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Abstract

We introduce normalized nonnegative models (NNM)
for explorative data analysis. NNMs are partial con-
vexifications of models from probability theory. We
demonstrate their value at the example of item recom-
mendation. We show that NNM-based recommender
systems satisfy three criteria that all recommender sys-
tems should ideally satisfy: high predictive power, com-
putational tractability, and expressive representations of
users and items. Expressive user and item representa-
tions are important in practice to succinctly summarize
the pool of customers and the pool of items. In NNMs,
user representations are expressive because each user’s
preference can be regarded as normalized mixture of
preferences of stereotypical users. The interpretabil-
ity of item and user representations allow us to arrange
properties of items (e.g., genres of movies or topics of
documents) or users (e.g., personality traits) hierarchi-
cally.

Introduction
Recommender systems are algorithms designed to recom-
mend items to users. Good recommender systems address
the following three partially conflicting objectives: (1) pre-
dictive power (despite very sparse and noisy data), (2) com-
putational tractability (despite quickly growing numbers of
users and items), (3) interpretability (to allow for feedback,
market analysis and visual representations). Here, to ad-
dress those difficulties, we are going to adopt the system-
state-measurement paradigm in the form of a class of mod-
els which we call normalized nonnegative models (NNM).

Adopting the system-state-measurement paradigm
amounts to making a clear distinction between the ‘state
of a system’ and the ‘measurement device’ used to probe
that system. The success of this paradigm in science and
engineering motivates its application in item recommen-
dation and beyond. In the study of recommendation the
system is that abstract part of our thinking that determines
whether we like or dislike an item. The state of that system
varies from person to person; it forms the description of the
individual preferences. The measurements that we perform
on the system are questions of the form “Do you like the
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movie Jurassic Park?”. Each measurement probes our taste
(e.g., movie taste) and measuring sufficiently many diverse
questions allows to get an idea of the preferences/opinion
of a person. In the natural sciences and engineering the
system is oftentimes described in terms a sample space,
the state of the system is probability distribution on that
sample space and a measurement is a random variable.
Hence, ideally, to adopt that picture, we need to compute the
following building blocks: (1) an effective sample space,
(2) a probability distribution for each user to describe that
user’s taste, (3) a random variable for each item to describe
questions like “How do you rate the movie Ex Machina?”.
To arrive at NNMs we simply convexify the third of
these building blocks, i.e., the space of random variables.
This convex relaxation will allow us to compute NNMs
through alternating convex optimization. In this manner,
approximate inference of NNMs becomes computationally
tractable.

The main strength of NNMs are highly interpretable user
and item representations. The way we represent users allows
us to regard users as normalized mixtures of a small number
of user stereotypes. We provide strategies to characterize
those stereotypical users in words so that those stereotypes
can be understood intuitively by people who are unfamil-
iar with data analysis. Hence, NNMs allow everybody to
interpret users’ behaviors as mixtures of well-characterized
stereotypical behaviors. On the other hand, the way we rep-
resent items allows us to infer hierarchical orderings of item
categories like movie genres or topics of documents. This
is how we address the criterion interpretability. Of course,
topic models like those based on latent Dirichlet allocation
(LDA) have also been used to derive said expressive descrip-
tions of users and items. We explain this in much more detail
when discussing related work towards the end of this paper.

Finally, we evaluate the last remaining criterion predictive
power in numerical experiments. We show that in mean-
average-error, NNMs outperform methods like SVD++ (Ko-
ren 2008) on MovieLens datasets. This indicates that the
high level of interpretability of NNMs comes not at the price
of sacrificing predictive power.

Throughout the paper we introduce NNMs through their
application in item recommendation. But we hope that our
presentation will be clear enough to convince the reader that
the scope of NNMs is not limited to recommendation—in

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

1081



the very same sense that the scope of probability theory is
not limited to one particular branch of science.

