
The Complexity Landscape of Decompositional Parameters for ILP

Robert Ganian and Sebastian Ordyniak
TU Wien, Vienna, Austria

Abstract

Integer Linear Programming (ILP) can be seen as the
archetypical problem for NP-complete optimization prob-
lems, and a wide range of problems in artificial intelligence
are solved in practice via a translation to ILP. Despite its huge
range of applications, only few tractable fragments of ILP
are known, probably the most prominent of which is based
on the notion of total unimodularity. Using entirely different
techniques, we identify new tractable fragments of ILP by
studying structural parameterizations of the constraint matrix
within the framework of parameterized complexity.
In particular, we show that ILP is fixed-parameter tractable
when parameterized by the treedepth of the constraint matrix
and the maximum absolute value of any coefficient occurring
in the ILP instance. Together with matching hardness results
for the more general parameter treewidth, we draw a detailed
complexity landscape of ILP w.r.t. decompositional parame-
ters defined on the constraint matrix.

Introduction

Integer Linear Programming (ILP) is among the most suc-
cessful and general paradigms for solving computationally
intractable optimization problems in computer science. In
particular, a wide variety of problems in artificial intel-
ligence are efficiently solved in practice via a translation
into an Integer Linear Program, including problems from
areas such as process scheduling (Floudas and Lin 2005),
planning (van den Briel, Vossen, and Kambhampati 2005;
Vossen et al. 1999), vehicle routing (Toth and Vigo 2001),
packing (Lodi, Martello, and Monaci 2002), and network
hub location (Alumur and Kara 2008). In its most general
form ILP can be formalized as follows:

INTEGER LINEAR PROGRAM

Input: A matrix A ∈ Z
m×n and two vectors

b ∈ Z
m and c ∈ Z

n.
Question: Maximize cx for every x ∈ Z

n with
Ax ≤ b.

Closely related to ILP is the ILP-FEASIBILITY problem,
where given A and b as above, the problem is to decide
whether there is an x ∈ Z

n such that Ax ≤ b. ILP, ILP-
FEASIBILITY and various other highly restricted variants are
well-known to be NP-complete (Papadimitriou 1981).

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Despite the importance of the problem, an understand-
ing of the influence of structural restrictions on the com-
plexity of ILP is still in its infancy. This is in stark con-
trast to another well-known and general paradigm for the
solution of problems in Computer Science, the Satisfiability
problem (SAT). There, the parameterized complexity frame-
work (Downey and Fellows 2013) has yielded deep results
capturing the tractability and intractability of SAT with re-
spect to a plethora of structural restrictions. In the context of
SAT, one often considers structural restrictions on a graphi-
cal representation of the formula (such as the primal graph),
and the aim is to design efficient fixed-parameter algorithms
for SAT, i.e., algorithms running in time O(f(k)nO(1))
where k is the value of the considered structural parame-
ter for the given SAT instance and n is its input size. It is
known that SAT is fixed-parameter tractable w.r.t. a variety
of structural parameters, such as treewidth (Szeider 2003) or
the directed variants of clique-width (Fischer, Makowsky,
and Ravve 2008) and rank-width (Ganian, Hliněný, and
Obdržálek 2010), but is not fixed-parameter tractable (under
standard assumptions) for others, such as undirected clique-
width (Ordyniak, Paulusma, and Szeider 2013).

Our contribution In this work, we initiate a similar line
of research for ILP by studying the parameterized complex-
ity of ILP w.r.t. various structural parameterizations. In par-
ticular, we consider parameterizations of the primal graph
of the ILP instance, i.e., the undirected graph whose ver-
tex set is the set of variables of the ILP instance and whose
edges represent the occurrence of two variables in a com-
mon expression. We obtain a complete picture of the param-
eterized complexity of ILP w.r.t. well-known decomposi-
tional parameters of the primal graph, specifically treedepth,
treewidth, and cliquewidth; our results are summarized in
Table 1.

Our main algorithmic result (Theorem 5) shows that ILP
is fixed-parameter tractable parameterized by the treedepth
of the primal graph and the maximum absolute value � of
any coefficient occurring in A or b. Together with the clas-
sical results for totally unimodular matrices (Papadimitriou
and Steiglitz 1982, Section 13.2.) and fixed number of vari-
ables (Lenstra and Jr. 1983), which use entirely different
techniques, our result is one of the surprisingly few tractabil-
ity results for ILP in its full generality.

We complete our complexity landscape (given in Ta-
ble 1) with matching lower bounds, provided in terms
of W[1]-hardness and paraNP-hardness results (see the

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

710

� without �
TD FPT (Thm 5) W[1]-h (Thm 11)
TW/CW paraNP-h (Thm 12) paraNP-h (Thm 12)
no paraNP-h (Obs 1) n.a.

Table 1: The complexity landscape of ILP obtained in this
paper. The table shows the parameterized complexity of
ILP parameterized by the treedepth (TD), treewidth (TW),
or cliquewidth (CW) of the primal graph with (second col-
umn “�”) and without (third column “without �”) the addi-
tional parameterization by the maximum absolute value � of
any coefficient in A or b.

Preliminaries). Namely, we show that already ILP-
FEASIBILITY is unlikely to be fixed-parameter tractable
when parameterized by either only treedepth or only �. In-
terestingly, our W[1]-hardness result for treedepth also holds
in the strong sense, i.e., even for ILP instances whose size is
bounded by a polynomial of n and m.

