second, we
study a semantic variant of LTL¢, which is of interest in the
domain of business processes, where models have the prop-
erty that precisely one propositional variable evaluates true at
each time instant. Third, we introduce a reasoner for LTL;
and compare its performance with the state of the art.

Introduction

Linear temporal logic (LTL) is a modal logic in which
modalities are temporal operators relating events happen-
ing in different time instants over a linearly ordered time-
line. LTL has been introduced in the seventies as a for-
mal tool for verifying the correctness of computer pro-
grams and reactive systems and found applications in several
fields of artificial intelligence and computer science. LTL
formulas are interpreted over infinite traces (Pnueli 1977,
1981). However, there are certain applications, in partic-
ular, related to the specification and verification of busi-
ness processes (Pesic, Bosnacki, and van der Aalst 2010;
Pesic, Schonenberg, and van der Aalst 2007; van der Aalst,
Pesic, and Schonenberg 2009), where a more natural choice
is to focus on the LTLy variant where formulas are inter-
preted over finite traces (Baier and Mcllraith 2006; De Gia-
como and Vardi 2013; 2015). Note that there are LTL for-
mulas that admit infinite models but do not have any fi-
nite model (e.g., the formula aAG(X(a))). Indeed, LTL and
LTL; exhibit subtle different behaviors and known prop-
erties for LTL cannot be easily generalized to LTL; (see,
e.g., (De Giacomo et al. 2014; De Giacomo, De Masellis,
and Montali 2014)).

Given an LTL; (resp., LTL) formula ¢, the most rel-
evant reasoning task is that of deciding whether there is
some finite (resp., infinite) trace 7 that satisfies (. Decid-
ing the satisfiability of LTL formulas (even when X, G, and

Copyright © 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

971

F are the only available temporal operators) is a PSPACE-
complete problem in general (Sistla and Clarke 1985) and
efforts have been spent over the years in order to come
up with more favorable complexity results, by focusing on
syntactic fragments of LTL (Artale et al. 2013; Bauland
et al. 2009; Chen and Lin 1993; Demri and Schnoebelen
2002; Dixon, Fisher, and Konev 2007; Hemaspaandra 2001;
Markey 2004; Ono and Nakamura 1980; Schobbens and
Raskin 1999). When moving to LTL; formulas, satisfia-
bility is known to remain PSPACE-complete (De Giacomo
and Vardi 2013) and, of course, the basic NP-hard “lower
bound” (of propositional logic) still holds even in absence of
temporal operators. However, little was known so far about
the complexity for fragments of LTL;, where satisfiability
might be NP-complete or even tractable.

This paper fills this gap by providing results that are inter-
esting from the theoretical point of view and that have con-
crete implications in the design of efficient heuristics and
even exact solution approaches. In more detail, we consider
classes of LTL; formulas defined by syntactic restrictions
on the temporal operators and on the Boolean connectives
being allowed and provide the following contributions:

» We identify those classes for which satisfiability is always
witnessed by models whose length is linear in the size of
the formula. In particular, a dichotomy result is shown:
Either a class enjoys the linear-length model property, or
it contains satisfiable formulas for which no model exists
whose length is polynomially bounded.

» We study the problem of model validation, that is check-
ing whether some given trace 7 is a model of a given LTL
formula . We show that this problem can be solved in
polynomial time.

» We perform a systematic study of the complexity of satis-
fiability. For each class, satisfiability emerged to be either
PSPACE-complete, or NP-complete, or even tractable.

Actually, for each of the points listed above, in addition
to focusing on LTL; fragments, we also consider (fragments
of) a variant of LTL;, which we name LTL; ;, whose syn-
tax is the same as LTL; and whose semantics is defined
over simple (finite) traces, i.e., over finite traces such that
exactly one propositional variable holds at each time in-
stant. The study of LTL; s is motivated by the fact that

in the applications related to the specification and ver-
ification of business processes, simple traces are gener-
ally considered (Pesic, Bosnacki, and van der Aalst 2010;
Pesic, Schonenberg, and van der Aalst 2007; van der Aalst,
Pesic, and Schonenberg 2009).

Motivated by the theoretical results we implemented a
reasoner for LTLy, called LTL2SAT!, and compared it with
Aalta (Li et al. 2014), the only existing reasoner that specif-
ically targets the finite trace case, which has been shown
to outperform existing LTL reasoners adapted to deal with
finite traces (cf. (Edelkamp 2006; Gerevini et al. 2009;
Pesic and van der Aalst 2006)).

Formal Framework

Syntax. Assume that a universe) of variables is given. An
LTL; formula ¢ is built over the propositional variables in
V), by using the Boolean connectives “A”, “V”’, and “—", plus
a number of temporal operators. In the paper, we mainly?
focus on the temporal operators “X” (next), “G” (always),
and “F” (eventually), and we allow atomic negation only.
Formally, ¢ is built according to the following grammar?:

pu=z| x| (eAe) | (V)| Xp) | Fle) | Gle),

where x is any variable in V. The set of all variables occur-
ring (either positively or negated) in ¢ is denoted by V..