Notation
For n ∈ N, we set [n] = {1, ..., n}. Throughout, u ∈ [U ]
labels users, i ∈ [I] labels items and z ∈ [Z] denote pos-
sible ratings (e.g., z ∈ [5] in case of 5-star ratings). By
R ∈ [Z]U×I we denote the complete rating matrix, i.e.,
Rui ∈ [Z] is the rating that user u provides for item i. In
practice, we only know a subset of the entries of R. We use
Γ ⊆ [U ] × [I] to mark the known entries, i.e., (u, i) ∈ Γ if
Rui is known a priori. We use Δ = {�p ∈ R

D
+ |‖�p‖1 = 1}

to denote the probability simplex. A finite probability space
is described in terms of a sample space Ω = {ω1, ..., ωD},
probability distributions �p ∈ Δ and random variables Ê with
some alphabet [Z]. Recall that random variables are func-
tions Ê : Ω→ [Z].

Probability theory recap
According to Kolmogorov, a random experiment with finite
sample space is described by the following triple:
• A sample space Ω = {ω1, ..., ωD}. The elements ωj de-

note elementary events.
• A probability distribution �p ∈ R

D
+ with

∑
j(�p)j = 1, i.e.,

�p is an element of the probability simplex Δ.

• A random variable Ê, i.e., a function Ê : Ω → {1, ..., Z}
for some alphabet size Z ∈ N.

We denote by P[Ê = z] the probability of the event {ω ∈
Ω|Ê(ω) = z}. Therefore,

P[Ê = z] = P[Ê−1(z)] =
∑

ω∈Ê−1(z)

pω (1)

where Ê−1(z) ⊆ Ω denotes the pre-image of z under the
map Ê. The expression (1) can be rewritten using indicator
vectors. For that purpose we define �Ez by

(
�Ez

)
j
=

{
1, if ωj ∈ Ê−1(z)
0, otherwise.

(2)

It follows that P[Ê = z] = �ET
z �p ,i.e., probabilities

for measuring specific outcomes of random variables can
be expressed in terms of inner products between two D-
dimensional vectors. By (2),

∑
z
�Ez = (1, ..., 1)T .

Examples. For an unbiased coin, �p = (1/2, 1/2)T ,
�Eheads = (1, 0)T and �Etails = (0, 1)T . Consequently,
P[Ê = heads] = (1/2, 1/2)(1, 0)T = 1/2. For a biased
4-sided coin, we may have �p = (1/4, 1/4, 1/8, 3/8)T and
�Ez such that ( �Ez)j := δzj . It follows for example that
P[Ê = 1 or 4] = �pT ( �E1 + �E4) = 5/8.

Normalized nonnegative models
We adopt the system-state-measurement paradigm. The sys-
tem we are interested in is the part of our mind that deter-
mines the outcome to the question “Do you like item i?”

(i ∈ [I]). For each user u ∈ [U ] this system is in some state
described by a distribution �pu ∈ Δ on some unknown sam-
ple space Ω = {ω1, ..., ωD} representing the system. Each
question “Do you like item i?” is modeled in terms of a ran-
dom variable Êi with alphabet [Z] (Z = 5 for 5-star ratings).
We denote by Pu[Êi = z] the probability for user u to rate
item i with z ∈ [Z]. Thus,

Pu[Êi = z] = Pu[Ê
−1
i (z)] = �ET

iz�pu (3)

where �pu models the state of user u and where �Eiz ∈
{0, 1}D is defined by

(
�Eiz

)
j
=

{
1, if ωj ∈ Ê−1

i (z)
0, otherwise.

(4)

By (4),
∑

z
�Eiz = (1, ..., 1)T . We denote by M0 the set of

all valid descriptions ( �E1, ..., �EZ) of a random variable Ê,
i.e.,

M0 =
{
( �E1, ..., �EZ) ∈ {0, 1}D×Z

∣∣∣
∑
z

�Eiz = (1, ..., 1)T
}
.