One might be tempted to think that, as is the case for SAT
and numerous other problems, the fixed-parameter tractabil-
ity result for treedepth carries over to the more general struc-
tural parameter treewidth. We show that this is not the case
for ILP; along with very recent results for the Mixed Chi-
nese Postman Problem (Gutin, Jones, and Wahlström 2015),
this is only the second known case of a natural problem
where using treedepth instead of treewidth actually “helps”
in terms of fixed parameter tractability. Even more sur-
prisingly, we show that already ILP-FEASIBILITY remains
NP-hard for ILP instances of treewidth at most three and
whose maximum coefficient is at most two. Observe that
this also implies the same intractability results for the more
general parameter clique-width.

Related Work We are not the first to consider decompo-
sitional parameterizations of the primal graph for ILP. How-
ever, previous results in this area either considered an ad-hoc
bound on the variable domains (Jansen and Kratsch 2015) or
required much stronger restrictions on the coefficients of A
(non-negativity) (Cunningham and Geelen 2007).

Preliminaries

We will use standard graph terminology, see for instance the
handbook by Diestel (2012). All our graphs are simple and
loopless.

Integer Linear Programming

For our purposes, it will be useful to view an ILP instance
as a set of linear inequalities rather than using the constraint
matrix. Formally, let an ILP instance I be a tuple (F , η)
where F is a set of linear inequalities over variables X =
x1, . . . , xn and η is a linear function over X of the form
η(X) = sx1

x1 + · · · + sxnnxn. Each inequality A ∈ F is
assumed to be of the form cA,1x + cA,2xA,2 + · · · ≤ bA;
the set of variables which occur in A is denoted var(A), and
we let var(I) = X . The arity of A is |var(A)|. For a set of

variables Y , let F(Y) denote the subset of F containing all
inequalities A ∈ F such that Y ∩ var(A) �= ∅.

An assignment α is a mapping from X to Z. For an as-
signment α and an inequality A, we denote by A(α) the
left-side value of A obtained by applying α, i.e., A(α) =
cA,1α(xA,1)+cA,2α(xA,2)+. . . . An assignment α is called
feasible if it satisfies every A ∈ F , i.e., if A(α) ≤ bA for
each A ∈ F . Furthermore, α is called a solution if the value
of η(α) is maximized over all feasible assignments; observe
that the existence of a feasible assignment does not guaran-
tee the existence of a solution (there may exist an infinite
sequence of feasible assignments α with increasing values
of η(α)). Given an instance I , the task in the ILP problem
is to compute a solution for I if one exists, and otherwise to
decide whether there exists a feasible assignment.

Given an ILP instance I = (F , η), the primal graph GI

of I is the graph whose vertex set is the set X of variables
in I , and two vertices a, b are adjacent iff either there exists
some A ∈ F containing both a and b or a, b both occur in η
with non-zero coefficients.

Parameterized Complexity

In parameterized algorithmics (Downey and Fellows 1999;
Flum and Grohe 2006; Niedermeier 2006; Downey and Fel-
lows 2013) the runtime of an algorithm is studied with re-
spect to a parameter k ∈ N and input size n. The basic idea
is to find a parameter that describes the structure of the in-
stance such that the combinatorial explosion can be confined
to this parameter. In this respect, the most favorable com-
plexity class is FPT (fixed-parameter tractable) which con-
tains all problems that can be decided by an algorithm run-
ning in time f(k) ·nO(1), where f is a computable function.
Algorithms with this running time are called fpt-algorithms.

To obtain our lower bounds, we will need the notion of
a parameterized reduction and the complexity classes W[1]
and paraNP (Downey and Fellows 2013). Generally speak-
ing, a parameterized reduction is a variant of the standard
polynomial reduction which retains bounds on the param-
eter, and both W[1] and paraNP rule out the existence of
fpt-algorithms; the latter additionally rules out the existence
of algorithms running in time nf(k).

For our algorithms, we will use the following result as
a subroutine. Note that this is a streamlined version of the
original statement of the theorem, as used in the area of pa-
rameterized algorithms (Fellows et al. 2008; Ganian, Kim,
and Szeider 2015).

Theorem 1 (Lenstra and Jr.; Kannan; Frank and Tar-
dos (1983; 1987; 1987)). An ILP instance I = (F , η) can
be solved in time O(p2.5p+o(p) · |I|), where p = |var(I)|.
Treewidth and Treedepth

Treewidth is the most prominent structural parameter and
has been extensively studied in a number of fields. We re-
fer to, e.g., Downey and Fellows (2013) for a definition of
treewidth and the related notions of tree-decompositions and
bags.

Another important notion that we make use of extensively
is that of treedepth. Treedepth is a structural parameter

711

closely related to treewidth, and the structure of graphs of
bounded treedepth is well understood (Nešetřil and Ossona
de Mendez 2012). A useful way of thinking about graphs of
bounded treedepth is that they are (sparse) graphs with no
long paths.

We formalize a few notions needed to define treedepth. A
rooted forest is a disjoint union of rooted trees. For a ver-
tex x in a tree T of a rooted forest, the height (or depth) of x
in the forest is the number of vertices in the path from the
root of T to x. The height of a rooted forest is the maximum
height of a vertex of the forest.

