
A Semantical Analysis of Second-Order Propositional Modal Logic

F. Belardinelli
Laboratoire IBISC

Université d’Evry, France
belardinelli@ibisc.fr

W. van der Hoek
University of Liverpool, UK

wiebe@liverpool.ac.uk

Abstract

This paper is aimed as a contribution to the use of formal
modal languages in Artificial Intelligence. We introduce a
multi-modal version of Second-order Propositional Modal
Logic (SOPML), an extension of modal logic with proposi-
tional quantification, and illustrate its usefulness as a specifi-
cation language for knowledge representation as well as tem-
poral and spatial reasoning. Then, we define novel notions of
(bi)simulation and prove that these preserve the interpretation
of SOPML formulas. Finally, we apply these results to assess
the expressive power of SOPML.

1 Introduction
Modal logic (Blackburn, de Rijke, and Venema 2001; Black-
burn, van Benthem, and Wolter 2007) has become one of
the most popular formal frameworks in Artificial Intelli-
gence and knowledge representation (van Harmelen, Lifs-
chitz, and Porter 2007). There is a number of reasons for
this. At the core of the semantics of modal logic lies the no-
tion of world, or state. Indeed, the notion of state is very
natural when studying computational concepts, i.e., systems
evolving over time, or notions of agency (states that are pre-
ferred, desired, or epistemically possible) and of interaction
(e.g., states can be winning, losing, terminal, initial, . . . ).
Indeed, distributed computing (Halpern and Moses 1990),
temporal systems (Manna and Pnueli 1992), multi-agent
systems (van der Hoek and Wooldridge 2008) and game the-
ory (van der Hoek and Pauly 2006) have all been studied
within modal logic, and this list is by no means exhaus-
tive. Importantly, the states in the models for modal logic
are connected by means of indexed relations Ra that model
(program) transitions, epistemic or desired alternatives, or
the effect of possible moves (here, a can represent a specific
program, a dimension of time (say, future or past), an agent,
a move, etc.). Each accessibility relation Ra in the seman-
tics is then paired with a necessity operator [a] in the modal
language, where [a]ϕ may read: after every execution of a,
in each future along dimension a, in every state considered
possible or desired by agent a, or in every state that is the
result of performing move a, ϕ holds.

So, the language of modal logic provides a crisp, variable-
free way of expressing a variety of properties of interest. It
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is important to realise that there is not just one modal logic:
although there is an axiomatisation K that characterises the
class K of validities on all models, this does not mean that
all logics for, say, agency are the same. It only means that
they are extensions of K. As a simple example, the property
[a]ϕ → ϕ (i) seems reasonable when [a] denotes ‘knowing
that’, but is perhaps less desirable when it means ‘believing
that’. One of the reasons for the success of modal logic is
that often, a syntactic scheme corresponds to an additional
constraint on the accessibility relation Ra: in the case of (i),
reflexivity of Ra is, in a precise sense, sufficient and neces-
sary for its validity.

To appreciate this, we use a little bit more detail (precise
definitions are given in Section 2.) Central in the semantics
of modal logic is the notion of Kripke frame F , which in-
cludes a set W of states and some accessibility relations Ra,
for indexes a ∈ I . We can then define a notion of validity |=
on frames and formulate the result mentioned above:

Ra is reflexive iff F |= [a]ϕ → ϕ, for all ϕ (1)

Characterisations like (1) are referred to as correspondence
results (van Benthem 1976), because they establish a corre-
spondence between a first-order property on frames and a
modal validity. Another example of correspondence is that
between ∀x∀y(Ra(x, y) → Rb(x, y)) and [b]ϕ → [a]ϕ
(saying, e.g., that whatever is achieved by program b, is also
achieved by a, or that a knows at least as much as b).

Mathematically elegant and powerful correspondence
theory may be, it also has shortcomings. First note that in
(1), truth is global, i.e., holds throughout the frame. This
means that for instance (using a doxastic/epistemic reading
of (i)), we cannot model situations in which a’s beliefs are
true, but b does not know that: the validity of (i) entails b’s
knowledge of (i). That is, we cannot express that for all ϕ,
we have [a]ϕ → ϕ, while for some ψ, also ¬[b]([a]ψ → ψ)
holds. Notice that in such cases, as well as in (1), quantifica-
tion appears at the meta-, and therefore the outermost, level.
It is therefore impossible to distinguish the following two
situations: in the first, b knows that a has perfect informa-
tion and is a perfect reasoner, therefore, b knows that what-
ever a believes must be correct. The second situation is one
in which b systematically has some way to verify for every
property ϕ, that whenever a believes it, then ϕ is true.