Allowing for stochastic mixtures of elements of M0 we ar-
rive at the convex relaxation

M =
{
( �E1, ..., �EZ) ∈ R

D×Z
+

∣∣∣∑
z

�Eiz = (1, ..., 1)T
}

of M0. In the remainder, the tuple of vectors(
(�pu)u∈[U ], ( �Eiz)i∈[I],z∈[Z]

)
denotes a normalized nonneg-

ative model (NNM) if �pu ∈ Δ for all users u ∈ [U ] and if
( �Eiz)z∈[Z] ∈ M for all items i ∈ [I]. A NNM captures ob-

servations well if R ≈
(
argmaxz{ �ET

iz�pu}z∈[Z]

)
u∈[U ],i∈[I]

.

Non-categorical
In the previous description of the random variables Êi we
did not make any assumptions on the nature of the outcomes
z ∈ [Z]. Hence, the outcomes z ∈ [Z] are categorical, i.e.,
the outcomes are not ordered (e.g., (z = 3) < (z = 4)) and
the numerical values z ∈ [Z] carry no meaning. This is a
feature of NNMs as it makes them applicable in a very wide
range of settings.

In item recommendation, systems that allow for categor-
ical information are particularly convenient to make use of
side information such as the gender of users. But even if
we only focus on the user-item matrix, systems that allow
for categorical information may generally have an advan-
tage over other systems because 5-star ratings do not come
with a scale. For example, we cannot claim that we prefer a
2-star-item over a 1-star-item to the same extent as we prefer
a 3-star-item over a 2-star-item.

On the other hand, star-ratings are clearly ordered as,
for example, a 4-star-rating is better than a 3-star-rating.
Consequently, we lose information if we treat ratings in a
purely categorical manner. Therefore, to avoid the little-
data-problem we may want to interpret a rating z ∈ [Z] of
an item i by user u as an approximation of P[u likes i], i.e.,

z/Z ≈ P[u likes i]. (5)
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To model this interpretation of users’ ratings, we regard the
random variables Êi (i ∈ [I]) as binary random variables
whose outcomes are interpreted as ‘I like item i’ and ‘I dis-
like item i’, respectively.

NNMs allow for the modeling of categorical variables be-
cause we assigned individual vectors ( �Eiz)z∈[Z] to each of
the outcomes z ∈ [Z]. This can be done in general matrix
factorization (e.g., SVD++), and the potential possibilities
motivate a thorough analysis of the modeling of categorical
variables in terms of general matrix factorization.

Interpretability
One of the reasons for the popularity of models from prob-
ability theory is their interpretability. To make this more
precise, we imagine flipping a coin. The natural probabilis-
tic description of a single coin flip is in terms of a sample
space Ω = {ωheads, ωtails} where ωheads is the event heads
and ωtails is the event tails. We denote by �δheads and �δtails
the deterministic distributions located at ωheads and ωtails, re-
spectively. (For example,

(
�δheads

)
ω
= 1 if ω = ωheads and(

�δheads
)
ω
= 0 otherwise.) Hence, we can easily and clearly

describe the states �δheads and �δtails in terms of words: �δheads is
the state that always returns heads, and �δtails is the state that
always returns tails. It is through those concise descriptions
that we get an intuitive understanding of the states �δheads and
�δtails.

Every possible state �p = (pheads, ptails) of the coin is a
probabilistic mixture of �δheads and �δtails. Since we have an in-
tuitive understanding of what mixtures are, we can thus lift
our intuitive understanding of �δheads and �δtails to arrive at an
intuitive understanding of general states �p = (pheads, ptails).
We think that this is one of the main strengths of probabilis-
tic models and we think that this is one of the main reasons
why those models are so appealing not only to scientists and
engineers but also to people with less mathematical training.

In NNMs the states of users are distributions �pu =∑D
ω=1 pu,ω

�δω where (�δω)k = 1 if ω = k and (�δω)k = 0
otherwise. Hence, we could get a good understanding of
the users’ states if we found ways to describe the elementary
preferences �δω in an intuitive manner. We call those elemen-
tary preferences �δω stereotypes because each user’s prefer-
ence is a mixture of those stereotypes. We next describe ap-
proaches to acquire said intuitive description of stereotypes.