The temporal height of ¢ w.r.t. an operator Oe{X, G, F},
denoted by th(p, O), is the maximum number of nested O
in . Instead, its temporal size w.r.t. O is the overall number
of occurrences of O in ¢, denoted by ¢s(p, O). The size of
, denoted by ||p||, is the total number of symbols, exclud-
ing parenthesis, occurring in it.

Example 1 Consider the LTL; formula ¢ = ((a A =) A
(F((¢ A G(a))) A X(b))). We have that: V,, = {a,b,c};
th(p, O)=ts(p,0)=1, for Oc{X, G, F}; and ||¢||=13. <

Throughout the paper, we consider classes of LTL;
formulas defined by imposing syntactic restrictions on
the allowed connectives/operators. Formally, for any set
BC{A,V,~} and for any set TC{X,G,F}, we define
(B, T)-LTLy as the class of all LTLy formulas where only
connectives in B and temporal operators in 1" can be used.

Semantics. A finite trace over variables in V is a sequence
T=T0, M1, ..., Tn—1 associating to each i€{0,...,n — 1} a
state m;C), consisting of the set of all propositional vari-
ables that are assumed to hold at the instant i. The number
of instants over which 7 is defined is its length, and is de-
noted by len(n). Its size is ||7|[=327—, |mil.

Given a finite trace m, we define when an LTL; formula
@ is true in 7 at the instant s€{0, ..., len(7)-1}, denoted by
7,4 |= @, by inductively considering all its subformulas:

'See https:/1t12sat.wordpress.com/

?In fact, we shall see that our algorithmic approach to deal with
satisfiability immediately applies to arbitrary negation and other
temporal operators, such as until and weak next.

3 As we allow atomic negation only, no Boolean connective and
no temporal operator can be rewritten in terms of the others. Ac-
cordingly, all of them are made explicit in the syntax.

972

miEx iff
w1 =T iff
T, = (o1 A o) iff
w1 = (p1 Vo) iff

xT € T,
T & Wi
w1 E p1and 7,1 | 2
T = prorm, i = o

m, i = X(p') iff i <len(m)-landm,i+1fE ¢';
i G(¢') iff Vjwithi <j<len(m),m,jE ¢
7,1 = F(¢') iff 3jwithi < j < len(m)s.t.mjE ¢

Whenever 7,0 |= ¢ holds, we just write 7 = , and we
say that 7 is a model of ¢ and that ¢ is satisfiable. Note
that if ¢ does not contain temporal operators, then 7 = ¢
reduces to the notion of satisfiability for propositional logic.

A model 7 of ¢ is said simple if |7;| = 1 and m; C V), for
each i€{0, ..., len(m)-1}. In addition to LTL, we consider
the logic LTL; s, whose syntax coincides with the syntax of
LTL;, and whose semantics, denoted as ., differs only in
the fact that satisfiability is defined w.r.t. simple models only.

For each B C {A,V,=} and T C {X,G, F}, the class
(B, T)-LTLy q is defined analogously to (B, T')-LTLy.

Example 2 Consider again the formula ¢ of Example 1
and check that a model for it is the trace 7 such that
mo={a}, m={b}, ma={a,c}, m3={a}, ms={a,c}, ms={a},
and mg={a}. Because of the subformula ¢ A G(a), ¢ does
not admit any simple-model. <

In the following, parenthesis will be often omitted when
this does not originate ambiguities in the above definition
of satisfiability. In particular, we shall assume as usual that,
in the evaluation of Boolean expressions, conjunction has
precedence over disjunction.

Linear-Length Model Property

In this section, we analyze all fragments of LTL and LTL; ,
obtained by constraining the allowed Boolean connectives
and temporal operators to identify upper bounds on the
lengths of models in terms of the size of the formula given.

Theorem 3 Every (B,T)-LTLy (resp., (B, T)-LTLy ;) sat-
isfiable formula ¢ has a model (resp. simple model) 7 such
that len(r) < 20Ul#lD,

In the rest of this section we identify those classes of for-
mulas (B, T)-LTLy and (B, T)-LTL; s enjoying the linear-
length model property, i.e., such that satisfiability can be al-
ways witnessed by models 7 whose length, len(r), is linear
in the size ||¢||. More specifically, all classes of LTL; and
LTL; s formulas that enjoy the linear-length model property
are summarized in Figure 1, in terms of the Hasse diagram
built over the subsets of {X,G, F}. In particular, for each
subset T' C {X, G, F}, the figure reports the subset-maximal
set B C {A,V, —} for which the property holds. For LTL,,
it emerges that it is crucial to forbid the interplay of X and G,
for otherwise the property holds if, and only if, formulas are
built over at most two Boolean connectives. Interestingly,
for LTL 4, results are more stringent.

Theorem 4 All LTL; and LTL; , fragments summarized in
Figure 1 enjoy the linear-length model property.

Proof Sketch. The result can be shown by (standard) struc-
tural induction for the fragments ({A, V}, {X, G, F})-LTLy,
({V,},{X,G,F})-LTLy, and ({V, =}, {X, G, F})-LTL; ,.