Definition 2 (Treedepth). Let the closure of a rooted for-
est F be the graph clos(F) = (Vc, Ec) with the ver-
tex set Vc =

⋃
T∈F V (T) and the edge set Ec =

{xy : x is an ancestor of y in some T ∈ F}. A treedepth
decomposition of a graph G is a rooted forest F such that
G ⊆ clos(F). The treedepth td(G) of a graph G is the min-
imum height of any treedepth decomposition of G.

We will later use Tx to denote the vertex set of the subtree
of T rooted at a vertex x of T . Similarly to treewidth, it is
possible to determine the treedepth of a graph in FPT time.

Proposition 3 (Nešetřil and Ossona de Mendez (2012)).
Given a graph G with n nodes and a constant w, it is possi-
ble to decide whether G has treedepth at most w, and if so,
to compute an optimal treedepth decomposition of G in time
O(n).

We list a few useful facts about treedepth.

Proposition 4 (Nešetřil and Ossona de Mendez (2012)).

1. If a graph G has no path of length d, then td(G) ≤ d.
2. If td(G) ≤ d, then G has no path of length 2d.
3. tw(G) ≤ td(G).
4. If td(G) ≤ d, then td(G′) ≤ d + 1 for any graph G′

obtained by adding one vertex into G.

Exploiting Treedepth to Solve ILP

Our goal in this section is to show that ILP is fixed parame-
ter tractable when parameterized by the treedepth of the pri-
mal graph and the maximum coefficient in any constraint.
We begin by formalizing our parameters. Given an ILP in-
stance I , let td(I) be the treedepth of GI and let �(I) be the
maximum absolute coefficient which occurs in any inequal-
ity in I; to be more precise, �(I) = max{ |cA,j |, |bA| : A ∈
F , j ∈ N }. When the instance I is clear from the context,
we will simply write � and k = td(I) for brevity. We will
now state our main algorithmic result of this section.

Theorem 5. ILP is fixed-parameter tractable parameterized
by � and k

The main idea behind our fixed-parameter algorithm for
ILP is to show that we can reduce the instance into an
“equivalent instance” such that the number of variables of
the reduced instance can be bounded by our parameters �
and k. We then apply Theorem 1 to solve the reduced in-
stance.

For the following considerations, we fix an ILP instance
I = (F , η) of size n along with a treedepth decomposition

T of GI with depth k. Given a variable set Y , the operation
of omitting consists of deleting all inequalities containing at
least one variable in Y and all variables in Y ; formally, omit-
ting Y from I results in the instance I ′ = (F ′, η′) where
F ′ = F \F(Y) and η′ is obtained by removing all variables
in Y from η.

The following notion of equivalence will be crucial for
the proof of Theorem 5. Let x, y be two variables that share
a common parent in T . We say that x are y are equiva-
lent, denoted x ∼ y, if there exists a bijective function
δx,y : Tx → Ty (called the renaming function) such that
δx,y(F(Tx)) = F(Ty); here δx,y(F(Tx)) denotes the set of
inequalities in F(Tx) after the application of δx,y on each
variable in Tx. It is easy to verify that ∼ is indeed an equiv-
alence. Intuitively, the following lemma shows that if x ∼ y
for two variables x and y of I , then (up to renaming) the set
of all feasible assignments of the variables in Tx is equal to
the set of all feasible assignments of the variables in Ty .

Lemma 6. Let x, y be two variables of I such that x ∼ y
and sa = 0 for each a ∈ Tx ∪ Ty . Let I ′ = (F ′, η′) be
the instance obtained from I by omitting Ty . Then there
exists a solution α of var(I) of value w = η(α) if and only
if there exists a solution α′ of var(I ′) of value w = η′(α′).
Moreover, a solution α can be computed from any solution
α′ in linear time if the renaming function δx,y is known.

Proof. Let α be a solution of var(I) of value w = η(α).
Since F ′ ⊆ F , it follows that setting α′ to be a restriction
of α to var(I) \ Ty satisfies every inequality in F ′. Since
variables in Ty do not contribute to η, it also follows that
η(α) = η(α′).

On the other hand, let α′ be a solution of var(I ′) of value
w = η′(α′). Consider the assignment α obtained by ex-
tending α′ to Ty by reusing the assignments of Tx on Ty .
Formally, for each y′ ∈ Ty we set α(y′) = α′(δy,x(y′)) and
for all other variables a ∈ var(I ′) we set α(a) = α′(a). By
assumption, α and α′ must assign the same values to any
variable a such that sa �= 0, and hence η(α) = η(α′). To
argue feasibility, first observe that any A ∈ F ′ must be sat-
isfied by α since α and α′ only differ on variables which
do not occur in I ′. Moreover, by definition of ∼ for each
A ∈ F \ F ′ = F(Ty) there exists an inequality A′ ∈ F ′
such that δx,y(A

′) = A. In particular, this implies that
A(α) = A′(α) = A′(α′), and since A′(α′) ≤ bA′ = bA
we conclude that A(α) ≤ bA. Consequently, α satisfies A.

The final claim of the lemma follows from the construc-
tion of α described above.

In the following let z be a variable of I at depth k− i in T
for every i with 1 ≤ i < k and let Z be the set of all children
of z in T . Moreover, let m be the maximum size of any sub-
tree rooted at a child of z in T , i.e., m := maxz′∈Z |Tz′ |.
We will show next that the number of equivalent classes
among the children of z can be bounded by the function
#C(�, k, i,m) := 2(2�+1)k+1·mi

. Observe that this bound
depends only on �, k, m, and i and not on the size of I .