Understanding stereotypes through tags
Oftentimes, we not only have access to users’ ratings of
items but we also have access to side information about
items in terms of tags. For example the MovieLens 1M
dataset provides genre tags for movies; each movie gets as-
signed to (sometimes multiple) genres like Action, Adven-
ture, Animation, etc. Note that we do have an intuitive un-
derstanding of those genres—just as we have an intuitive
understanding of the coin-states �δheads and �δtails. Thus, at
the example of genre tags we explain next, how side infor-
mation can be used to get an intuitive characterization of
stereotypes.

We assume that each movie i is assigned to some genres
gi1, ..., g

i
ni

∈ {g1, ..., gG}. To characterize a stereotype �δω

we want to determine how much the hypothetical user �δω
likes movies of genre g1, movies of genre g2, etc. We make
this precise in terms of the following game to characterize
stereotypes �δω . The game involves a referee and two players
Alice and Bob. For some ω ∈ Ω, Alice’s user vector is
assumed to be �δω . We proceed as follows.
1. Fix a genre g ∈ {g1, ..., gG}. Let i1, ..., im denote all the

movies that have been tagged with g.

2. Bob is given access to Alice’s vector �δω , to g, to
all genre tags

(
gi1, ..., g

i
ni

)
i∈[I] and to all item vectors(

�Eiz

)
i∈[I],z∈[Z]

(z ∈ [2]; z = 1 means ‘like’ and z = 2

means ‘dislike’).
3. The referee draws uniformly at random a movie i∗ from

{i1, ..., im}.
4. By looking up R, the referee checks whether Alice

likes or dislikes i∗. We denote her answer by z∗ ∈
{like, dislike}.

5. Bob guesses z∗. He wins the game if he guesses z∗ cor-
rectly. Otherwise, he loses.
Before we describe how to make use of this game for the

characterization of stereotypical users, we describe Bob’s
strategy. First we note that Bob needs to estimate the prob-
ability for z∗ = 1 and z∗ = 2, respectively. Conditioned on
the event ‘Referee draws i’ we have that P[z∗ = 1 | i] =
�ET
i1�p. The probability that the referee draws i is 1/m be-

cause there are in total m movies associated with g. There-
fore,

P[z∗ = 1] =
∑

i∈{i1,...,im}
P[z∗ = 1 | i] P[i] = �ET

g �p.

where
�Eg :=

1

m

∑
i∈{i1,...,im}

�Ei1.

Hence, Bob computes �ET
g
�δω = Eg,ω . If Eg,ω ≥ 1/2 he

guesses z∗ = 1. Otherwise, he guesses z∗ = 2.
How can this game be used for the characterization of

stereotypes? The number Eg,ω specifies the probability that
the stereotypical user �δω likes a random movie from genre
g. For instance, if Eg,ω ≈ 1 for g ∈ [G] then we know
that the stereotypical user �δω very much likes movies from
genre g. We repeat above game for all g ∈ {g1, ..., gG} and
for all ω ∈ Ω. We arrive at numbers (Eg,ω)g∈[G],ω∈Ω. For
each ω, the tuple (Eg,ω)g∈[G] provides a characterization of
the preferences of the stereotypical user �δω . The characteri-
zation (Eg,ω)g∈[G] is convenient because Eg,ω specifies the
probability for �δω to like a movie from genre g, and because
those genres g are understood intuitively.