As observed in (Belardinelli and van der Hoek 2015), by
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allowing for quantification over propositions — thus obtain-
ing the language of Epistemic Quantified Boolean Logic
(EQBL), both of these problems can be addressed. To wit,
in the first example, the EQBL formula ∀p([a]p → p) ∧
∃p¬[b]([a]p → p) expresses that all beliefs of agent a are
correct, but b does not know this, or, that although program
a leaves the truth of propositions intact, if we first execute
program b this is no longer the case. The two different read-
ings in the second example can simply be represented by
[b]∀p([a]p → p) and ∀p[b]([a]p → p), respectively. The
reader may recognise the distinction between de dicto and
de re quantification here (Fitting and Mendelsohn 1998).

Finally, at the level of models, it is also impossible to dis-
tinguish the following two situations. The beliefs of agent
a may be correct because the model is reflexive (for Ra),
but it might as well be correct because of some particular
choices for the valuation in that model: take two states u and
v that are a-connected (but the relation is not reflexive). In
this case, in u agent a’s beliefs are correct, but this does not
hold for arbitrary valuations in the model. Since this is what
we effectively quantify over, in u the formula ∀p[a]p → p)
will typically not hold.

The aim of this paper is to re-emphasise the usefulness
of EQBL and indeed, more generally, Second-order Propo-
sitional Modal Logic – SOPML, by building on the line
of (Belardinelli and van der Hoek 2015). In particular, we
aim at developing a tool for SOPML which resembles that
of bisimulation in propositional modal logic: bisimulations
bring to the fore when two models can be considered the
same, and they can be used to test the limits of what can be
expressed: when two models for a language L are bisimi-
lar but disagree on some property Φ ∈ L′, it shows that Φ
is not expressible in L. We also introduce notions of game
which approximate these (bi)simulations. Our aim is to pro-
vide formal tools so as to facilitate the use of SOPML as a
language for knowledge representation, as well as temporal
and spatial reasoning in AI.

Scheme of the paper. In Section 2 we introduce the syn-
tax and semantics of SOPML. The main technical contri-
butions appear in Section 3, where we develop the model-
theoretic notion of (bi)simulation within SOPML, while in
Section 4 we provide game-theoretic correspondents. Sec-
tion 5 illustrates the theoretical contribution through appli-
cations to (in)expressibility results. Finally, in Section 6 we
draw a comparison with the related literature and point to fu-
ture directions of research. For reasons of space, proofs are
omitted.

2 Syntax and Semantics of SOPML

Hereafter we assume a set AP of atomic propositions (or
atoms), and a finite set I of indexes.

Definition 1 (SOPML) The formulas in SOPML are de-
fined in BNF as follows, for p ∈ AP and a ∈ I:

ψ ::= p | ¬ψ | ψ → ψ | [a]ψ | ∀pψ
The language of Second-order Propositional Modal Logic

contains indexed modal formulas [a]φ, for any a ∈ I , whose
informal meaning is that “φ is necessary relatively to a”.

Also, a quantified formula ∀pφ intuitively says that “for all
propositions, φ is true”. The propositional connectives ∧, ∨,
modal operator 〈a〉, and quantifier ∃ are defined as standard.
The name SOPML is related to second-order quantification,
as it will become apparent later on. In particular, SOPML
has been studied in relation to Monadic Second-order Logic
– MSO (ten Cate 2006; Kaminski and Tiomkin 1996).

In this paper we consider also the universal fragment of
SOPML (A-SOPML), defined by the following BNF:

ψ ::= p | ¬p | ψ ∧ ψ | ψ ∨ ψ | [a]ψ | ∀pψ
Notice that in A-SOPML negation applies only to atoms.

Hence, it contains no formula of the form ∃pφ nor 〈a〉φ.
To provide a meaning to SOPML formulas we introduce

multi-modal Kripke frames and models.

Definition 2 (Kripke frame) A Kripke frame is a tuple
F = 〈W,D,R〉 where

• W is a set of possible worlds;
• D is the domain of propositions, i.e., a subset of 2W ;
• R : I → 2W×W assigns a binary relation on W to each

index in I .

As standard in propositional modal logic – PML (Black-
burn, de Rijke, and Venema 2001), for every index a ∈ I , Ra

is an accessibility relation between worlds in W . In addition,
Def. 2 includes a set D ⊆ 2W of “admissible” propositions
to interpret atoms and quantifiers. Clearly, the Kripke frames
in Def. 2 are related to general frames (Blackburn, de Rijke,
and Venema 2001; Mares and Goldblatt 2006). However,
there are some notable differences. Firstly, in general frames
the domain D of propositions is a boolean algebra with oper-
ators. Secondly, the language interpreted on general frames
is usually a plain modal logic, while here we address quan-
tification as well. This makes our framework strictly more
expressive than general frames. Finally, for each index a ∈ I
and w ∈ W , we define Ra(w) = {w′ | Ra(w,w

′)}.
To assign a meaning to SOPML formulas we define as-

signments as functions V : AP → D. Given a set U ∈ D,
the assignment V p

U assigns U to p and coincides with V
on all other atoms. Notice that atoms can only be assigned
propositions in D ⊆ 2W . A (Kripke) model is then defined
as a pair M = 〈F , V 〉.