Lemma 7. The equivalence relation ∼ has at most
#C(�, k, i,m) equivalence classes over Z.

712

Proof. Consider an element a ∈ Z. By construction of
GI , each inequality A ∈ F(Ta) only contains at most
k − i variables outside of Ta (specifically, the ancestors
of a) and at most i variables in Ta. Furthermore, bA and
each coefficient of a variable in A is an integer whose ab-
solute value does not exceed �. From this it follows that
there exists a finite number of inequalities which can oc-
cur in F(Ta). Specifically, the number of distinct combina-
tions of coefficients for all the variables in A and for bA is
(2�+1)k+1, and the number of distinct choices of variables
in var(A)∩Ta is upper-bounded by

(
m
i

)
, and so we arrive at

|F(Ta)| ≤ (2�+ 1)k+1 · (mi
) ≤ (2�+ 1)k+1 ·mi.

Consequently, the set of all inequalities for individual
children y ∈ Z of z (up to renaming of Ty) has bounded
cardinality. To formalize this bound, we first need a for-
mal way of renaming all variables in the individual subtrees
rooted in Z; without renaming, each F(Ty) would span a
distinct set of variables and hence it would not be possi-
ble to bound the set of all such inequalities. So, for each y
let δy,x0 be a bijective renaming function which renames all
of the variables in Ty to the variable set {x1

0, x
2
0, . . . , x

|Ty|
0 }

(in an arbitrary way). Now we can formally define Γz =
{F(Tx0

) : δy,x0
(F(Ty)), y ∈ Z }, and observe that Γz

has cardinality at most 2(2�+1)k+1·mi

= #C(�, k, i,m). To
conclude the proof, recall that if two variables a, b satisfy
F(Ta) = δb,a(F(Tb)) for a bijective renaming function δb,a,
then b ∼ a. Hence, the absolute bound on the cardinality
of Γz implies that ∼ has at most #C(�, k, i,m) equivalence
classes over Z.

It follows from the above Lemma that if z has more than
#C(�, k, i,m) children, then two of those must be equivalent.
The next lemma shows that it is also possible to find such a
pair of equivalent children efficiently.

Lemma 8. Given a subset Z ′ of Z with |Z ′| =
#C(�, k, i,m)+1, then in time O(#C(�, k, i,m)2 ·m!m) one
can find two children x and y of Z such that x ∼ y together
with a renaming function δx,y which certifies this.

Proof. The algorithm finds x, y among the elements of Z ′
by brute-force, i.e., it checks for all distinct (of the at most
(#C(�, k, i,m) + 1)2) pairs x and y of elements in Z ′ and
all (of the at most m!) distinct bijective renaming functions
δx,y , whether δx,y(F(Tx)) is equal to F(Ty). If this is the
case for some x, y, and δx,y as above it outputs x, y and
δx,y . Because of Lemma 7 and due to the cardinality of
Z ′, there must exist x, y ∈ Z ′ such that x ∼ y. In par-
ticular, there must exist a renaming function δx,y such that
δx,y(F(Tx)) = F(Ty). But then the above algorithm is
guaranteed to find such x, y, δx,y since it performs an ex-
haustive search.

Combining Lemma 6 and Lemma 8, we arrive at the fol-
lowing corollary.

Corollary 9. If |Z| > #C(�, k, i,m) + 1, then in time
O(#C(�, k, i,m)2 · m!m) one can compute a subinstance
I ′ = (F ′, η) of I with strictly less variables and the fol-
lowing property: there exists a solution α of I of value

w = η(α) if and only if there exists a solution α′ of I ′ of
value w. Moreover, a solution α can be computed from any
solution α′ in linear time.

Proof. In order to avoid having to consider all children of
z, the algorithm first computes (an arbitrary) subset Z ′ of
Z such that |Z ′| = #C(�, k, i,m) + 2. Then to be able to
apply Lemma 8 without changing the set of solutions of I ,
the algorithm computes a subset Z ′′ of Z ′ such that |Z ′′| =
#C(�, k, i,m) + 1 and for every z′ ∈ Z ′′ it holds that sz′′ =
0 for every z′′ ∈ Tz′ . Note that since there are at most
k variables of I with non-zero coefficients in η and these
variables form a clique in GI , all of them occur only in a
single branch of Tz . It follows that Z ′′ as specified above
exists and it can be obtained from Z ′ by removing the (at
most one) element z′ in Z ′ with sz′′ �= 0 for some z′′ ∈ Tz′ .
Observe that this step of the algorithm takes time at most
O(m · (#C(�, k, i,m) + 1)).

The algorithm then proceeds as follows. It uses Lemma 8
to find two variables x, y ∈ Z ′′ such that x ∼ y and com-
putes I ′ from I by omitting Ty from I . The running time
of the algorithm follows from Lemma 8 since the running
times of the other steps of the algorithm are dominated by
the application of Lemma 8. Correctness and the claimed
properties of I ′ follow from Lemma 8 and Lemma 6.