V]
0 xe

A,V "‘

N |

{v,—} (o, {Xv G}) AV, _‘}7{67 F}) A v, {X7 F})
e .

{AV), (FD)

<{/\,\/,—|},{G}> ({/\7\/7_‘}7{)(})

DR A

]
]
|
+ -7

AV, 0)

Figure 1: Classes of formulas enjoying the linear-length
model property—for each T, subset-maximal sets B are re-
ported. *The property holds on LTLy, but not on LTL; ,.

Different is the case where ¢ is a satisfiable formula in
({A, =}, {X,G,F})-LTL;. Let 7w be a model of ¢, and de-
fine the critical time instants as follows. The initial time in-
stant is critical. If X(¢') or F(¢’) is a subformula of ¢, then
the time instant where ¢’ is required to hold in the recursive
definition of satisfiability is critical. No further time instant
is critical. It can be checked that the finite trace 7 derived
from 7 by removing each state associated with a time instant
that is not critical still satisfies ¢, i.e., T = ¢. Moreover,
if 7 is a simple model, then 7 is simple, too. Minor mod-
ifications in the reasoning lead to establish the property on
({N, Vv, =} {X,F})-LTL; and ({A, V, =}, {X, F})-LTLy .

Consider then the case where ¢ is a satisfiable formula in
({A,V, =}, {G,F})-LTL;. The idea is to encode ¢ in terms
of an “equivalent” LTL formula ¢ over V,, U {end}, where
end is a fresh Boolean variable, by using the approach dis-
cussed by (De Giacomo, De Masellis, and Montali 2014). In
particular, by specializing that result over the fragment, we
obtain that: (1) ¢ does not contain X and G as temporal oper-
ator; (2) if 7 is a finite model of (, then w(7r) is a model of @,
where w(7) is the infinite trace obtained from 7 by append-
ing the state { end } infinitely often; (3) if 7’ is a model of @,
then there is a finite model 7 of ¢ such that 7’ = w(rx); and
@) ts(p, F) = ts(p, F)+ts(p, G) + 4. Eventually, by The-
orem 3.4 in (Sistla and Clarke 1985)—which holds on LTL
formulas defined over F only—and given that all models of
@ have the form w(7), we are guaranteed about the existence
of a model w(7’) for @ such that len(n’) < ts(@,F) + 1.
In fact, we know that 7’ is a finite model of ¢ and we get
len(n") < ts(@,F)+1=ts(p,F) + ts(p,G) +4 + 1.

Finally, if pisa ({A, v, =}, {G, F})-LTL; ; formula, then
we define ¢° as the formula

A

enG(\/ (ziA
z; €V \{zi}

z; €V
Note that 7 is a model of ¢ if, and only if, 7 is a
simple model of . In fact, we have just observed that if
©® is satisfiable, then it has a model 7 such that len(7) <
ts(p®, F) +ts(p®, G) + 5. The result then follows since
ts(p®, F) = ts(p,F) and ts(¢®,G) = ts(p,G) + 1. O

—T;)).

973

Interestingly, our characterization is complete, as the
classes of LTL; and LTL; ¢ that are not covered by Figure 1
do not enjoy the linear-length model property, and formulas
can be exhibited for them for which no model has a length
that is polynomially bounded at all.

Theorem 5 There are satisfiable ({\,V, =}, {X, G})-LTL;
formulas o for which there is no model whose length is poly-
nomial w.r.t. ||¢||.

Proof Sketch. The behavior of an n-bits counter can
be encoded in a formula ¢ in ({A,V,=}, {X,G})-
LTLsover the variables {x1,...,z,}, where each z; is
meant to represent the i¢-bit of the counter. Formally,
we define p=(A]_, "z;Acont) AG(—cont> ;| ;) A
/\?ZlG(ﬂcont\/CA’,;), where C; encodes the move from
one number to the successive one (in correspondence with
the time instants): C1=X(z1)«>—z1 and C;=X(z:)<>((—ziA

/\;;]ixj)v(xi/\\/;;ll_‘wj)). Any model of ¢ needs 2" states. O

The result for ({A, V}, {X, G})-LTL; s formulas, follows
by combining Theorem 5 with the following lemma, show-
ing that negation can be simulated in ({A, V}, {X})-LTLy ;.

Lemma 6 For each ({A,V,—},T)-LTL; formula ¢ with
TO{X}, a ({A,V},T)-LTL; s formula ©° can be built in
polynomial time such that: (1) if Tl=, then there is a model
7 of ® with len(m®)=len(m) X (|[V,|+1); (2) if m° =5 ¢°,
then there is a model © of ¢ with len(w) < len(w®).

Proof Sketch. The idea is to encode ¢ into a formula ¢?
that associate a sequence of |V, | time instants to each time
instant in . In particular, the ¢ time instant in each sequence
of each model 7° is associated to the variable z; in V,, and
either 7°,¢ |= x; or 7, i = &; holds, where T; encodes the
complement of z;. O

Model Verification for Finite Traces

In this section, we study the verification problem, i.e., the
problem of deciding whether some given finite trace is a
model of a given formula.