In the rest of the paper we analyse particular classes of
Kripke frames and models.

Definition 3 A Kripke frame F is
boolean iff D is a boolean algebra, i.e., it is closed under

intersection, union and complementation
full iff D = 2W

A Kripke model M = 〈F , V 〉 is boolean (resp. full) when-
ever the underlying frame F is.

Since the interest in literature and applications has fo-
cused on the classes above (Fine 1970; Mares and Goldblatt
2006), we will pre-eminently analyse them in the follow-
ing. A model is full (resp. boolean) whenever the underlying
frame is.

We finally define the notion of satisfaction for SOPML.
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Definition 4 (Semantics of SOPML) We define whether
model M = 〈F , V 〉 satisfies formula ϕ at world w, or
(M, w) |= ϕ, as follows (clauses for propositional connec-
tives are omitted as straightforward):
(M, w) |= p iff w ∈ V (p)
(M, w) |= [a]ψ iff for all w′ ∈ Ra(w), (M, w′) |= ψ
(M, w) |= ∀pψ iff for all U ∈ D, (〈F , V p

U 〉, w) |= ψ

We now introduce standard notions of truth and valid-
ity to be used hereafter. We write (F , V, w) |= φ for
(〈F , V 〉, w) |= φ. Then, a formula φ is true at w, or
(F , w) |= φ, iff (F , V, w) |= φ for every assignment V ;
φ is valid in a frame F , or F |= φ, iff (F , w) |= φ for every
world w in F ; φ is valid in a class K of frames, or K |= φ,
iff F |= φ for every F ∈ K.

Hereafter we consider classes Kall of all Kripke frames,
Kbool of all boolean frames, and Kfull of all full frames.
If we define Th(K) = {φ ∈ SOPML | K |= φ}, then
we remark without proof that Th(Kall) ⊂ Th(Kbool) ⊂
Th(Kfull). Hence, these are all distinct classes of validities.
Example 1 To illustrate the expressive power of SOPML in
knowledge representation, we contrast it with Comparative
Epistemic Logic – CEL (van Ditmarsch, van der Hoek, and
Kooi 2012). CEL extends the language of PML with formu-
las a � b, the intuitive interpretation of which is: agent b
knows at least as much as agent a. Semantically, the clause
for satisfaction of such formulas at world w in model M is
given as follows:

(M, w) |= a � b iff Rb(w) ⊆ Ra(w) (2)

In this sense a � b also expresses a local property of
frame F , namely the inclusion Rb(w) ⊆ Ra(w). The com-
parison between a’s and b’s knowledge can be recast in
SOPML as

∀p(Kap → Kbp) (3)
where Ka is the standard notation for modal operator [a]
in epistemic contexts. In particular, the RHS of (2) is tanta-
mount to the satisfaction of (3) at w, whenever model M is
full. More precisely, for generic models M we have that

(M, w) |= a � b ⇒ (M, w) |= ∀p(Kap → Kbp)

and the converse holds for full M. As a result, formulas a �
b and (3) have the same meaning in the class of full models,
and therefore CEL can indeed be expressed in SOPML, as
detailed in (Belardinelli and van der Hoek 2015).

Moreover, SOPML allows us to make distinctions that are
not expressible in PML. Related to the example in the intro-
duction, in SOPML we can state that b knows that a’s beliefs
are not truthful by using the SOPML formula

Kb∃p(Bap ∧ ¬p) (4)

Notice that (4) expresses a de dicto reading of quantifi-
cation w.r.t. agent b’s knowledge, that is, b knows that there
exists some fact believed by a, which is false, possibly with-
out being able to explicitly point out the actual content of a’s
false belief. On the other hand, b could actually be aware of
some fact, which is believed by a but false, as expressed in
the following de re formula:

∃pKb(Bap ∧ ¬p) (5)

u1

u2

w1

w2

b

a

a
b

b

(a) frame F
u′w′ a

b

(b) frame F ′

Figure 1: Frames F and F ′ in Example 1.

We remark that (4) and (5) are not equivalent in general,
being (5) strictly stronger than (4).

