
Implementing Troubleshooting with Batch Repair

Roni Stern, Meir Kalech, Hilla Shinitzky
Ben Gurion University of the Negev

Be’er Sheva, Israel

Abstract

Recent work has raised the challenge of efficient automated
troubleshooting in domains where repairing a set of compo-
nents in a single repair action is cheaper than repairing each
of them separately. This corresponds to cases where there is
a non-negligible overhead to initiating a repair action and to
testing the system after a repair action. In this work we pro-
pose several algorithms for choosing which batch of com-
ponents to repair, so as to minimize the overall repair costs.
Experimentally, we show the benefit of these algorithms over
repairing components one at a time.

Introduction

Troubleshooting algorithms, in general, plan a sequence of
actions that are intended to fix an abnormally behaving sys-
tem. Fixing a system includes repairing faulty components.
Such repair actions incur a cost. These costs can be parti-
tioned into two types of repair cost. The first, referred to as
the component repair cost, is the cost of repairing a compo-
nent. The second, referred to as the repair overhead, is the
cost of preparing the system to perform repair actions (e.g.,
halting the system) and the cost of testing the system after
performing a repair action.

This paper considers the case where the repair overhead is
not negligible and is potentially more expensive than a com-
ponent repair cost (of a single component). Therefore, it may
be more efficient to repair a batch of components in a single
repair action. We call the problem of choosing which batch
of components to repair the Batch Repair Problem (BRP).
BRP is an optimization problem, where the task is to mini-
mize the total repair costs, which is the sum of component
repair costs and costs due to repair overheads incurred by
repair actions performed until the system is fixed.

Note that in this paper we use the term “fix” when refer-
ring to the entire system and term “repair” for a single or a
set of components. Thus, to fix the system one needs to re-
pair components, and a system is only fixed if it returned to
its nominal behavior.

Most previous work assumed that components are re-
paired one at a time (Heckerman, Breese, and Rommelse
1995; Friedrich and Nejdl 1992; Pernestål, Nyberg, and

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Warnquist 2012; Torta, Anselma, and Dupré 2014). This ap-
proach can be wasteful for BRP. For example, if a diagno-
sis engine infers that multiple faulty components need to be
repaired to fix the system, then it would be wasteful to re-
pair these components one at a time since each repair action
incurring its repair overhead. Instead, an efficient BRP al-
gorithm would repair all the faulty components in a single
repair action. More generally, we expect an intelligent BRP
algorithm to consider to repair overheads and the component
repair costs when deciding which components to repair.

Due to the repair overhead, repairing a single component,
even if it is the component most likely to be faulty, can be
wasteful. This is especially wasteful in cases where all the
found diagnoses consist of multiple faulty components, thus
suggesting that repairing a single component would not fix
the problem. Alternatively, one may choose to repair the
components in the single most likely diagnosis. This may
also be wasteful, especially if there are several diagnoses
which have similar likelihood. It might be worthwhile to re-
pair, in a single repair action, a set of components that “cov-
ers” more than a single diagnosis. This may reduce the num-
ber of repair actions until the system is fixed, thus saving
repair overhead costs. The downside in this approach is that
healthy components may be repaired, increasing the overall
repair costs.

For example, consider the boiler tank system scheme
made by Warren Controls, Inc. described in Figure 1. When
demand for water reduces the liquid level in the tank, the
float cage (A) opens the lever valves (B) to supply intake
water to the tank and closes it when the water reaches the de-
sired level. Component C is an overflow trap which collects
and relieves condensate overflow. Component D includes
two vacuum breakers which are opened to relieve the tank
with outside air to prevent vacuum pressures in the tank.