Given a formula ¢, let us denote by pt(p) = (V, E, A) its
associated parse tree, which is a rooted tree (V, E)) with a
labeling function A : V. — {A,V,X,F,G} U {z,~z | z €
Vw}~ In particular, leaves are labeled with literals, and inter-
nal nodes are labeled with Boolean or temporal operators.
Since the parse tree is a well-known concept in the analysis
of formal languages, we omit its formal definition, and help
the intuition by reporting in Figure 2 the parse tree associ-
ated with the formula discussed in Example 1.

Given a trace 7, we define an algorithm based on equip-
ping each node v € V' with a set sat(v, 7) such that:

o If \M(v)=x or A\(v)=—w, then sat(v,m)={i | m,i E A(v)};

o If A\(v)=A (resp., A(v)=V), then sat(v, w)=sat(vy,7) N
sat(ve,m) (resp., sat(v,m) = sat(vy,m) U sat(va,m))
where v; and v9 are the two children of v in pt(p);

o If A(v)=X, then sat(v, m)={i-1 | i>0and ¢ € sat(v',7)}
with v’ being the only child of v in pt(y);

¢ = ((a A=b) A (F(e A G(a)) AX(D)))

™

0o 1 2 3 4 5 6
fa} {v} fac} {a} {ac} {a} {a}

Figure 2: The parse tree of the formula ¢ of Example 1. The
set sat(v,) is reported next to the vertex v.

o If A\(v)=F, then sat(v,m)={j | F € sat(v',m)
such that j < i} with v’ being the only child of v in pt(p);

o If \(v)=G, then sat(v,m)={j € {1,...,len(r)-1} | Vi €
{j, .-y len(m)-1},i € sat(v',m)} with v’ being the only
child of v in pt(yp).

Example 7 In Figure 2, each vertex v is equipped with the
set sat(v,) for the model 7 discussed in Example 2, where
sat(v,) consists of all time instants where the subformula
associated with the parse tree rooted at v hold in 7. <

The intuition in the above example is now generalized.

Theorem 8 Checking whether a finite trace w is a model
of an LTLy (resp., LTL;) formula ¢ is feasible in
O(len(m)? x |ll)-

Proof Sketch. The definition of sat(v,7) “encodes” the
semantics of the subformula ¢, associated with the parse
tree rooted at v. By structural induction, we can hence show
that sat(v, m)={i | 7, i=p,}. By letting r be the root, we
get that 0€ sat(r,) holds if, and only if, 7, OF=¢, (with ¢,
coinciding with). Additionally, if ¢ is a LTLy s formula,
then we have to check that 7 is simple, which is easily
feasible by iterating over the time instants of 7. Running
time follows by simple calculations and by noticing that
each vertex v€V can be associated with sat(v,7) by
processing the vertices of pt(y) bottom-up (for example,
see Figure 2 where time instants that are propagated from
each vertex to its parent are highlighted in gray). O

Satisfiability of LTL; and LTL;

In this section, we analyze the computational complexity of
the satisfiability problem. Our results are summarized in Fig-
ure 3, from which it emerges that reasoning about LTL; , is
more complex than reasoning about LTL;. As it is not pos-
sible to illustrate detailed proofs for all the cases reported
in Figure 3, in the following we provide some general intu-
itions and focus on some selected classes.

974

Classes of Hard formulas

Membership in PSPACE for the satisfiability problem of
arbitrary LTL; formulas has been shown by (De Giacomo
and Vardi 2013); the extension to LTL; ¢ formulas is im-
mediate. Similarly, they exhibited a class of LTL; formulas
over which satisfiability is PSPACE-hard. All PSPACE-
hardness results in Figure 3 are obtained by syntactic manip-
ulations of that encoding, aimed to guarantee membership in
the given LTL fragment of interest. Results are extended to
LTL; , formulas via Lemma 6.

We continue our analysis by considering the cases that
emerge to be NP-complete. To this end, observe first that
membership in NP clearly holds for all classes of (B, T)-
LTL; (resp., (B, T)-LTLy ;) formulas that enjoy the linear-
length model property. Indeed, given a formula ¢ belonging
to a class enjoying such property, a non deterministic Turing
Machine can guess a trace 7w having linear length, and then
check in polynomial time (cf. Theorem 8) whether 7 = ¢
or m =5 . Note that ||7|| is polynomially bounded w.r.t.
[|¢||, because in the worst case each state of 7 contains all
the variables over which ¢ is defined.

Accordingly, in the proofs of the NP-completeness re-
sults, we focus on showing the NP-hardness part only.
When all Boolean connectives are allowed, the result is
immediately entailed by the NP-hardness of the satisfia-
bility for Boolean formulas. In its turn, NP-hardness of
({A, V},{X,F})-LTL; ; follows by this observation and
Lemma 6. And, eventually, the only remaining NP-complete
case for LTLy , formulas without negation is when the al-
lowed temporal operators are G and F—see, again, Figure 3.