Specifically, to account for the difference between (4) and
(5), consider frame F in Fig. 1(a), where the W - and R-
components are as depicted, and D = {{w} | w ∈ W}.
Clearly, (F , V, w1) |= Bap∧¬p for V (p) = {u1}, and sim-
ilarly (F , V ′, w2) |= Bap ∧ ¬p for V ′(p) = {u2}. Hence,
(F , w) |= (4) for w ∈ {w1, w2}. On the other hand, for no
U ∈ D, (F , V p

U , w) |= Bap ∧ ¬p. Therefore, (F , w) 
|= (5)
for w ∈ {w1, w2}. As a result, in SOPML we can distin-
guish the two readings (4) and (5) of agent b’s higher-level
knowledge.

Finally, consider frame F ′ in Fig. 1(b) with D′ = {{w′} |
w′ ∈ W ′}. We can check that (F ′, w′) |= (5) (and (4) as
well). However, F and F ′, taken as frames for PML (i.e.,
supressing the domains D and D′ of quantification, and us-
ing only the language of PML), are bisimilar (Blackburn,
de Rijke, and Venema 2001), with bisimulation relation H
s.t. H(w′, wi) and H(u′, ui) for i ∈ {1, 2}. Hence, F and
F ′ cannot be distinguished by any PML formula, implying
that the de re formula (5) cannot be expressed in PML. �

3 A Model-Theoretic Analysis of SOPML

In this section we investigate the expressive power of
SOPML by introducing truth-perserving (bi)simulations re-
lations. In particular, since truth for SOPML formulas de-
pends not only on assignments to atoms, but also on struc-
tural features of frames (namely, the set D of allowed propo-
sitions), (bi)simulations have to be defined on frames.

We start with some definitions. Given a relation σ ⊆ W ×
W ′ and U ⊆ W , U ′ ⊆ W ′, let σ(U) = {w′ ∈ W ′ |
σ(w,w′) for some w ∈ W} and σ−1(U ′) = {w ∈ W |
σ(w,w′) for some w′ ∈ W ′}.

Definition 5 (Frame Simulation) Let F = 〈W,D,R〉 and
F ′ = 〈W ′, D′, R′〉 be frames. A simulation is a relation
σ ⊆ W ×W ′ such that

1. σ(w,w′) implies
(a) for every v ∈ W , a ∈ I , if Ra(w, v) then for some

v′ ∈ R′
a(w

′), σ(v, v′);
(b) for every U ∈ D, w ∈ U iff w′ ∈ σ(U).

2. for every U ∈ D, σ(U) ∈ D′;

A state w′ simulates w, or w � w′, iff σ(w,w′) holds
for some simulation σ ⊆ W × W ′. Generally, the rela-
tion � is not a simulation. To see this, consider frames,
F1 = 〈{w1, w2}, {{w1}, {w2}}, {(w1, w2), (w2, w1)}〉,
and F2 = 〈{x1, x2}, {{x1}, {x2}}, {(x1, x2), (x2, x1)}〉.
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Obviously, the two frames are isomorphic. Now, for U =
{w1}, by definition � (U) is equal to {x1, x2}, as both x1,
x2 can be chosen as the image of w1. However, {x1, x2} /∈
D2. Nonetheless, � is a preorder, i.e., a reflexive and tran-
sitive relation. Finally, a frame F ′ simulates F , or F � F ′,
iff for every w ∈ W , w � w′ for some w′ ∈ W ′.

We illustrate the newly introduced notion by an example.
Example 2 Consider frames F = 〈W,R,D〉 and F ′ =
〈W ′, R′, D′〉 over I = {a, b, c}, depicted in Fig. 2, with
• W = {w1, w2, w3};
• Ra = {(w1, w3), (w3, w1)}, Rb = {(w1, w2), (w2, w1)},
Rc = {(w2, w3), (w2, w3)};

• D = 2W ;
• W ′ = {us | s is a finite sequence on {1, 2, 3} starting

with 1, with no adjacent repetition};
• for every i ∈ I , R′

i = {(us, us′) | s′ = s ·m and
Ri(wlast(s), wm)};

• let U ′
n = {us | last(s) = n}, then D′ is the boolean

algebra having U ′
1, U ′

2 and U ′
3 as atoms.