Understanding stereotypes without tags
In the previous section we proposed a method for character-
izing stereotypes �δω . That method is applicable whenever
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items come along with interpretable tags. What can we do if
no such tags are available? Assume we only have access to
users’ ratings of items. In those cases we suggest to proceed
by characterizing each of the stereotypical users through a
list of items they like. For a stereotype �δω , those items can
be found by firstly, collecting all items with the property that(
�EiZ

)
ω

≈ 1 (e.g., vectors associated to 5 stars). Denote
those highly rated movies by γω

1 , ..., γ
ω
M . Then, in a second

step, we select from the set {γω
1 , ..., γ

ω
M} those items that

are popular (i.e., known to many people). We arrive at items
γω
m1

, ..., γω
mJ

. To characterize the stereotype �δω , we report
the list γω

m1
, ..., γω

mJ
.

Stereotypes in general matrix factorization models
Let �ru denote user vectors computed in a general matrix fac-
torization model. Computing the convex hull of the cone
spanned by the set {�ru}u∈[U ] we could in principle de-
termine user vectors �ri1 , ..., �riT with the property that for
all �ru there exist coefficients λ1, ..., λT ≥ 0 such that∑T

k=1 λk�rik = �ru. Therefore, as in NNMs, we can still
express every user vector as mixture of other user vectors.

There are, however, at least two major problems with this
approach. Firstly, computing the convex conic hull of the
span of {�ru}u∈[U ] is computationally not tractable; even for
small numbers of users. Secondly, we expect the number T
of extremal rays R�ri1 , ...,R�riT of the convex conic hull to be
very large—independently of D. Therefore, users’ states are
difficult to interpret because they are the mixture of a very
large number of stereotypes. We would like to stress that
for each dimension D, NNMs are efficient as they only use
the least possible number of D stereotypes. For example, if
we only needed D − 1 stereotypes then all vectors could be
restricted to a sub-space of RD and a (D − 1)-dimensional
NNM could be used instead of the D-dimensional NNM.

Hierarchical structure of tags
Assume the considered items are tagged. For instance, as
before, if the items are movies then these tags could spec-
ify which genre each movie belongs to. We denote by
{it1, ..., itmt

} all items that have been tagged with a tag τt
from the set of all tags {τt}t∈[T ]. As before, we describe
tags τt (t ∈ [T ]) in terms of vectors

�Eτt :=
1

mt

∑
i∈{i1,...,imt}

�EiZ , (6)

so that �pTu �Eτt is the probability that user u likes a randomly
chosen item i ∈ {it1, ..., itmt

}. As we are going to see
next, (6) enables us to order tags in a hierarchical manner.

We note that if the tag vectors �Eτt were binary vectors
(i.e., ∈ {0, 1}D), then we would say τt ⊆ τt′ whenever the
support of �Eτt is contained in the support of �Eτt′ . This is
a meaningful definition of ‘⊆’ for tags because if τt ⊆ τt′

then ‘�δω likes τt’ implies ‘�δω likes τt′ ’.
Generally, in NNMs, tag vectors �Eτt are not binary and

therefore, the definition of τt ⊆ τt′ needs to make sense for

non-binary vectors. To find a new definition of ‘⊆’ we note
that in the previous binary setting, τt ⊆ τt′ if and only if

�ET
τt′

�Eτt =
∑
ω∈Ω

(
�Eτt

)
ω
=: ‖ �Eτt‖1. (7)

Condition (7) can never be satisfied if the components of �Eτt

and �Eτt′ are < 1. This can be the case in NNMs. However,
the operational meaning of the condition (7) is preserved un-
der the relaxation

�ET
τt′

�Eτt ≥ (1− ε)‖ �Eτt‖1 (8)

if ε > 0 is small. That is because if the relaxed condition (8)
is satisfied then we still have that most of the weight of �Eτt

is contained in the approximate support of �Eτt′ .
Therefore, we say τt ⊆ε τt′ if condition (8) is satisfied,

and we say τt =ε τt′ if both τt ⊆ε τt′ and τt′ ⊇ε τt.
The collection of all relations ‘⊆ε’ between tags can be

represented graphically in terms of a graph. For that purpose
we interpret the set of tags {τt}t∈[T ] as the vertex set V of
a graph G = (V,E). G contains directed edges defined
through the rule

(τt → τt′) if τt′ ⊆ε τt.