Theorem 9 Satisfiability of ({A,V},{G,F})-LTLs ¢ for-
mulas is NP-hard.

Proof Sketch. Consider the NP-hard ONE-IN-THREE POS-
ITIVE 3-SAT problem (Garey and Johnson 1979): Given a
Boolean formula ¢ = CyA- - -AC,, over the set {x1, ..., x, }
of variables, where each clause C; has the form C; =
xj, V xj, Vxj, with z;,, 2,2, € {z1,...,2,}, we have
to decide whether there is a truth assignment such that, for
each clause, precisely one variable evaluates true.

Based on ¢, we build a ({A, V}, {G, F})-LTL; , formula
g4 over the same set {x1, ..., x,, } of variables. In particular,

0o = NIy (F(C5) A Nj—y G(nj,1)) where

It can be checked that there is a truth assignment such
that, for each clause of ¢, precisely one variable evaluates
true if, and only if, ¢, is satisfiable. O

When restrictions are considered on the Boolean connec-
tives being allowed, LTL; formulas are tractable but for the
case addressed below—see, again, Table 3.

Theorem 10 Satisfiability of ({A, -}, {X, G, F})-LTL; for-
mulas is NP-hard.

LTL; LTL; ,
N, V,— N,V N, = V, = A \% - N, V, ™ N,V N, = V, = A \% -

G NP-c in P inP inP in P inP | inP G in P inP in P inP inP inP | inP
F NP-c inP inP inP inP | inP | inP F inP inP inP inP in P inP | inP
X NP-c in P in P inP in P in P in P X NP-c NP-c in P in P in P in P in P
XF NP-c inP inP inP inP | inP | inP XF NP-c NP-c inP inP inP inP | inP
GF NP-c in P inP inP inP | inP | inP GF NP-c NP-c in P inP inP inP | inP
XG PSPACE-c inP inP inP inP | inP | inP XG PSPACE-c | PSPACE-c inP inP in P inP | inP
XGF PSPACE-c in P NP-c inP in P inP | inP XGF PSPACE-c PSPACE-c NP-c in P NP-c inP | inP

Figure 3: Summary of results for the satisfiability problem on (B, T)-LTL; and (B, T)-LTL; ; formulas. All results are either
tractability results (P), or completeness results for the classes NP or PSPACE. Tractability results are based on algorithms
over the parse trees of formulas, and their correctness is shown by exploiting the bounds on the length of models discussed in
Section “Linear-Length Model Property”. Over {A, VV} fragments, such algorithms are computationally trivial.

Proof Sketch. As in the proof of Theorem 9, we exhibit a
reduction from the ONE-IN-THREE POSITIVE 3-SAT prob-
lem. Given ¢, we build the ({A, =}, {X, G, F})-LTL; for-
mula s = @1 A+ A pm A over the set {x1, ..., 25} U
{Y1, -+, Ym } of variables such that p; = ks A K AT A gy,
for each C; = z;, V x;, V x;,, where

[] ,‘<.'/-I] — yj’
2xj—1
b ’Q;'/ = X (Z/j A /_j’;éj _‘yj/)’

o

° H;-H =X Xj(yj A /\j’;éj —\yj/),

* 0 = F(y; Awj, Ay, A—agy) ANF(y; A~y A, A
_'xjs) A F(yj AT AT, A sz);

and where ¢ = szmH(G(/\T’:l —Y;))-

We now claim that: there is a truth assignment such that,
for each clause of ¢, precisely one variable evaluates true if,
and only if, ¢ is satisfiable.

(if part) Assume that 7 is a model of ¢g4. For each
j € {1,..,m}, because of the subformulas «’, we have
that 79 2 {y1, ..., ym }. Moreover, because of the subfor-
mulas /@9’ and H;—H, we have that max,;—1 N {Y1, .., Y} =
Taxj N {Y1,...;Ym} = {y;} Finally, because of the subfor-
mula ¢, for each j' > 2xm, we have m; N{y1, ..., ym } = 0.
Therefore, for each clause C;, there are precisely three time
instants where y; evaluates true, and one of them is the ini-
tial time instant 0. The three conjuncts of the subformula g;
must be mapped to time instants where y; holds and one of
them must evaluate true in the initial time instant. Thus, for
each clause Cj, |moN{z;,,xj,,xj, }|=1 holds. Therefore,
the truth assignment o for ¢ such that z;, with i€{1, ..., n},
evaluates true if, and only if, ; Emg holds is satisfying.

(only-if part) Consider a truth assignment o such that,
for each clause of ¢, precisely one variable evaluates true.
Consider the trace 7 with len(m)=2xm+2 such that mo=
{y1, s Ym YU{x;|o(z;)=true} and for each clause C; the
two variables evaluating false in o are true in max ;1 and
Tax j- It is immediate to check that 7 }= 4. O

A rather elaborate adaptation of the above proof leads to
establish NP-hardness for ({A}, {X, G, F})-LTLy ;.