Intuitively, frame F can be thought of as a scenario where
robots a, b, and c move around locations w1, w2, w3 (robot a
moves between w1 and w3, etc.). We check that the relation
σ ⊆ W × W ′ such that σ(wn, us) holds iff last(s) = n,
is a simulation. Firstly, if σ(wn, us) and Ri(wn, wm) then
s′ = s·m is such that R′

i(us, us′) and σ(wm, us′). Secondly,
if σ(wn, us) then last(s) = n. Hence, for every U ∈ D,
us ∈ σ(U) implies that for some wk ∈ U , σ(wk, us), that is,
last(s) = k = n and wn ∈ U . Thirdly, for every U ∈ D, the
set σ(U) = {us | last(s) = n and wn ∈ U} =

⋃
wn∈U U ′

n

belongs to D′.
Finally, we observe that for every wn ∈ W , σ(wn, us) for

last(s) = n. Thus, frame F ′ simulates F . �
Consider now the following remark on the relation be-

tween simulations and properties of frames.
Remark 1 If a frame F ′ simulates a boolean (resp. full)
frame F , then F ′ need not be boolean (resp. full). Nor F ′
being boolean (resp. full) implies that F is also boolean
(resp. full). �

Hence, similar frames need not to belong to the same
class. Below we will compare these results with those avail-
able for bisimulations.

We now state that simulations preserve the satisfaction of
the universal fragment of SOPML.
Theorem 1 If w � w′, then for all ϕ in A-SOPML,

(F ′, w′) |= ϕ implies (F , w) |= ϕ

As a direct consequence of Theorem 1 we obtain the fol-
lowing corollary.
Corollary 2 If F � F ′, then for all ϕ in A-SOPML,

F ′ |= ϕ implies F |= ϕ

As a result, the notion of simulation introduced in Def. 5
preserves the universal fragment of SOPML, similarly to the
case for standard simulations and PML.

Simulations can naturally be extended to bisimulations.
Also in this case, our focus is at the frame level.

w1

w2 w3

c

ab

(a) the Kripke frame F .

u1

u12 u13

u121

u123 u132

u131· · ·

· · ·

· · ·

· · ·
... ...

...

...

ab

b
c c

a

b

a c
a b

c

a

b

(b) the Kripke frame F ′.

Figure 2: frames F and F ′ in Example 2. D components are
omitted for clarity.

Definition 6 (Frame Bisimulation) Let F = 〈W,D,R〉
and F ′ = 〈W ′, D′, R′〉 be frames. A bisimulation is a re-
lation β ⊆ W ×W ′ such that both β and converse β−1 are
simulations. That is,

1. β(w,w′) implies
(a) for every v ∈ W , a ∈ I , if Ra(w, v) then for some

v′ ∈ R′
a(w

′), β(v, v′);
(b) for every U ∈ D, w ∈ U iff w′ ∈ β(U);
(c) for every v′ ∈ W ′, a ∈ I , if R′

a(w
′, v′) then for some

v ∈ Ra(w), β(v, v′);
(d) for every U ′ ∈ D′, w′ ∈ U ′ iff w ∈ β−1(U ′);

2. for every U ∈ D, β(U) ∈ D′;
3. for every U ′ ∈ D′, β−1(U ′) ∈ D.

States w and w′ are bisimilar, or w ≈ w′, iff β(w,w′)
holds for some bisimulation β ⊆ W ×W ′. Notice that rela-
tion ≈ is not necessarily a bisimulation on W×W ′, similarly
to what shown above for simulations, but it is an equivalence
relation. Finally, frames F and F ′ are bisimilar, or F ≈ F ′,
iff (i) for every w ∈ W , w ≈ w′ for some w′ ∈ W ′; and (ii)
for every w′ ∈ W ′, w ≈ w′ for some w ∈ W .

Example 3 Notice that frames F and F ′ in Example 2 are
actually bisimilar. To prove this fact, we state that the con-
verse relation σ−1 ⊆ W ′ × W such that σ−1(us, wn) iff
last(s) = n, is also a simulation. �

We now state the following remark on the relationship be-
tween properties of frames and bisimulations.

Remark 2 Suppose that F and F ′ are bisimilar. Then, F is
boolean iff F ′ is. However, if F is full, then F ′ need not to
be full. Nor F ′ being full implies that F is also full. �
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Compare the situation for bisimulations with the weaker
results available in Remark 1 for simulations. Specifically,
bisimulations preserve the class of boolean frames.

We now state the main preservation result of this section.
Theorem 3 If w ≈ w′, then for every formula ϕ in SOPML,

(F , w) |= ϕ iff (F ′, w′) |= ϕ.

We can now infer that bisimulations in SOPML are
‘stronger’ then those for PML: whereas we noted that the
frames of Fig. 1 are bisimilar in PML, as a result of Theo-
rem 3, they are not bisimilar in the SOPML sense.