Assume additional water is required but the level of the
water does not increase. There are two possible diagnoses:
either the float cage A is faulty or the lever valve B is faulty.
Assume that the probabilities of A and B to be faulty are
given by the manufacturer and are 0.06 and 0.04, respec-
tively. Since only these diagnoses can explain the problem,
the normalized probability of A to cause the problem is 0.6
and that of B is 0.4. There are three possible repair actions:
to repair A, to repair B, and to repair A and B. Assume
the repair cost of each component is 5$ but the repair over-

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

769

Figure 1: An example where repairing components one at a
time is wasteful.

head is 50$, due to the cost of opening the tank and boil-
ing the water. If A is repaired, there is a 0.4 chance that
the system would not be fixed and another repair action
would be needed (repairing B). Thus, the expected total re-
pair cost of repairing A first is 0.4 · (5 + 50) + 5 + 50 =
77. Similarly, the total repair cost for repairing B first is
0.6 · (5 + 50) + 5 + 50 = 88. The best option is thus to
repair A and B together in a single repair action, incurring a
total repair cost of 5 + 5 + 50 = 60.

In this work we model BRP as a combinatorial optimiza-
tion problem, searching in the combinatorial space of pos-
sible repair actions for the best repair action. There are two
challenges in implementing this approach: (1) how to mea-
sure the quality of a repair action, and (2) how to efficiently
search for the repair action that maximizes this measure.
There are many efficient heuristic search algorithms in the
literature, and thus we focus on the first challenge — de-
veloping intelligent heuristics for estimating the merit of a
repair action.

The contributions of this work are practical. A range of
heuristic objective functions are proposed and analyzed, and
we evaluate their effectiveness experimentally on a standard
benchmark. A clear observation from the results is that in-
deed considering batch repair actions can save repair cost
significantly and that intelligent heuristics are crucial in sav-
ing repair costs.

Problem Definition

Next, we provide background required for defining the batch
repair problem we address. Following standard model-based
diagnosis (MBD) terminology, we denote by COMPS and
OBS the components in the system and the observed system
behavior, respectively. SD describes the behavior of the di-
agnosed system, and in particular the behavior of each com-

ponent. The term behavior mode of a component refers to a
state of the component that affects its behavior. SD describes
for every component one or more behavior modes. For ev-
ery component, at least one of the behavior modes must rep-
resent the nominal behavior of the component. The normal
mode is often described by the clause h(Ci) → ϕCi

, where
Ci ∈ COMPS, h(Ci) is a predicate stating thatCi is healthy,
and ϕCi describes the nominal behavior of Ci. For instance,
the nominal behavior of the lever valve (component B in
Figure 1) is to be opened once the float cage opens it, while
an abnormal behavior can be stuck open or close.

A batch repair problem (BRP) arises when the assump-
tion that all components are normal is not consistent with
the system description and observations. Formally,

SD ∧ OBS ∧
∧

C∈COMPS

h(C) is not consistent

A mode assignment ω is an assignment of behavior modes
to components. Let ω(+) be the set of components assigned
a nominal (i.e., normal) behavior mode and ω(−) be the set
of components assigned one of the other modes.
Definition 1 (Diagnosis). A mode assignment ω is called a
diagnosis if ω ∧ OBS ∧ SD is satisfiable.

In the example shown in Figure 1, assuming that all com-
ponents are healthy under the observation that the water
level is decreased is not consistent. Then a possible diagno-
sis is that components C and D are healthy, while either A
or B are in an abnormal mode. For instance, the lever valve
(B) is stuck close.
In such a case, at least one component must be repaired.
Definition 2 (Repair Action). A repair action can be applied
to any subset of components and results in these components
becoming normal. Applying a repair action to a set of com-
ponents γ is denoted by Repair(γ).

Definition 2 assumes that repair actions always succeed,
i.e., a component is normal after it is repaired.

After a repair action, the system is tested to check if it
has been fixed. We assume that the system inputs in this test
are the same as in the original observations (OBS). The
observed system outputs are then compared to the expected
system outputs of a healthy system. Thus, the result of a re-
pair action is either that the system is fixed, or a new obser-
vation that may help choosing future repair actions.