975

Tractable Classes of LTL; and LTL; ,

In this section we describe the tractable cases. First,
we observe that tractability for ({A,-},{G,F})-LTL;
and ({A,—},{G,F})-LTL; ,; follows from (Hemaspaandra
2001) (Theorem 2.1). For the other fragments, tractability
results can be established by providing constructive argu-
ments for the proofs of Section Linear-Length Model Prop-
erty. An example is reported below.

Theorem 11 Satisfiability of ({A,—},{X,F})-LTL; and
({A, =}, {X,F})-LTL; s formulas is in P.

Proof Sketch. Let us consider a ({A, =}, {X, F})-LTL¢ or
({A, =}, {X,F})-LTL; ; formula ¢; it can be rewritten in
polynomial time according to the grammar:

o=@ [X(@)|F (@) (' AX(2))| (¢’ AF () [("ANX(9) AF (0)))
plu=z | —x | (' A¢')

Consider then the parse tree pt(¢) = (V, E, \) and, for
each vertex v € V, let ¢, denote the subformula whose
associated parse tree is given by the one rooted at v. Let
V' C V be the set of all vertices v for which ¢,, is a maximal
subformula without temporal operators. If there is a vertex
v € V' such that (the Boolean formula) (,, is not satisfiable,
then ¢ does not admit a model. Note that this condition can
be checked in polynomial time, since ¢,, is a Boolean for-
mula with atomic negation and without disjunction. For each
vertex v € V’, let M be a model of ¢, that has been com-
puted in polynomial time. In particular, w.l.0.g., assume that
there is no model M of ¢, with |[M?| < |M?|.

In order to build a model of ¢, we start by associating
with each vertex v € V' a trace ¥ with len(7w?) = 1 and
g = M". Then, we process the parse tree pt(y) from the
vertices in V” to the root by associating a trace 7 with each
vertex v—note that the algorithm is well-defined and covers
all possible cases, given the syntactic form of ¢:

e if A\(v)=Xand c is the child of v, then 7V is obtained from
¢ by inserting the state (J as the initial state;

e if A\(v)=F and c is the child of v, then ¥ = 7¢;

e if A(v)=A and v has two children, ¢; and ¢z, and one of
them, say co, is such that A(cz) = F, then 7" is obtained
by appending 72 after the last time instant of 7°;

e if A\(v)=A and v has two children, ¢; and ¢3, with ¢; € V'
and A(co) # F, then 7% is obtained from 72 by replacing
the initial state (in fact, note that 7(?> = () with M.

It is immediate to check that 7¥ is a model of ¢, for
each v. So, if r is the root, then 7" is a model of . In
particular, note that if 7" is not simple, then there is some
vertex v € V' such that |M"| > 1. But, this immediately
entails that ¢ does not have any simple model at all. O

Implementation

In this section we discuss a reasoner, called LTL2SAT?, for
LTL; and LTL; ; formulas, built upon our findings.

Encoding Approach. For the classes on which satisfiabil-
ity is feasible in polynomial time, LTL2SAT implements the
algorithms described in Section Satisfiability of LTLy and
LTLy ;. For the other classes, LTL2SAT rewrites the input
formula into an equivalent Boolean formula and uses glu-
cose (Audemard and Simon 2009) to compute a model.

Let ¢ be a formula, and let pt(p) = (V,E,\) be its
parse tree. Let » be a bound on the maximum length of
the models, which can be fixed according to the results
discussed in Section Linear-Length Model Property. Based
on ¢ and n, we build a Boolean formula @ ,, as follows.
First, we define the variables £[0], ..., £[n-1] encoding the
last time instant of the model, and associate to each node
v of pt(p) the variables s,[0], ..., s, [n-1]. Intuitively, s,[7]
is meant to check whether the formula encoded in the parse
tree rooted at v holds at the time instant i. Then, we set’
O,n Nvev @o A 5r00t[0] A £[n-1] and, for each wv,
D, = NIy (soli] <> 1) A NS (0[] —£[i+1]), where:

o if \(v) € {x, ~z}, then

D = Avevian=-ace) S0 A Norevaw)zaco) Sorlils

e if \(v) = Aor A(v) =V, then ® = s, [i]]\(v)s,,]i],
where v and v, are the left and right children of v;

e if \(v) = X (resp., A(v) = F; A\(v) = G), then ®! =
Syr [i+1]) A —L[i] (resp., i = s,/ [i] V 8, [i+1] A —L]i]; BF
Sy [F) A (8y[i+1] V£[i])), where v’ is the child of v and s, [n]
is the constant false (resp., false; true).

Note that ®¢ mimics the model checking strategy illus-
trated in Section Model Verification for Finite Traces. Thus,
the following can be established.

Theorem 12 @, ,, is satisfiable if, and only if, ¢ can be sat-
isfied by a model 7 such that len(m) < n.

Moreover, note that with simple modifications in the
above formulas, we can handle not only simple models, but
also negation that is not atomic and other temporal operators,
such as until and weak next.® Our implementation supports
these extensions by applying the bound given by Theorem 3.