For every choice of ε ∈ [0, 1], the graph G induces an ap-
proximate hierarchical ordering of tags; see figure 3.

Computation of normalized nonnegative
models

Presumably, the simplest approach for computing a NNM
proceeds via alternating constrained optimization to solve

min
�pu∈Δ,(�Eiz)z∈[Z]∈M

∑
(u,i)∈Γ

(
�ET
iz�pu −Rui/Z

)2
, (9)

i.e., the algorithm switches back and forth between optimiz-
ing (�pu)u∈[U ] (keeping ( �Eiz)i∈[I],z∈[Z] fixed) and optimiz-
ing ( �Eiz)i∈[I],z∈[Z] (keeping (�pu)u∈[U ] fixed). Each of these
tasks can be computed efficiently and in parallel. Moreover,
this approach is guaranteed to converge to a local minimum.

In the context of recommendation, training data is typi-
cally subject to a large selection bias: a majority of the rat-
ings are high ratings. This significantly impacts the model
we fit to the data. For example, if all the known entries
(marked by Γ) of the rating matrix R were equal to Z then a
1-dimensional model (user vectors = 1, item vectors = Z)
would lead to zero training error. It is commonly believed
that (u, i) ∈ Γc implies typically that u does not like i. Thus,
during the first 2 iterations, we set the missing entries of R
equal to zero. We believe that this preprocessing leads to
an initialization for alternating constrained optimization that
captures more accurately the ground truth. We arrive at Al-
gorithm 1 to fit NNMs to measured data.

Computational tractability
All of the steps in Algorithm 1 can be parallelized straight-
forwardly. The main bottleneck are large number of sum-
mands in the objective functions of user and item updates.
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Algorithm 1 Alternating constrained least squares for NNM
1: Fix D (e.g., by cross validation).
2: For all u, initialize �pu = �ei where i ∈ [D] is chosen

uniformly at random and where (�ei)j = δij .
3: For all items i, solve the (linearly con-

strained) nonnegative least squares problem
min(�Eiz)z∈[Z]∈M

∑
u:(u,i)∈Γ

(
�ET
iz�pu −Rui/Z

)2
.

4: For all users u, solve the (linearly con-
strained) nonnegative least squares problem
min�pu∈Δ

∑
i:(u,i)∈Γ

(
�ET
iz�pu −Rui/Z

)2
.

5: Repeat steps 3 and 4 until a stopping criteria is satisfied;
e.g., until a maximum number of iterations is reached.
For the first 2 iterations we pretend we knew all of R by
setting unknown entries equal to zero.

With standard methods this becomes a potential issue during
the first two iterations (i.e., preprocessing). There are at least
two loopholes. The easiest solution is in terms of sampling
a fixed number of unknown entries and replacing only those
with zeros. Here, the number of sampled entries should be
comparable to the number of known entries so that we can
compensate for the selection bias towards positive ratings.

Alternatively, we can run Algorithm 1 for a subset of
all users and items. We denote these users and items by
{un}Nn=1 and {im}Mm=1, respectively. If N and M equal
a couple of thousands then we can easily run Algorithm 1;
see section ‘Experiments’. How can we compute represen-
tations of the remaining users and items? To determine user
vectors for u /∈ {un}Nn=1 we simply solve step 4 of Al-
gorithm 1 to determine �pu. We can proceed analogously
to determine representations for i /∈ {im}Mm=1. These sin-
gle small optimization problems can be solved quickly and
therefore, online. The resulting scheme is a two-phase pro-
cedure where we compute the representations of the ‘anchor
users’ {un}Nn=1 and ‘anchor items’ {im}Mm=1 offline, and
where we compute or update all other user and item repre-
sentations online. Of course, this requires selecting the sets
{un}Nn=1 and {im}Mm=1 so that the anchor items are popular
(→ u knows some of them), and so that the anchor users rate
lots of items (→ soon after release, i is rated by a couple of
those users).