A model-based diagnosis engine (MBDE) accepts as in-
put SD, OBS, and COMPS and outputs a set of diagnoses
Ω. Although a diagnosis is consistent with SD and OBS, it
may be incorrect. A diagnosis ω is correct if by repairing
the set of components in ω(−) the system is fixed. Some
diagnosis algorithms return, in addition to Ω, a measure of
the likelihood that each diagnosis is correct (Williams and
Ragno 2007; Abreu, Zoeteweij, and van Gemund 2011). Let
p : Ω → [0, 1] denote this likelihood measure. We assume
that p(ω) is normalized so that

∑
ω∈Ω p(ω) = 1 and use it

to approximate the probability that ω is correct.
A common way to estimate the likelihood of diagnoses,

assumes that each component has a prior on the likelihood
that it would fail and component failures are independent.

770

Therefore, if p(c) represents the likelihood that a component
c would fail then diagnosis likelihood can be computed as

p(ω) =

∏
c∈ω− p(c)∑

ω′∈Ω
∏

c∈ω′− p(c)
(1)

where the denominator is a normalizing factor. We assume
in the rest of this paper that diagnoses likelihoods are com-
puted according to Equation 1. Other methods for computing
likelihood of diagnoses also exist (Mengshoel et al. 2010).

Repairing a set of components incurs a cost, composed
of a repair overhead and component repair costs. The repair
overhead is denoted by costrepair, and the component repair
cost of a component c ∈ COMPS is denoted by costc.

Definition 3 (Repair Costs). Given a set of components γ ⊆
COMPS, applying a repair action Repair(γ) incurs a cost:

cost(Repair(γ)) = costrepair +
∑
c∈γ

costc

We assume that all repair costs are positive and non-zero,
i.e., costrepair > 0 and costc > 0 for every component c ∈
COMPS. As defined earlier, the task in BRP is to fix a system
with minimum total repair cost.

As shown in Figure 1, an efficient BRP solver should con-
sider the possibility of repairing a set of components in a
single repair action. Thus, the potential number of repair ac-
tions is 2|COMPS|. Therefore, from a complexity point of view
BRP is an extremely hard problem.

System Repair Likelihood

If the MBDE returns a single diagnosis ω that is guaranteed
to be correct, then the optimal solution to BRP would be to
perform a single repair action: Repair(ω−). This, however,
is rarely the case, and more often a possibly a very large set
of diagnoses is returned by diagnosis algorithms. This intro-
duces uncertainty as to whether a repair action would actu-
ally fix the system. We define this uncertainty as follows:

Definition 4 (System Repair Likelihood). The System Re-
pair Likelihood of a set of components γ ⊆ COMPS,
denoted SystemRepair(γ), is the probability that
Repair(γ) would fix the system.

Consider the relation between p(ω) and
SystemRepair(ω). If ω is correct, then repairing
all components that are faulty, meaning ω(−), would fix the
system. Therefore, the likelihood of repairing ω(−) causing
the system to be fixed is at least p(ω), i.e.,

SystemRepair(ω(−)) ≥ p(ω)

Moreover, if ω is correct then repairing any superset of ω(−)

would also fix the system. Thus, SystemRepair(ω(−))may
be larger than p(ω). On the other hand, repairing any set of
components that is not a superset of ω(−), as there would
still be faulty components in the system. Therefore, a repair
action Repair(COMPS′) would fix the system if and only if
ω∗(−) ⊆ COMPS′, where ω∗ is the correct diagnosis. While

we do not know ω∗, we can compute SystemRepair(γ)
from Ω and p(·):

SystemRepair(γ) =
∑

ω∈Ω∧ω⊆γ

p(ω)

For example, in the boiler tank depicted in Fig-
ure 1, there are two diagnoses, {A} and {B}, such
that p({A}) = 0.6 and p({B}) = 0.4. Thus,
SystemRepair({A})=0.6, SystemRepair({B})=0.4, and
SystemRepair({A, B})=p({A})+p({B})=1.

BRP as a Combinatorial Search

As mentioned in the introduction, the approach for solving
BRP that we pursue in this paper formulates BRP as a com-
binatorial search problem. The search space is the space of
possible repair actions, i.e., every subset of the set of com-
ponents there were not repaired yet. The search problem is
to find the repair action that maximizes a utility evaluation
function u(·) that maps a repair action to a real value that
estimates its merit.