As a consequence of Theorem 3 we obtain the following.
Corollary 4 If F ≈ F ′, then for all ϕ in SOPML,

F |= ϕ iff F ′ |= ϕ

Discussion. We now compare our definition of
(bi)simulation for SOPML, with the notion of (bi)simulation
for PML (Blackburn, de Rijke, and Venema 2001). Observe
that if a frame F ′ simulates F in SOPML, with simulation
relation σ, then for every model M = 〈F , V 〉 based on
F , model M′ = 〈F ′, σ(V )〉 on F ′ PML-simulates M.
In particular, if σ(w,w′) then for every v ∈ W , a ∈ I ,
Ra(w, v) implies that for some v′ ∈ R′

a(w
′), σ(v, v′) by

condition 1(a) in Def. 5. Moreover, w ∈ V (p) ∈ D iff
w′ ∈ σ(V )(p) ∈ D′ by conditions 1(b) and 2. Therefore,
if M′ satisfies any universal formula φ in PML, then φ
also holds in M. Hence, Def. 5 of simulation for frames
in SOPML is really a generalisation of the model-theoretic
notion in PML. Furthermore, if frames F ′ and F are
bisimilar in SOPML, with bisimulation relation β, then
models M = 〈F , V 〉 and M′ = 〈F ′, β(V )〉 are also
bisimilar in PML. Likewise, models M′ = 〈F ′, V ′〉 and
M = 〈F , β−1(V )〉 are PML-bisimilar as well. Also in
this case, SOPML bisimulations on frames generalise PML
bisimulations on models.

4 Simulation Games for SOPML

In this section we present simulation games for SOPML.
Similarly to the case for PML, the existence of a winning
strategy for Duplicator guarantees the preservation of (uni-
versal) SOPML formulas. We start by considering simula-
tion games played by Spoiler and Duplicator.

Definition 7 (Simulation Game) A simulation game G
starting from pointed frames (F , w) and (F ′, w′) is defined
as follows. Let (F , v, �U), (F ′, v′, �U ′) be the current state of
the game, where v ∈ W (resp. v′ ∈ W ′) and �U (resp. �U ′) is
a possibly empty sequence of sets in D (resp. D′).

Then the game proceeds according to the following rules:
1. Either Spoiler picks a set U belonging to D and Dupli-

cator has to reply with a set U ′ belonging to D′ such
that v ∈ U iff v′ ∈ U ′. The new state of the game is
(F , v, �U · U), (F ′, v′, �U ′ · U ′).

2. Or, for some a ∈ I , Spoiler picks a state u ∈ Ra(v) and
Duplicator has to reply with state u′ ∈ R′

a(v
′) such that

for every i, u ∈ Ui iff u′ ∈ U ′
i . The new state of the game

is (F , u, �U), (F ′, u′, �U ′).

If Duplicator cannot match a Spoiler’s move, then Spoiler
wins the game. Otherwise, Duplicator wins the game. A
winning strategy is a strategy whereby Duplicator can re-
ply to all of Spoiler’s move, thus winning the game. It can
be shown that if state w′ ∈ F ′ simulates w ∈ F , Duplicator
has a winning strategy in game (F , w), (F ′, w′).

Lemma 5 If state w′ is similar to w, then Duplicator has a
winning strategy for the game starting in (F , w), (F ′, w′).

On the other hand, we state without proof that the existence
of a winning strategy for Duplicator is not sufficient to guar-
antee the existence of a simulation.

Nonetheless, winning strategies enforce the following
preservation result.
Theorem 6 If Duplicator has a winning strategy for the
game starting in state (F , w), (F ′, w′), then for every uni-
versal formula ϕ in A-SOPML,

(F ′, w′) |= ϕ implies (F , w) |= ϕ

Thus, even though simulation games are strictly weaker
than simulations, they still preserve A-SOPML.

We also introduce a generalisation to bisimulation games.
Definition 8 (Bisimulation Games) A bisimulation game
G starting from pointed frames (F , w) and (F ′, w′) is de-
fined as follows. Let (F , v, �U), (F ′, v′, �U ′) be the state of
the game, where v ∈ W (resp. v′ ∈ W ′) and �U (resp. �U ′) is
a possibly empty sequence of sets in D (resp. D′).

Then the game proceeds according to the following rules:
1. Either Spoiler picks a set U belonging to D (resp. U ′ ∈

D′) and Duplicator has to reply with a set U ′ belonging
to D′ (resp. U ∈ D) such that v ∈ U iff v′ ∈ U ′. The new
state of the game is (F , v, �U · U), (F ′, v′, �U ′ · U ′).