Experiments
We evaluate predictive power and interpretability of NNMs
at the example of the omnipresent MovieLens (ML) 100K
and 1M datasets.1 In Table 1 and in the appendix of (Stark
2015) we provide details about the configurations of all al-
gorithms and results for the MovieLens 100K dataset. To
use the data economically, we employed interpretation (5)
of the rating matrix R. We computed NNMs in Matlab us-
ing cvx (Grant and Boyd 2014) calling SDPT3 (Toh, Todd,
and Tütüncü 1999).

Interpretability. We computed figures 1 and 2 to illus-
trate the interpretability of NNMs through user stereotypes.

1http://grouplens.org/datasets/movielens/
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Figure 1: Genre profiles for stereotype at D = 2; ML 1M.
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Figure 2: Genre profiles for stereotype at D = 3; ML 1M.

We computed figure 3 to evaluate interpretability of NNMs
through emergent hierarchies of tags.

Figure 1 corresponds to a 2-dimensional NNM. The two
towers characterize the two user stereotypes. The second
stereotype does not much care about the particular genre;
she rates many movies highly and is open to everything.
The first stereotype is generally more skeptical but rates
movies from the genres ‘Documentaries’ and ‘Film-Noir’
highly; she dislikes the genre ‘Horror’. Interestingly, when
increasing the dimension from 2 to 3, we leave those two
stereotypes approximately unchanged—we simply add a
new stereotype; see figure 2. The newly emergent stereo-
type has preferences for the genres ‘Action’, ‘Adventure’,
‘Children’s’, ‘Fantasy’ and dislikes both Documentaries and
movies from the Horror genre. All probabilities are large
due to the selection bias towards high ratings. Filling in
missing entries with low ratings affects the size of those
probabilities but leaves the structure of the towers approx-
imately unchanged.

Figure 3 serves as an example for how expressive com-
puted tag-hierarchies are. The hierarchy from figure 3 visu-
alizes the pattern of ‘⊆ε’-relations between movie genre for
the value ε = 1/3. To decrease the complexity of figure 3,
we excluded the genres ‘Film-Noir’ and ‘War’ from the fig-
ure. Movies from these genres are rated highly by a majority
of users and thus, all genres are connected to these genres.

Evaluation of predictive power. We evaluate mean-
squared-error (MAE) and root-mean-squared-error (RMSE)
through 5-fold cross validation with 0.8-to-0.2 data splitting.
All results were computed using 16 iterations. Figure 4 (left)
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Figure 3: Genre hierarchy at ε = 1/3 and D = 8; extracted from MovieLens 1M dataset. See section ‘Hierarchical structure
of tags’.
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Figure 4: Dependence on D and iteration (when D = 8).

Table 1: Predictive power for MovieLens 1M.

MAE RMSE
UserKNN (Resnick et al. 1994) 0.703 0.905
ItemKNN (Rendle et al. 2009) 0.688 0.876
NMF (Lee and Seung 2001) 0.727 0.920
SVD++ (Koren 2008) 0.668 0.851
NNM 0.643 0.920

shows how MAE depends on D, and Figure 4 (right) shows
that the proposed algorithm converges smoothly. In the ap-
pendix of (Stark 2015) we argue why MAE is less sensitive
to outliers and therefore, we think that MAE should be pre-
ferred over RMSE. Table 1 compares NNMs with popular
recommender systems (see appendix of (Stark 2015) for de-
tails). We notice that Algorithm 1 outperforms SVD++ (Ko-
ren 2008) in MAE. Note that neither SVD++ nor NNMs
were trained to minimize MAE. We evaluated the previ-
ously known methods by using the LibRec library (Guo et
al. 2015).