The effectiveness of this search-based approach for BRP
depends on the search algorithm used and how the u(·) util-
ity function is defined. There are many existing heuristic
search algorithm for searching large combinatorial search
spaces (Russell and Norvig 2010; Edelkamp and Schroedl
2011). Thus, in this work we propose and evaluate a set of
possible utility functions. Note that for some of the utility
functions described next it is possible to find the best repair
action without searching the entire search space of possible
actions, while others are more computationally intensive.

k Highest Probability

A key source of information for all the utility functions de-
scribed below is the set of diagnoses Ω and their likelihoods
(p(·)). We assume that this information is obtained by us-
ing a diagnosis engine over the observations of the current
state of the system. The set of returned diagnoses may be
very large. The first utility function we propose is based on
the system’s health state, which has been recently proposed
as a method for aggregating information from a set of diag-
noses (Stern et al. 2015).
Definition 5 (Health State). A health state is a mapping F :
COMPS → [0, 1] where

F (C) =
∑

ω∈Ωs.t.C∈ω
p(ω)

F (C) is an estimate of the likelihood that component C is
faulty given a set of diagnosesΩ and their likelihoods. Based
on the system’s health state, we propose the following utility
function, denoted uHP :

uHP (γ) =
∑
C∈γ

F (C)

where γ is a subset of COMPS that were not repaired yet.
The repair action that maximizes uHP is trivial — repair

all components. This would result in the system being re-
pairs, but of course, may repair many components that are

771

likely to be healthy. To mitigate this effect, we propose the k
highest probability repair algorithm (k-HP), which limits the
number of components that can be repaired in a single repair
action to k, where k is a user-defined parameter. Note that
computing k-HP does not need any exhaustive search: sim-
ply sort the health state in descending order of F (·) values
and repair the first k components.

The k-HP repair algorithm has two clear disadvantages.
First, the user needs to define k. Second, k-HP does not con-
sider repair costs (neither component repair costs nor over-
head costs). The next set of utility functions and correspond-
ing repair algorithms address these disadvantages.

Wasted Costs Utilities

Repairing a system requires performing repair actions. Some
repair costs are inevitable. These are the repair overhead of
a single repair action, and the component repair costs that
repair the faulty components. We propose a family of util-
ity functions that try to estimate the expected total repair
costs beyond these inevitable costs. We refer to these costs as
wasted costs and to utility functions of this family as wasted
cost functions. We model these wasted costs as being com-
posed of two parts.
• False positive costs (costFP). These are the costs in-

curred by repairing components that are not really faulty.
• False negative costs (costFN). These are the overhead

costs incurred by future repair actions.
It is clear why the false positive costs are wasted costs —
these are repair costs incurred on repairing healthy compo-
nents. The false negative costs are wasted costs because if
one knew upfront which components are faulty, then the op-
timal repair algorithm would repair all these components in
a single batch repair action, incurring no further overhead
costs. Thus, future overhead costs represent wasted costs.

We borrow the terminology of false positive and false neg-
ative from the machine learning literature, but use it in a
somewhat different manner. To explain this choice of termi-
nology, assume that positive and negative mean faulty and
healthy components respectively. Choosing to repair a faulty
component is regarded as a true positive, and not repairing a
healthy component is regarded as a true negative. Thus, the
wasted costs incurred by repairing healthy components are
costs incurred due to false positives, and the wasted costs
incurred by not repairing a faulty component are overhead
costs incurred due to false negatives. While this is not a per-
fect match in terminology, we belief that it helps clarify the
underlying intention of costFP and costFN .

The Wasted Cost Utility Function For a given set of
components γ, we denote by costFP (γ) and costFN (γ) the
false positive costs and false negative costs, respectively, in-
curred by performing a batch repair action of repairing all
the components in γ. Given costFP (γ) and costFN (γ), we
propose the following general formula for computing the ex-
pected wasted costs, denoted by CWC .