*Downloadable at http://Itl2sat.wordpress.com/

3 Actually, ®, n is rewritten (in polynomial time) in in conjunc-
tive normal form, before it is passed to the solver.

8The support of this operator is crucial when rewriting formulas
in terms of atomic negation (Li et al. 2014).

976

<1/10

Trp-N12y[380
Trp-N12x[499
Trp-N5y[280
Trp-N5x[480 - -
Schuppan-phltl[36 : : o
Schuppan-02[54
Schuppan-01[54
Forobots[76
Anzu[222
Alaska-szy[8
Alaska-lift[272
Acacia [140 T T
RndConj. [9999 22
Rnd [20000] fSE -
Counter[20

1/10-1/5 1/5-1 O~1 1-5 5-10 >10

€2[999
C1[999

Figure 4: Ratio LTL2SAT/Aalta, on execution time.

In fact, a finer grained analysis of them, including the iden-
tification of tighter bounds and islands of tractability, are in-
teresting questions that we leave for further research.

Experimental Results. LTL2SAT implements the opti-
mization strategies in (Li et al. 2014) in addition to the SAT
rewriting technique. When the optimization strategies are
not applicable, the size n of the trace to be used in the SAT
rewriting is initially set to 1: If no model is found, then n
is doubled and the process is repeated until n exceeds the
theoretical upper bound (or a 20s time-limit is reached).

Our approach, which shares the spirit of (incremen-
tal) bounded LTL model checking methods based on SAT
rewritings (Biere et al. 2006), has been compared to
Aalta (Li et al. 2014), which is the only existing reasoner
that specifically targets the finite trace case. We used the
same datasets used in (Li et al. 2014), where Aalta has
been shown to outperform LTL reasoners adapted to deal
with finite traces (cf. (Edelkamp 2006; Gerevini et al. 2009;
Pesic and van der Aalst 2006)). By a preliminary analysis of
the datasets we identified 8 out of 23 datasets (i.e., C1, C2,
E, Q, R, S, Alaska-szy and Shuppan-0O2) that consist of for-
mulas belonging to classes enjoying the linear length model
property and 6 of them (i.e., C1, C2, E, Q, R and S) actually
refer to classes for which satisfiability is tractable.

Experiments have been executed on a PC Intel Core i5 2,4
GHz, 8GB RAM. For each formula, we measured the ratio
between the time required by LTL2SAT to check satisfiabil-
ity and that required by Aalta. Figure 4 reports the results
as percentage stacked bar charts, for each dataset. The num-
ber of formulas in each dataset is also illustrated just next to
its name. White bars represent the percentages of instances
where the two systems behaves identically up to 30ms of
tolerance, whereas bars on the left (resp., right) of the white
bars are associated with ratio values less (resp., greater) than
1, so that LTL2SAT (resp., Aalta) is faster.

LTL2SAT outperforms Aalta in ~70% of the datasets
(i.e., C1, C2, E, Q, R, S, U, RndConj, Alaska-lift, Alaska-
szy, Anzu, Forobots, Schuppan-O2, Schuppan-phltl, Trp-Sy
and Trp-12y) and, by considering all LTL formulas at all, in
the ~17% of the formulas, while the two systems are compa-
rable in performance in the ~22% of the datasets and in the

~80% of the formulas. However, by excluding the largest
dataset (i.e., Rnd), where the performance of the two system
are comparable, LTL2SAT wins on the ~34% of the for-
mulas and on the ~64% the two systems perform the same.
Note that, the speedup obtained by LTL2SAT is particularly
relevant in C1, C2, E, Q, R, S, U, Alaska-lift, Alaska-szy,
Anzu, Trp-5y and Trp-12y where in the 50% or more of the
formulas LTL2SAT runs at least 10 times faster than Aalta
and all the datasets consisting of formulas for which satisfi-
ability has been shown to be tractable follow in such group.

The number of formulas where both systems reach the
time-limit is negligible on each dataset, but for Counter (12
out of 20), RndConj (746 out of 9999) and Forobots (11 out
of 77). While Aalta did not give any information, LTL2SAT
guarantees that there is no model with length less than the
value of n used in the last iteration, that is, on average,
10500, 5150 and 4096 for each dataset, respectively.

Conclusion

We have studied satisfiability and model checking problems
for a large number of LTL; and LTL; ; fragments. From
the theoretical point of view, a natural avenue of further re-
search is to extend the analysis to further temporal opera-
tors. From the practical viewpoint, our results on LTL; s can
be used to provide runtime monitoring capabilities to busi-
ness processes, as in (De Giacomo et al. 2014). Moreover,
following the perspective of (Greco et al. 2015), our sys-
tem can support process mining tasks, by coupling learn-
ing methods with constraints expressed in LTL;. Another
line we are currently investigating is the application of our
framework for reasoning about temporal constraints over
the items of combinatorial actions, especially in the con-
text of supply chain formation (Fionda and Greco 2013;
Gottlob and Greco 2013).