Let s̃i and c̃i for every i with 1 ≤ i ≤ k be defined induc-
tively by setting s̃k = 1, c̃k = 0, c̃i = #C(�, k, i, si+1) + 1,
and s̃i = c̃is̃i+1 + 1. The following Lemma shows that in
time O(|I|c̃21 ·s̃1!s̃1) one can compute an “equivalent” subin-
stance I ′ of I containing at most s̃1 variables. Informally, s̃i
is an upper bound on the number of nodes in a subtree rooted
at depth i and c̃i is an upper bound on the number of children
of a node at level i in I ′.

Lemma 10. There exists an algorithm that takes as input I
and T , runs in time O(|I|c̃21 · s̃1!s̃1) and outputs an ILP
instance I ′ containing at most s̃1 variables with the fol-
lowing property: there exists a solution α of I of value
w = η(α) if and only if there exists a solution α′ of I ′ of
value w = η′(α′). Moreover, a solution α can be computed
from any solution α′ in linear time.

Proof. The algorithm exhaustively applies Corollary 9 to ev-
ery variable of T in a bottom-up manner, i.e., it starts by
applying the corollary exhaustively to all variables at depth
k − 1 and then proceeds up the levels of T until it reaches
depth 1. Let T ′ be the subtree of T obtained after the ex-
haustive application of Corollary 9 to T .

We will first show that if x is a variable at depth i of T ′,
then x has at most c̃i children and |T ′

x| ≤ s̃i. We will show
the claim by induction on the depth i starting from depth k.
Because all variables x of T at level k are leaves, it holds that
x has 0 = c̃k children in T ′ and |T ′

x| = 1 ≤ s̃k, showing the
start of the induction. Now let x be a variable at depth i of T ′
and let y be a child of x in T ′. It follows from the induction
hypothesis that |T ′

y| ≤ s̃i+1. Moreover, using Corollary 9,
we obtain that x has at most #̃C(�, k, i, si+1) + 1 = c̃i chil-
dren in T ′ and thus |T ′

x| ≤ c̃is̃i+1 + 1 = s̃i, as required.

713

The running time of the algorithm now follows from the
observation that (because every application of Corollary 9
removes at least one variable of I) Corollary 9 is applied at
most |I| times and moreover the maximum running time of
any call to Corollary 9 is at most O(c̃21 · s̃1!s̃1). Correctness
and the fact that α can be computed from α′ follow from
Corollary 9.

Proof of Theorem 5. The algorithm proceeds in three steps.
First, it applies Lemma 10 to reduce the instance I into an
“equivalent” instance I ′ containing at most s̃1 variables in
time O(|I|c̃21 · s̃1!s̃1); in particular, a solution α of I can be
computed in linear time from a solution α′ of I ′. Second,
it uses Theorem 1 to compute a solution α′ of I ′ in time at
most O(s̃

2.5s̃1+o(s̃1)
1 · |I ′|); because s̃1 and c̃1 are bounded

by our parameters, the whole algorithm runs in FPT time.
Third, it transforms the solution α′ into a solution α of I .
Correctness follows from Lemma 10 and Theorem 1.

Lower Bounds and Hardness

In this section we will complete the complexity land-
scape by providing the required hardness results. Namely,
we will show that already the ILP-FEASIBILITY prob-
lem is W[1]-hard parameterized by treedepth alone and
paraNP-hard parameterized by both treewidth and the max-
imum absolute value of any coefficient.

It is well-known that already ILP-FEASIBILITY remains
NP-hard even if the maximum absolute value of any coef-
ficient is at most one (as follows, e.g., from the standard
reduction from VERTEX COVER to ILP-FEASIBILITY).
Observation 1. ILP-feasibility is paraNP-hard parameter-
ized by the maximum absolute value of any coefficient.

To simplify the constructions in the hardness proofs, we
will often talk about constrains as equalities instead of in-
equalities. Clearly, every equality can be written in terms of
two inequalities.
Theorem 11. ILP-FEASIBILITY is strongly W[1]-hard pa-
rameterized by treedepth.

Proof Sketch. We will show the theorem by a parameterized
reduction from MULTICOLORED CLIQUE, which is well-
known to be W[1]-complete (Pietrzak 2003). Given an inte-
ger k and a k-partite graph G with partition V1, . . . , Vk, the
MULTICOLORED CLIQUE problem ask whether G contains
a k-clique. We construct an instance I of ILP-FEASIBILITY
in polynomial-time with treedepth at most k + 3 and coef-
ficients bounded by O(n) such that G has a k-clique if and
only if I has a feasible assignment.

The main idea of the construction is to represent the
choice of the vertices in a k-clique by the k variables
v1, . . . , vk (each with domain {0, . . . , n−1}) and to employ
additional auxiliary variables and constraints that ensure that
for every i and j with 1 ≤ i < j ≤ k, the variables vi and
vj cannot be assigned to the endpoints of a non-edge of G
simultaneously.
I has the following variables:

• For every i with 1 ≤ i ≤ k one variable vi with domain
{0, . . . , n− 1}.

• For every non-edge e = {vli, vrj} ∈ E(Ḡ), where 1 ≤
i < j ≤ k and 0 ≤ l, r ≤ n − 1, the variables ue

1, u
e
2

with domain {0, . . . , n− 1} and the variables ve1, v
e
2 with

domain {0, 1}.

I has the following constrains:

C1 The constrains that bound the domains of all the variables
as specified above. More formally, for every i with 1 ≤
i ≤ k the constrains 0 ≤ vi and vi ≤ n − 1, for every
non-edge e ∈ E(Ḡ) and every i ∈ {0, 1} the constrains
0 ≤ ue

i , ue
i ≤ n− 1, 0 ≤ vei , and vei ≤ 1.