CWC = costFP (γ)+(1−SystemRepair(γ)) ·costFN (γ)

The left hand side of the formula is the false positive costs.
The right hand side of the formula is the false negative costs,

multiplied by the probability that the systemwill not be fixed
by repairing the components in γ. Thus, the formula gives
the total expected wasted costs. We define UWC = −CWC

as the wasted cost utility function.
The wasted cost utility function is a theoretical utility

function, since one does not know upfront the values of
costFP and costFN . Next, we propose several ways to es-
timate UWC by proposing ways to estimate costFP and
costFN .

Estimating the False Positives Cost: We propose to es-
timate the false positive costs by considering the system’s
health state (Definition 5), as follows.

ĉostFP (γ) =
∑
C∈γ

(1− F (C)) · cost(C)

This estimate of the false positive costs can be understood
as an expectation over the false positive costs. The cost of a
repaired component C ∈ γ is part of the false positive costs
only if C is in fact healthy. The probability of this occurring
is (1− F (C)). Thus, (1− F (C)) · cost(C) is the expected
false positive cost due to repairing component C.

Estimating the False Negatives Cost: Correctly estimat-
ing costFN is more problematic than costFP , as it requires
considering the future actions of the repair algorithm. In the
best case, only one additional repair action would be needed.
This would incur a single additional overhead cost. We call
this the optimistic costFN , or simply costoFN , which is
equal to costrepair. The other extreme assumes that every
component not repaired so far would be repaired by a sin-
gle repair action, and correspondingly an incurred overhead
cost. We experimented with a slightly less extreme estimate,
in which we assume that only faulty components will be re-
paired in the future, but each will be repaired in a single re-
pair action, incurring one costrepair per faulty component.
Since we do not know the number of faulty components, we
use the expected number of faulty components according to
the health state:

∑
c/∈γ F (c). The resulting estimate is re-

ferred to as the pessimistic costFN , denoted by costpFN , is
thus computed as:

costpFN (γ) = costrepair ·
∑
c/∈γ

F (c)

To summarize, we propose two utility functions from the
wasted cost utility function family. A pessimistic wasted
cost function, that uses ĉostFP and costpFN to estimate
costFP and costFN , and an optimistic wasted cost function
that uses ĉostFP and costoFN . The corresponding repair al-
gorithms search in the combinatorial space of all possible
sets of components to find the set of components that maxi-
mizes UWC .

Handling the Computational Complexity

The search space is very large — the size of the power set
of all components that were not repaired so far. We explored
two simple ways to handle this. The first approach is to only
consider subset of components with up to k components,

772

Name |COMPS| in out #observations

74181 65 14 8 26
74182 19 9 5 25
74283 36 9 5 22
c432 160 36 7 23
c499 202 41 32 22
c880 383 60 26 30

Table 1: The Benchmark suite: systems 74XXX and ISCAS-
85, and scenarios Feldman.

where k is a parameter. We set the components in a decreas-
ing order of their health state (Definition 5) and choose the
first k components. Thus we increase the probability of re-
pairing faulty components. This approach is referred to as
Powerset-based search.

The second approach considers only supersets of the di-
agnoses in Ω. This has the intuitive reasoning that at least
one of these diagnoses is supposed to be true (according to
the known observation), and thus a repair algorithm should
try to aim for fixing the problem in the next repair action.
Thus, in this approach, we considered in the search for the
best repair action every set of components that are unions of
at most k diagnoses, where k is a parameter. We set the di-
agnoses in a decreasing order of their likelihood (Equation
1) and choose the first k diagnoses. Thus we increase the
probability of repairing faulty components. This approach is
referred to as the Union-based search.

For both powerset-based search and union-based search,
increasing k results in a larger search space and con-
sequently higher computational complexity. On the other
hand, a large search space increases the range of repair ac-
tions considered, and thus higher k can potentially find bet-
ter repair actions. This provides an often desired tradeoff of
computation vs. solution quality. This trend is observable in
our experimental results below.