2. Or, for some a ∈ I , Spoiler picks a state u ∈ Ra(v)
(resp. u′ ∈ R′

a(v
′)) and Duplicator has to reply with state

u′ ∈ R′
a(v

′) (resp. u ∈ Ra(v)) such that for every i,
u ∈ Ui iff u′ ∈ U ′

i . The new state of the game is (F , u, �U),
(F ′, u′, �U ′).
As above, if Duplicator cannot match a Spoiler’s move,

then Spoiler wins the game. Otherwise, Duplicator wins the
game. Informally, Duplicator’s role is to maintain that the
two pointed frames satisfy the same formulas: if Spoiler can
reach a situation in the game with two ‘different’ states it
means that either Duplicator did not play optimally, or that
the two pointed frames disagree on a formula. A winning
strategy is defined as usual.
Theorem 7 If Duplicator has a winning strategy for the
game starting in state (F , w), (F ′, w′), then for every for-
mula ϕ in SOPML,

(F ′, w′) |= ϕ iff (F , w) |= ϕ

We conclude by discussing the two groups of preserva-
tion results. Both Theorems 1 and 3 and Theorems 6 and 7
provide results on the preservation of (universal) SOPML.
However, (bi)simulations define global concepts, as these
are defined on the whole state space W ×W ′; while games
are local, as at each point in the game the players have only
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a local view on the frames, centred on a couple of states.
Hence, the nature of these two notions is profoundly differ-
ent, with games provably weaker than (bi)simulations, and
it is likely that they have different applications. For instance,
(bi)simulations are used to prove inexpressibility results (as
in the following section); while games can be used to show
that two frames are not bisimilar, by providing moves for
Spoiler to which Duplicator cannot reply.

5 Bisimulations and Expressivity

In this section we explore the expressivity of SOPML, also
by using the (bi)simulations introduced in Section 3. Here-
after we focus on temporal and spatial properties normally
used in AI. Hereafter we say that a property P is expressible
in a language L and class K of frames iff for some formula
φ ∈ L, K |= φ iff every frame in K has property P . Some-
times we omit either L or K, whenever these are clear by the
context.

First of all, we remind that the topological completeness
of the real numbers is not expressible in PML: the proof of
this fact makes use of a propositional bisimulation between
the structure (R, <) of reals and the rationals (Q, <) (Bal-
tag and Smets 2014). On the other hand, in SOPML we can
express completeness by means of the following formula,
where the modal operators � and ♦ are interpreted on the
strict linear order <, while �φ (resp. �φ) are shorthands for
φ ∧�φ (resp. φ ∨ ♦φ):

∀p ((�p ∧ ��¬p) → (6)
(�(p ∧�¬p)∨ (7)

∃q ((q ↔ �¬p)∧ (8)
∃s (�s ∧�(s → q)∧ (9)

�(¬s ∧ q → �¬s) ∧�(s → �¬s))))) (10)

This formula states that (6) for every non-empty and up-
per bounded set p, either (7) p has a greatest element, or (8)
there exists a set q of “strict” upper bounds, (9) which in-
cludes a non-empty subset s (10) that is a singleton and the
least upper bound.

On the other hand, by using simulations we immediately
obtain the following inexpressibility result.
Lemma 8 Topological completeness is not expressible in
the universal fragment A-SOPML.

Clearly, the identity relation is a simulation from (Q, <)
to (R, <), i.e., (Q, <) � (R, <), and if completeness were
expressible as an A-SOPML formula φ, (R, <) |= φ would
imply (Q, <) |= φ, a contradiction.

Furthermore, consider the graph-theoretic property of 3-
colorability, as formalised by the following SOPML for-
mula, where operator � is interpreted on the edges E ⊆ W 2

of a graph G = 〈W,E〉, while �+ is interpreted on the tran-
sitive closure of E:

∃p1, p2, p3(�+(p1 ∨ p2 ∨ p3) ∧ (11)
∧

1,2,3

�+(pi → ¬♦pi)) (12)

The validity of this formula in a vertex v ∈ G implies that
(11) all vertices in the subgraph generated by v are either p1,

p2, or p3, and (12) no two adjacent vertices have the same
colour. Thus, the subgraph generated by v is 3-colorable.
Observe that frame F in Fig. 2(a) is trivially 3-colorable,
and since states w1 and u1 are bisimilar, as an immediate
consequence of Theorem 3, also frame F ′ is 3-colorable.

To illustrate further the (in)expressivity of SOPML
through simulations, we consider one more graph-theoretic
property: the existence of a Hamiltonian path, i.e., a path that
visits all states exactly once. Again, frame F in Fig. 2(a) has
a Hamiltonian path w1, w2, w3. On the other hand, frame F ′
in Fig. 2(b) has no such path. Since F and F ′ are bisimilar,
the following result immediately follows.
Lemma 9 The property of having a Hamiltonian path is not
expressible in SOPML.

Indeed, it is known that such property is expressible in
the language MSO2, an extension of MSO, which is strictly
more expressive than SOPML.