C2 For every non-edge e = {vli, vrj} ∈ E(Ḡ), where 1 ≤ i <
j ≤ k and 0 ≤ l, r ≤ n− 1, the constraints vi = l+ue

1 −
nve1, vj = r+ue

2−nve2, and ue
1+ue

2 ≥ 1. Note that these
constrains ensure that the partial assignment that sets vi to
l and vj to r cannot be extended to a feasible assignment
of I . The form of these constraints is inspired by a similar
construction given by Jansen and Kratsch (2015).

This completes the construction of I . Clearly, I can be con-
structed from G and k in polynomial-time and �(I) ≤ n.

We show next that G has a k-clique if and only if I has a
feasible assignment. Towards the forward direction, suppose
that G has k-clique, say defined on the vertices vc11 , . . . , vckk
for some c1, . . . , ck with 0 ≤ c1, . . . , ck ≤ n − 1. Let α
be the assignment defined by α(vi) = ci for every i with
1 ≤ i ≤ k, and for every non-edge e = {vli, vrj} ∈ E(Ḡ),
where 1 ≤ i < j ≤ k and 0 ≤ l, r ≤ n− 1, we set:

• α(ve1) = 0 and α(ue
1) = ci − l, if ci − l ≥ 0. Otherwise,

i.e., if ci−l < 0, we set α(ve1) = 1 and α(ue
1) = ci−l+n.

• α(ve2) = 0 and α(ue
2) = cj − r, if cj − r ≥ 0. Otherwise,

i.e., if cj − r < 0, we set α(ve2) = 1 and α(ue
2) = cj −

r + n.

We claim that α is a feasible assignment of I . It is straight-
forward to check that α satisfies all the domain restricting
constrains given in C1. Hence, let e = {vli, vrj} ∈ E(Ḡ)
with 1 ≤ i < j ≤ k and 0 ≤ l, r ≤ n−1 be a non-edge of G.
Then, the constrains vi = l+ue

1−nve1 and vj = r+ue
2−nve2

(defined in C2) are satisfied due to the definition of α. More-
over, because vc11 , . . . , vckk are the vertices of a k-clique of
G, we obtain that either ci �= l or cj �= r. It follows that
ue
1 + ue

2 ≥ 1. This shows that α satisfies all constrains of I
and completes the proof of the forward direction.

For the reverse direction, suppose that I has a feasible
assignment, say α. Because of the domain restrictions of
the variables v1, . . . , vk, enforced by the constraints defined
in C1, we obtain that vα(vi)

i corresponds to a vertex of G

for every i with 1 ≤ i ≤ k. Hence, {vα(v1)
1 , . . . , v

α(vk)
k }

is a set of k vertices of G, we claim that it is also a k-
clique of G. Suppose for a contradiction that this is not the
case, i.e., there are i and j with 1 ≤ i < j ≤ k such that
{vα(vi)

i , v
α(vj)
j } ∈ E(Ḡ). It follows that I contains the con-

strains vi = α(vi) + ue
1 − nve1, vj = α(vj) + ue

2 − nve2
and ue

1 + ue
2 ≥ 1, where e = {vα(vi)

i , v
α(vj)
j }. Because

vi = α(vi) + ue
1 − nve1, we obtain that ue

1 − nve1 = 0

714

and because the domain of ue
1 is {0, . . . , n − 1}, we ob-

tain that α(ve1) = 0 and α(ue
1) = 0. Similarly, because

vj = α(vj) + ue
2 − nve2, we obtain that ue

2 − nve2 = 0 and
because the domain of ue

2 is {0, . . . , n − 1}, we obtain that
α(ve2) = 0 and α(ue

2) = 0. But this contradicts the con-
straint ue

1 + ue
2 ≥ 1 and hence also our assumption that α is

a feasible assignment of I .
It remains to show that the treedepth of I is at most k+3,

the proof of which can be found in the full version of the
paper.

The next theorem shows that ILP-FEASIBILITY is
paraNP-hard parameterized by both treewidth and the max-
imum absolute value of any coefficient.

Theorem 12. ILP-FEASIBILITY is NP-hard even on in-
stances with treewidth at most three and where the maximum
absolute value of any coefficient is at most two.

Proof Sketch. We show the result by a polynomial reduction
from the SUBSET SUM problem, which is well-known to be
weakly NP-complete. Given a set S := {s1, . . . , sn} of
integers and an integer s, the SUBSET SUM problem asks
whether there is a subset S′ ⊆ S such that

∑
s′∈S′ s′ = s.

Let I := (S, s) with S := {s1, . . . , sn} be an instance of
SUBSET SUM. We give the reduction in two steps: The first
step consists of the reduction given in Theorem 1, Jansen
and Kratsch (2015), which shows that ILP-FEASIBILITY
is weakly NP-hard even on instances of treewidth at most
two and results in an instance I ′ of ILP-FEASIBILITY of
treewidth at most two such that I is a YES instance of
SUBSET SUM if and only if I ′ is a YES instance of ILP-
FEASIBILITY. The second step shows how to replace the
possibly large coefficients in I ′ by auxiliary variables and
constraints without increasing the treewidth by more than
one and results in the final instance I ′′ of ILP-FEASIBILITY
with treewidth at most three and �(I ′′) ≤ 2 such that I ′′ is
equivalent to I ′.