Experimental Results

We evaluated the proposed batch selection algorithms on
standard Boolean circuit systems. Figure 2 presents a logic
diagram of one of these systems, a known MSI chip called
the 74181. It is an arithmetic logic unit (ALU) that provides
thirty-two functions of two 4-bit variables. COMPS in this
example include the Boolean gates in the ALU. SD is the
behavior description of the components, for instance, the
healthy behavior of an OR gate implies the “OR” behavior
while abnormal behaviors can be stuck at 1 or at 0. OBS in-
cludes the inputs and outputs of the ALU. A diagnosis states
which gates are healthy and which are in a faulty mode. The
batch repair algorithms propose a set of gates to fix.

The standard Boolean circuits we used in our experiments
are presented in Table 1. The systems 74XXX (Hansen, Yal-
cin, and Hayes 1999) are described in the first three rows,
and additional three systems of ISCAS-85 (Brglez, Bryan,
and Kozminski 1989) are described in the following three
rows. Observations were selected randomly from Feldman
et al.’s (2010) known benchmark. To adapt these benchmark
systems and observations to be an experimental infrastruc-

Figure 2: A logic diagram of ALU 74181.

ture for batch repair algorithms we set the prior probability
of each gate to be faulty to 0.01 and chose a single diagno-
sis for each observation to serve as the injected faults. This
is needed to decide when the system is fixed. Note that this
“true” diagnosis was chosen with probability proportional
to its likelihood of being correct, computed according to the
priors mentioned above under the standard assumption of
fault independence. The component repair cost was set to 5,
and we experimented with repair overhead (costrepair) costs
of 10, 15, 20, and 25.

All batch repair algorithms used a simple MBDE based
on exhaustive search to generate diagnoses. Diagnoses were
generated in order of increasing cardinality, and halted after
either all subset minimal diagnoses were found or a timeout
of 15 minutes was reached. We did not use a more sophisti-
cated MBDE as it is not the focus of this work. Note that the
batch repair algorithms are applicable to any MBDE.

Baseline Repair Algorithms

The main hypothesis of this line of work is that performing
a batch repair action can save repair costs. To evaluate if the
proposed batch repair algorithms are able to do so we com-
pare them with 1-HP, in which the component that is most
likely to be faulty is repaired. A similar approach was used
by previous work on test planning (Zamir, Stern, and Kalech
2014). Another baseline repair algorithm we evaluated ex-
perimentally is to repair all components of the most likely
diagnosis in a single batch repair action denoted Batch Best
Diagnosis (hereinafter, BD-batch).

Results

Table 2 shows the average repair costs incurred until the
system was fixed for the systems and problem instances
described above. The first column lists the name of the
compared algorithms, where Opt.(·) and Pes.(·) denote
the union-based search using either pessimistic or the op-
timistic wasted costs utility functions, i.e., where costpFN
and costoFN are used to estimate costFN , respectively, and
the number in brackets (either 1 or 2) is the value of k.
We did not experiment with larger values of k due to com-

773

System 74182 74283 74181 c432 c499 c880
Overhead 10 15 20 25 10 15 20 25 10 15 20 25 10 15 20 25 10 15 20 25 10 15 20 25
1-HP 82 110 137 164 106 142 177 213 119 159 199 239 60 80 100 120 41 55 69 83 144 191 239 287
BD 59 73 88 103 81 101 122 142 92 115 137 160 83 109 135 161 28 36 45 53 95 123 151 178
2-HP 62 78 94 109 85 107 128 149 85 107 128 149 47 59 71 83 32 40 49 51 90 109 127 145
3-HP 57 69 81 93 77 93 108 124 83 99 116 132 44 53 62 72 30 37 44 46 87 102 117 131

4-HP 58 69 79 90 78 91 104 117 82 96 110 124 47 55 63 72 28 34 40 62 117 151 186 220
Opt. (1) 56 69 83 97 70 89 108 125 76 95 113 131 50 65 79 94 33 43 52 62 117 151 186 220
Opt. (2) 54 65 71 82 68 82 95 103 75 91 107 121 51 63 73 84 33 41 49 52 114 147 179 207
Pes. (1) 58 69 81 97 68 89 109 128 77 95 111 129 51 65 76 88 33 43 52 62 118 153 187 225
Pes. (2) 56 58 64 73 65 73 83 91 76 90 102 110 51 61 63 69 32 40 45 49 118 149 178 205

Table 2: Average repair costs until system is fixed.

putational complexity. The powerset-based search approach
yielded substantially worse results compared to the union-
based results so we do not display it in Table 2. The other
columns in Table 2 show the results for different overhead
costs – 10, 15,20, and 25. For every system and column,
we marked in bold the best performing algorithm for every
combination of repair overhead cost and system.