Acknowledgments

G. Greco’s work was also supported by a Kurt Godel Re-
search Fellowship, awarded by the Kurt Gédel Society.

References
Artale, A.; Kontchakov, R.; Ryzhikov, V.; and Zakharyaschev, M.
2013. The complexity of clausal fragments of 1tl. In LPAR.
Audemard, G., and Simon, L. 2009. Predicting learnt clauses qual-
ity in modern SAT solvers. In IJCAIL.
Baier, J. A., and Mcllraith, S. A. 2006. Planning with First-Order
Temporally Extended Goals using Heuristic Search. In AAAIL
Bauland, M.; Schneider, T.; Schnoor, H.; Schnoor, 1.; and Vollmer,
H. 2009. The complexity of generalized satisfiability for linear
temporal logic. Logical Methods in Computer Science 5(1).
Biere, A.; Heljanko, K.; Junttila, T.; Latvala, T.; and Schuppan,
V. 2006. Linear Encodings of Bounded LTL Model Checking.
Logical Methods in Computer Science 2(5).

Chen, C.-C., and Lin, I.-P. 1993. The Computational Complexity of
Satisfiability of Temporal Horn Formulas in Propositional Linear-
Time Temporal Logic. Inf. Process. Lett. 45(3):131-136.

De Giacomo, G., and Vardi, M. Y. 2013. Linear Temporal Logic
and Linear Dynamic Logic on Finite Traces. In IJCAI.

977

De Giacomo, G., and Vardi, M. Y. 2015. Synthesis for LTL and
LDL on finite traces. In IJCAL

De Giacomo, G.; De Masellis, R.; Grasso, M.; Maggi, F. M.; and
Montali, M. 2014. Monitoring Business Metaconstraints Based on
LTL and LDL for Finite Traces. In BPM.

De Giacomo, G.; De Masellis, R.; and Montali, M. 2014. Rea-
soning on LTL on Finite Traces: Insensitivity to Infiniteness. In
AAAL

Demri, S., and Schnoebelen, P. 2002. The Complexity of Propo-
sitional Linear Temporal Logics in Simple Cases. Inf. Comput.
174(1):84-103.

Dixon, C.; Fisher, M.; and Konev, B. 2007. Tractable temporal
reasoning. In IJCAI.

Edelkamp, S. 2006. On the Compilation of Plan Constraints and
Preferences. In ICAPS.

Fionda, V., and Greco, G. 2013. The complexity of mixed multi-
unit combinatorial auctions: Tractability under structural and qual-
itative restrictions. Artif. Intell. 196:1-25.

Garey, M., and Johnson, D. 1979. Computers and Intractability -
A guide to the Theory of NP-Completeness. Freeman.

Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Dimopoulos,
Y. 2009. Deterministic planning in the fifth international planning
competition: PDDL3 and experimental evaluation of the planners.
Artif. Intell. 173(5-6):619-668.

Gottlob, G., and Greco, G. 2013. Decomposing combinatorial
auctions and set packing problems. J. ACM 60(4):24.

Greco, G.; Guzzo, A.; Lupia, F.; and Pontieri, L. 2015. Process
discovery under precedence constraints. volume 9, 32.

Hemaspaandra, E. 2001. The complexity of poor man’s logic. J.
Log. Comput. 11(4):609622.

Li, J.; Zhang, L.; Pu, G.; Vardi, M. Y.; and He, J. 2014. LTLf
satisfiability checking. In ECAL

Markey, N. 2004. Past is for free: on the complexity of verifying
linear temporal properties with past. Acta Inf. 40(6-7):431-458.
Ono, H., and Nakamura, A. 1980. On the size of refutation Kripke
models for some linear modal and tense logics. Studia Logica
39(4):325 - 333.

Pesic, M., and van der Aalst, W. 2006. DecSerFlow: Towards a
Truly Declarative Service Flow Language. In The Role of Busi-
ness Processes in Service Oriented Architectures, number 6291 in
Dagstuhl Seminar Proceedings.

Pesic, M.; Bosnacki, D.; and van der Aalst, W. 2010. Enacting
Declarative Languages Using LTL: Avoiding Errors and Improving
Performance. In SPIN.

Pesic, M.; Schonenberg, H.; and van der Aalst, W. 2007. DE-
CLARE: Full Support for Loosely-Structured Processes. In EDOC.
Pnueli, A. 1977. The temporal logic of programs. In FOCS.
Pnueli, A. 1981. The Temporal Semantics of Concurrent Programs.
Theor. Comput. Sci. 13:45-60.

Schobbens, P--Y., and Raskin, J.-F. 1999. The Logic of Initially
and Next, Complete Axiomatisation and Complexity Issues. Infor-
mation Processing Letters 69(5):221-225.

Sistla, A. P, and Clarke, E. M. 1985. The Complexity of Proposi-
tional Linear Temporal Logics. J. ACM 32(3):733-749.

van der Aalst, W. M. P.; Pesic, M.; and Schonenberg, H. 2009.
Declarative Workflows: Balancing Between Flexibility and Sup-

port. Computer Science - Research and Development 23(2):99—
113.