We start by constructing the instance I ′. The variables of
I ′ are {xi, yi : 1 ≤ i ≤ n }. Moreover, I ′ has the following
constraints: for every i with 1 ≤ i ≤ n, the constraints
0 ≤ xi and xi ≤ 1 and the constraints (given as equalities)
y1 = s1x1, yi+1 = si+1xi+1 + yi for every i with 1 ≤
i < n, and yn = s. It is straightforward to verify (and has
also been shown by Jansen and Kratsch (2015)) that I ′ is
equivalent to I and has treewidth at most two. Observe that
because SUBSET SUM is only weakly NP-hard, we cannot
assume that the integers in S and therefore the coefficients
of I ′ are bounded (not even by a polynomial in the input size
of I). This is why we need the second step to complete the
reduction.

We now show how to obtain I ′′ from I ′. First, we re-
place the constraint y1 = s1x1 with the constraint y1 = z1
and for every i with 1 ≤ i < n, we replace the constraint
yi+1 = si+1xi+1 + yi with the constraint yi+1 = zi+1 + yi,
where for every i with 1 ≤ i ≤ n, zi is a new auxiliary vari-
able such that α(zi) is equal to siα(xi) for every feasible
assignment α of I ′′. The following two paragraphs describe
the auxiliary variables and constraints used to ensure that for

i with 1 ≤ i ≤ n, α(zi) is equal to siα(xi) for every feasible
assignment α of I ′′.

For an integer o, let B(o) be the set of indices of all bits
that are equal to one in the binary representation of o, i.e., we
have o =

∑
j∈B(o) 2

j . Moreover, let bmax(o) be the largest
index in B(o).

We introduce the new auxiliary variables
bi,0, . . . , bi,bmax(si) and the constraint bi,0 = xi and
for every p with 0 ≤ p < bmax(si) the constraint
bi,p+1 = 2 · bi,p. Observe that the above constraints
ensure that α(bi,j) is equal to 2jα(xi) for every j with
0 ≤ j ≤ bmax(si) and every feasible assignment α
of I ′′. We also introduce the new auxiliary variables
zi,0, . . . , zi,bmax(si) together with the following constraints:
if 0 ∈ B(si) then we add the constraint zi,0 = bi,0, and
otherwise we add the constraint zi,0 = 0. Furthermore,
for every p with 0 ≤ p < bmax(si), if p + 1 ∈ B(si)
then the constraint zi,p+1 = bi,p+1 + zi,p and otherwise
the constraint zi,p+1 = zi,p. Observe that these constraints
ensure that α(zi,j) is equal to

∑
p∈B(si)

α(bi,p) for every j

with 0 ≤ j ≤ bmax(si) and any feasible assignment α of I ′′.
Finally, we add the constraint zi = zi,bmax(si). Observe that
now α(zi) is equal to siα(xi) for any feasible assignment α
of I ′′, as required.

Finally, we replace the constraint yn = s with the con-
straint yn = z, where z is a new auxiliary variable such that
α(z) is equal to s for every feasible assignment α of I ′′.
The auxiliary variables and constraints used to ensure that
α(z) is equal to s for every feasible assignment α of I ′′, are
very similar to the ones used to ensure that α(zi) is equal to
siα(xi) and are described in detail only in the full version
of this paper.

This completes the construction of I ′′. Because bmax(s)
is at most �log s
 and for every i with 1 ≤ i ≤ n, bmax(si)
is at most �log si
 and hence polynomial in the input size of
I , the construction of I ′′ from I ′ and hence also from I can
be done in time polynomial in the input size of I . Moreover,
I ′′ is equivalent to I ′ and �(I ′′) ≤ 2. It remains to show that
the treewidth of I ′ is at most three, the proof of which can
be found in the full version of this paper.

Concluding Notes

We presented the first results exploring the tractability of
ILP w.r.t. structural parameterizations of the constraint ma-
trix. Our main algorithmic result significantly pushes the
frontiers of tractability for ILP instances and will hopefully
serve as a precursor for the study of further structural param-
eterizations for ILP.

The provided results draw a detailed complexity land-
scape for ILP w.r.t. the most prominent decompositional
width parameters. However, other approaches exploiting the
structural properties of ILP instances still remain unexplored
and represent interesting directions for future research. For
instance, an adaptation of backdoors (Gaspers and Szeider
2012) to the ILP setting could lead to highly relevant algo-
rithmic results.

715

Acknowledgments The authors wish to thank the anony-
mous reviewers for their helpful comments. The authors
acknowledge support by the Austrian Science Fund (FWF,
project P26696). Robert Ganian is also affiliated with FI
MU, Brno, Czech Republic.