The first trend we highlight is that in all cases, using a
batch repair algorithm resulted in significantly less costs
compared to the 1-HP, in which a single component is re-
paired in each round. This supports our main claim that
reasoning about the possibility of batch repair is important.
For example, in the 74181 system when the repair overhead
is 25, 1-HP required an average cost of 239 while Pes.(2)
needed only 110.

Increasing the repair overhead causes all algorithms to re-
quire more cost to fix the system. However, the advantage of
batch repair algorithms over 1-HP increase as repair over-
head costs increases, demonstrating that the importance of
batch repair is greater when overhead costs are higher.

Also, in most cases the trivial BD-batch algorithm did not
perform well, suggesting non-trivial algorithms are needed
for intelligent use of batch repair. For example, in the c499
system with repair overhead of 25, BD-batch required an
average cost of 161 while Pes.(2) needed only 69. No clear
winner was observed when comparing the non-baseline ap-
proaches (k-HP, Opt.(k), and Pes.(k)), and in general most
of these algorithms performed well. However, we do observe
that in general Pes.(2) is more robust in most system, being
either the best performing or close to it in all systems except
c880.

Related Work

BRP is a troubleshooting problem, where the goal is to per-
form repair actions to fix a system. Algorithms for auto-
mated troubleshooting were proposed in previous works.
Heckerman et al. (1995) proposed the decision-theoretic
troubleshooting (DTT) algorithm, that uses a decision the-
oretic approach for deciding which components to observe
in order to identify the faulty component. Later work also
applied a decision theoretic approach that integrated plan-
ning and diagnosis to a real world troubleshooting appli-
cation (Pernestål, Nyberg, and Warnquist 2012; Warnquist,
Kvarnström, and Doherty 2009). Torta et al. (2014) proposed
using model abstractions for troubleshooting while taking

into account the cost of repair actions. All these works did
not consider the possibility of repairing a set of components
together, allowing only repair actions that repair a single
component at a time.

Our current paper do not consider applying further diag-
nostic actions such as probing and testing, which are con-
sidered by previous troubleshooting algorithms. Thus, our
work on BRP could be integrated in previous troubleshoot-
ing frameworks so as to consider both batch repair actions
and diagnostic actions. This is left to future work.

Friedrich and Nedjl (1992) discussed the relation between
diagnoses and repair, in an effort to minimize the breakdown
costs. Breakdown costs roughly correspond to a penalty in-
curred for every faulty output in the system, for every time
step until the system is fixed. In BRP, the goal is to minimize
costs until the system if fixed, and there is no partial credit
for repairing only some of the system outputs.

Cordier et. al. (2008) discuss self-healability that consid-
ers both the diagnosabilty as well as the repairabilty of the
system. Repairability deals with the possibility that a sys-
tem will be fixed by repairing a subset of the system which
is equivalent to batch repair. The paper only lays the basic
definitions but does not address the question of how to select
the batch of components.

Conclusion and Future Work

We addressed the problem of troubleshooting with the pos-
sibility of performing a batch repair action — a repair action
in which more than a single component is repaired. Batch
repair makes sense only if repairing a set of components
in a single repair action is cheaper than repairing each of
them separately. We proposed several algorithms for select-
ing which batch of components to repair. Experimental re-
sults clearly show the benefit of batch repair over single re-
pair actions, and the benefit of the algorithms we suggested
for choosing these set of components to repair.