As a further example, we prove that neither finiteness
nor infinity of the state space W are expressible in the
class of boolean frames. To see this, consider frames F1 =
〈N, succ, {N, ∅}〉 and F2 = 〈{w′}, {(w′, w′)}, {{w′}, ∅}〉,
which are clearly boolean. In particular, the relation β that
maps every natural n ∈ N to w′ is a SOPML bisimulation.
Equivalently, it is easy to see that Duplicator has a winning
strategy in game (F1, n), (F2, w

′), for every n ∈ N: Du-
plicator has only to reply with w′ to any m ∈ N chosen by
Spoiler, and with {W ′} (resp. ∅) whenever Spoiler chooses
N (resp. ∅). Thus, F1 and F2 validate the same SOPML for-
mulas. However, F1 is infinite while F2 is finite.
Lemma 10 Neither finiteness nor infinity are expressible in
boolean frames.

To conclude, we show that finiteness is not even express-
ible in full frames. Let [n] be the set {0, . . . , n}, Fn the
frame 〈[n], succ, 2[n]〉, and FN = 〈N, succ, 2N〉 the frame
isomorphic to the natural numbers. Both Fn and FN are full.
Let F be the class of all frames Fn, for n ∈ N, and consider
the following result.
Lemma 11 Th(F ) is a subset of Th(FN).

By Lemma 11, if φ expressed ‘being finite’, then it would
be valid in F , and hence also in FN, a contradiction. Thus,
finiteness is not expressible even in the class of full frames.

6 Conclusions

In this paper we initiated a semantical analysis of Second-
order Propositional Modal Logic via (bi)simulations. We de-
veloped model-theoretic techniques for SOPML: we intro-
duced notions of (bi)simulation and proved that they pre-
serve the satisfaction of (universal) SOPML. Then, we de-
fined game-theoretical counterparts to (bi)simulations and
showed that, although weaker, these also preserve the truth
of SOPML formulas and its universal fragment. We re-
marked that, while set-theoretical (bi)simulations might be
more appropriate to prove inexpressibility results, their
game-theoretic counterparts might be better computation-
ally to actually show that two frames are not bisimilar. Fi-
nally, we used (bi)simulations to obtain some inexpress-
ibility results. Specifically, we showed that being finite and
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having a Hamiltonian path are not expressible in SOPML;
while other properties, viz. topological completeness and 3-
colorability, are expressible. We conclude that SOPML can
indeed be used as a modelling language for Artificial In-
telligence, particularly for temporal and spatial reasoning,
as well to describe higher-level knowledge of agents, that
is, the knowledge agents have about other agents’ knowl-
edge and beliefs. In this respect, the development of model-
theoretic techniques is key for applications.

Related Work. This contribution is inspired by a series of
papers on LPML, an extension of propositional modal logic
to express local properties (van Ditmarsch, van der Hoek,
and Kooi 2009; 2011; 2012). But instead of introducing an
ad hoc language (with an adjustment for each local prop-
erty one has in mind) such as Comparative Epistemic Logic,
here we make use of (multi-modal) Second-order Proposi-
tional Modal Logic. Mono-modal SOPML was first consid-
ered by Bull and Fine (Bull 1969; Fine 1970), mainly in re-
lation with axiomatisability and (un)decidability questions.
The high complexity (of satisfiability) of SOPML and some
non-axiomatisability results might explain why SOPML has
been studied far less than PML. More recently, the formal
properties of SOPML have been investigated in the literature
on modal logic. In (Kaminski and Tiomkin 1996) the authors
proved that the expressive power of SOPML (for modali-
ties weaker than 4.2) is the same as MSO; while (ten Cate
2006) provided SOPML with analogues of the van Benthem-
Rosen and Goldblatt-Thomason theorems. More directly re-
lated to the present contribution, (Belardinelli and van der
Hoek 2015) introduced Epistemic Quantified Boolean Logic
(EQBL), an epistemic variant of SOPML, and provided ax-
iomatisability and model-checking results. Differently from
the reference, here we tackle general SOPML, including
temporal and spatial reasoning, define original notions of
(bi)simulation, and apply these model-theoretic techniques
to analyse the expressivity of the language.

Future Work. From the point of view of logic-based AI,
or, more specifically, knowledge representation and reason-
ing, it is important to address the question of what it means
for a formula to follow from a knowledge base. We like to
address the issue of entailment and the subsequent questions
it raises in an AI context. Moreover, since SOPML allows
for quantification in the object language, it would be inter-
esting to extend SOPML and EQBL with a notion of an-
nouncement, and then compare it to the logic of arbitrary
announcement logic (Balbiani et al. 2007), in terms of ex-
pressivity. More generally, quantification in Dynamic Epis-
temic Logic (van Ditmarsch, van der Hoek, and Kooi 2007)
seems an interesting venue of research, where quantification
can be over formulas (‘after a reads the latter, he knows the
same as b’) or over new information (‘no matter what a will
be told, he won’t believe that he knows more than b’).
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