References
Alumur, S. A., and Kara, B. Y. 2008. Network hub loca-
tion problems: The state of the art. European Journal of
Operational Research 190(1):1–21.
Cunningham, W. H., and Geelen, J. 2007. On integer pro-
gramming and the branch-width of the constraint matrix. In
Fischetti, M., and Williamson, D. P., eds., Integer Program-
ming and Combinatorial Optimization, 12th International
IPCO Conference, Ithaca, NY, USA, June 25-27, 2007, Pro-
ceedings, volume 4513 of Lecture Notes in Computer Sci-
ence, 158–166. Springer.
Diestel, R. 2012. Graph Theory, 4th Edition, volume 173 of
Graduate texts in mathematics. Springer.
Downey, R. G., and Fellows, M. R. 1999. Parameterized
Complexity. Springer.
Downey, R. G., and Fellows, M. R. 2013. Fundamentals
of Parameterized Complexity. Texts in Computer Science.
Springer.
Fellows, M. R.; Lokshtanov, D.; Misra, N.; Rosamond,
F. A.; and Saurabh, S. 2008. Graph layout problems pa-
rameterized by vertex cover. In ISAAC, Lecture Notes in
Computer Science, 294–305. Springer.
Fischer, E.; Makowsky, J. A.; and Ravve, E. R. 2008. Count-
ing truth assignments of formulas of bounded tree-width or
clique-width. Discr. Appl. Math. 156(4):511–529.
Floudas, C., and Lin, X. 2005. Mixed integer linear pro-
gramming in process scheduling: Modeling, algorithms, and
applications. Annals of Operations Research 139(1):131–
162.
Flum, J., and Grohe, M. 2006. Parameterized Complexity
Theory. Springer.
Frank, A., and Tardos, É. 1987. An application of simultane-
ous diophantine approximation in combinatorial optimiza-
tion. Combinatorica 7(1):49–65.
Ganian, R.; Hliněný, P.; and Obdržálek, J. 2010. Better al-
gorithms for satisfiability problems for formulas of bounded
rank-width. Technical Report arXiv:1006.5621v1, CoRR.
Ganian, R.; Kim, E. J.; and Szeider, S. 2015. Algorithmic
applications of tree-cut width. In Mathematical Foundations
of Computer Science 2015 - 40th International Symposium,
MFCS 2015, Milan, Italy, August 24-28, 2015, Proceedings,
Part II, 348–360.
Gaspers, S., and Szeider, S. 2012. Backdoors to satisfaction.
In Bodlaender, H. L.; Downey, R.; Fomin, F. V.; and Marx,
D., eds., The Multivariate Algorithmic Revolution and Be-
yond - Essays Dedicated to Michael R. Fellows on the Oc-
casion of His 60th Birthday, volume 7370 of Lecture Notes
in Computer Science, 287–317. Springer Verlag.
Gutin, G.; Jones, M.; and Wahlström, M. 2015. Structural
parameterizations of the mixed chinese postman problem. In

Algorithms - ESA 2015 - 23rd Annual European Symposium,
Patras, Greece, September 14-16, 2015, Proceedings, 668–
679.
Jansen, B. M. P., and Kratsch, S. 2015. A structural ap-
proach to kernels for ilps: Treewidth and total unimodular-
ity. In Bansal, N., and Finocchi, I., eds., Algorithms - ESA
2015 - 23rd Annual European Symposium, Patras, Greece,
September 14-16, 2015, Proceedings, volume 9294 of Lec-
ture Notes in Computer Science, 779–791. Springer.
Kannan, R. 1987. Minkowski’s convex body theorem and
integer programming. Math. Oper. Res. 12(3):415–440.
Lenstra, H. W., and Jr. 1983. Integer programming with a
fixed number of variables. MATH. OPER. RES 8(4):538–
548.
Lodi, A.; Martello, S.; and Monaci, M. 2002. Two-
dimensional packing problems: A survey. European Journal
of Operational Research 141(2):241–252.
Nešetřil, J., and Ossona de Mendez, P. 2012. Sparsity:
Graphs, Structures, and Algorithms, volume 28 of Algo-
rithms and Combinatorics. Springer.
Niedermeier, R. 2006. Invitation to Fixed-Parameter Algo-
rithms. Oxford University Press.
Ordyniak, S.; Paulusma, D.; and Szeider, S. 2013. Satisfi-
ability of acyclic and almost acyclic cnf formulas. Theoret.
Comput. Sci. 481:85–99.
Papadimitriou, C. H., and Steiglitz, K. 1982. Combinatorial
Optimization: Algorithms and Complexity. Prentice-Hall.
Papadimitriou, C. H. 1981. On the complexity of integer
programming. J. ACM 28(4):765–768.
Pietrzak, K. 2003. On the parameterized complexity of the
fixed alphabet shortest common supersequence and longest
common subsequence problems. J. of Computer and System
Sciences 67(4):757–771.
Szeider, S. 2003. Finding paths in graphs avoiding forbidden
transitions. Discr. Appl. Math. 126(2-3):239–251.
Toth, P., and Vigo, D., eds. 2001. The Vehicle Routing Prob-
lem. Philadelphia, PA, USA: Society for Industrial and Ap-
plied Mathematics.
van den Briel, M.; Vossen, T.; and Kambhampati, S. 2005.
Reviving integer programming approaches for AI planning:
A branch-and-cut framework. In Biundo, S.; Myers, K. L.;
and Rajan, K., eds., Proceedings of the Fifteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2005), June 5-10 2005, Monterey, California, USA,
310–319. AAAI.
Vossen, T.; Ball, M. O.; Lotem, A.; and Nau, D. S. 1999.
On the use of integer programming models in AI planning.
In Dean, T., ed., Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence, IJCAI 99, Stock-
holm, Sweden, July 31 - August 6, 1999. 2 Volumes, 1450
pages, 304–309. Morgan Kaufmann.

716