The computation of the proposed utility functions embod-
ied several assumptions. First, components are assumed to
fail independently (this is used in Equation 1). Second, we
assume that a batch repair action always succeeds, i.e., all
repaired components are healthy after it. Third, we assume
that overhead cost do not depend on the components being
repaired. In future work we will investigate how relaxing
these assumptions. Additionally, an alternative approach to
address the batch repair problem may consider BRP as a

774

planning under uncertainty problem, model it as a Markov
Decision Process (MDP) and solve it appropriately. Finally,
we plan to evaluate the proposed approaches experimentally
on a realistic domain.

References

Abreu, R.; Zoeteweij, P.; and van Gemund, A. J. C. 2011.
Simultaneous debugging of software faults. Journal of Sys-
tems and Software 84(4):573–586.
Brglez, F.; Bryan, D.; and Kozminski, K. 1989. Combinato-
rial profiles of sequential benchmark circuits. In IEEE Inter-
national Symposium on Circuits and Systems, 1929–1934.
Cordier, M.-O.; Pencolé, Y.; Travé-Massuyès, L.; and Vidal,
T. 2008. Characterizing and checking self-healability. In
Proceedings of the 2008 Conference on ECAI 2008: 18th
European Conference on Artificial Intelligence, 789–790.
Amsterdam, The Netherlands, The Netherlands: IOS Press.
Edelkamp, S., and Schroedl, S. 2011. Heuristic search:
theory and applications. Elsevier.
Feldman, A.; Provan, G.; and van Gemund, A. 2010. Ap-
proximate model-based diagnosis using greedy stochastic
search. Journal of Artificial Intelligence Research (JAIR)
38:371.
Friedrich, G., and Nejdl, W. 1992. Choosing observations
and actions in model-based diagnosis/repair systems. KR
92:489–498.
Hansen, M. C.; Yalcin, H.; and Hayes, J. P. 1999. Unveiling
the ISCAS-85 benchmarks: A case study in reverse engi-
neering. IEEE Des. Test 16:72–80.
Heckerman, D.; Breese, J. S.; and Rommelse, K. 1995.
Decision-theoretic troubleshooting. Communications of the
ACM 38(3):49–57.
Mengshoel, O.; Chavira, M.; Cascio, K.; Poll, S.; Darwiche,
A.; and Uckun, S. 2010. Probabilistic model-based diag-
nosis: An electrical power system case study. Systems, Man
and Cybernetics, Part A: Systems and Humans, IEEE Trans-
actions on 40(5):874–885.
Pernestål, A.; Nyberg, M.; and Warnquist, H. 2012. Model-
ing and inference for troubleshooting with interventions ap-
plied to a heavy truck auxiliary braking system. Engineering
Applications of Artificial Intelligence 25(4):705–719.
Russell, S. J., and Norvig, P. 2010. Artificial Intelligence -
A Modern Approach (3. internat. ed.). Pearson Education.
Stern, R. T.; Kalech, M.; Rogov, S.; and Feldman, A. 2015.
Howmany diagnoses do we need? In Bonet, B., and Koenig,
S., eds., Proceedings of the Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence, January 25-30, 2015, Austin,
Texas, USA., 1618–1624. AAAI Press.
Torta, G.; Anselma, L.; and Dupré, D. T. 2014. Exploit-
ing abstractions in cost-sensitive abductive problem solving
with observations and actions. AI Commun. 27(3):245–262.
Warnquist, H.; Kvarnström, J.; and Doherty, P. 2009. Plan-
ning as heuristic search for incremental fault diagnosis and
repair. In Scheduling and Planning Applications Work-
shop (SPARK) at the International Conference on Auto-
mated Planning and Scheduling (ICAPS).

Williams, B. C., and Ragno, R. J. 2007. Conflict-directed
A* and its role in model-based embedded systems. Discrete
Applied Mathematics 155(12):1562–1595.
Zamir, T.; Stern, R. T.; and Kalech, M. 2014. Using model-
based diagnosis to improve software testing. In Brodley,
C. E., and Stone, P., eds., Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence, July 27 -31,
2014, Québec City, Québec, Canada., 1135–1141. AAAI
Press.

775