Related work
In recommendation we are interested in the co-occurence
of pairs (u, i) of users u and items i. Depending on the
application, (u, i) may be interpreted as ‘u likes item i’, ‘u
attends event i’, etc. In aspect models, pLSA (Hofmann and
Puzicha 1999; Hofmann 1999) (and similarly in LDA (Blei,
Ng, and Jordan 2003)) we model (u, i) as random variable
with distribution

P[u, i] =
K∑

k=1

P[u|k] P[i|k]. (10)

Hence, P[u, i] is expressed as a inner product of two vectors:
(P[u|k])k∈[K] and (P[i|k])k∈[K]. This is reminiscent of (3)
where we expressed the probability of the event ‘u rates i

with z stars’ in terms of the inner product between �Eiz and
�pu. Therefore, one half of the inner product (3) agrees with
the identity (10) as both (P[u|k])k∈[K] and �pu are probabil-
ity distributions. However, aspect models and NNMs dis-
agree on the other half (i.e., �Eiz) because �Eiz is constrained
through the existence of �Ei1, ..., �Eiz−1, �Eiz+1, .., �EiZ such
that ( �Ei1, ..., �EiZ) ∈ M. More importantly however, the
difference between aspect models and NNMs lies in the dif-
ferent interpretations of (P[u|k])k∈[K] and (P[i|k])k∈[K] on
the one hand and �pu and �Eiz on the other hand.

Similarly, NMF-based models (Ma et al. 2011) agree with
NNM-based models in that they make prediction in terms of
inner products of nonnegative vectors but they differ from
NNM-based models through different interpretations and
regularizations of those nonnegative vectors.

These new interpretations of �pu and �Eiz allow us to deal
with situations where z ∈ [Z] is a categorical random vari-
able and we can extract hierarchical structures from NNMs
in a straightforward manner. Aspect models can deal with
both of these tasks too. However, we think that dealing with
these tasks in terms of aspect models is less natural then
dealing with these tasks with NNMs. For instance, to model
multiple outcomes like (z ∈ [5]) we need to first decide
on a particular graphical model (see section 2.3 in (Hof-
mann and Puzicha 1999)). Moreover, to extract hierarchi-
cal classifications of topics, we need to imagine generative
processes like the nested Chinese restaurant process (Blei
et al. 2004; Blei, Griffiths, and Jordan 2010), or we need
to employ nested hierarchical Dirichlet processes (Paisley et
al. 2015). In hierarchical LDA, the hierarchy of topics al-
ways forms a tree-structure. Here we allow for overlapping
topic/property-classes.

On the other hand, probabilistic matrix factorization
(PMF, (Mnih and Salakhutdinov 2007)) leads to another in-
teresting and related class of models where we assume that
entries Rui of the rating matrix are independent Gaussian
random variables with mean �UT

u
�Vi and variance σ. PMF-

based models also describe ratings as samples of an under-
lying random variable and the distribution of that random
variable is parameterize symmetrically in terms of vectors
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�Uu assigned to users and �Vi assigned to items. However,
for PMF we need to assume that the random variables Rui

are normally distributed. In NNM-based models, we do
not need to assume anything about the distribution of Rui

once the underlying dimension D has been fixed by cross-
validation. PMF would allow for the extraction of hierarchi-
cal orderings as discussed here but PMF does not allow for
the interpretation of data through stereotypes because PMF
corresponds to a specific infinite-dimensional NNM (PMF
refers to continuous distributions).

The evaluation of NNMs in the extreme multi-label set-
ting (Agrawal et al. 2013; Hsu et al. 2009; Ji et al. 2008;
Prabhu and Varma 2014) is still outstanding.

Conclusion
We introduced NNMs at the example of item recommen-
dation. We discussed in which way these models meet the
criteria predictive power, computational tractability and in-
terpretability that are ideally met by recommender systems.
The main strength of NNMs is their high level of inter-
pretability. This quality can be used to characterize users’
behavior in an interpretable manner, and this quality can be
used to derive hierarchical orderings of properties of items
and users. Fortunately, as indicated by numerical experi-
ments, these features of NNMs do not come at the price
of sacrificing neither predictive power nor computational
tractability. Hence, we believe that NNMs will prove valu-
able in recommendation and beyond.
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