
Look-Ahead with Mini-Bucket Heuristics for MPE

Rina Dechter, Kalev Kask, William Lam
University of California, Irvine

Irvine, California, USA

Javier Larrosa
UPC Barcelona Tech

Barcelona, Spain

Abstract

The paper investigates the potential of look-ahead in the con-
text of AND/OR search in graphical models using the Mini-
Bucket heuristic for combinatorial optimization tasks (e.g.,
MAP/MPE or weighted CSPs). We present and analyze the
complexity of computing the residual (a.k.a. Bellman update)
of the Mini-Bucket heuristic and show how this can be used
to identify which parts of the search space are more likely
to benefit from look-ahead and how to bound its overhead.
We also rephrase the look-ahead computation as a graphical
model, to facilitate structure exploiting inference schemes. We
demonstrate empirically that augmenting Mini-Bucket heuris-
tics by look-ahead is a cost-effective way of increasing the
power of Branch-And-Bound search.

Introduction

Look-ahead is known to be useful and even essential in
the context of online search algorithms (e.g., game play-
ing schemes such as alpha-beta, planning under uncertainty
(Geffner and Bonet 2013; Vidal 2004) where the search space
is enormous and traversing it to completion is out of the ques-
tion. Look-ahead can improve the heuristic function h of
a node by expanding the search tree below it to a certain
depth d, evaluate the static h at tip nodes and roll back this
information to n (known as a Bellman update).

Here we investigate the potential of look-ahead (Bu et al.
2014) in the different context of complete search. We con-
sider the min-sum problem over a Graphical model (which
includes, among others, the most probable explanation task
of Markov Networks (Pearl 1988)). This problem is usually
solved by depth-first search Branch-and-Bound (DFBnB).
The search is guided by a heuristic function that provides
an optimistic bound on the cost of the best extension of any
partial assignment. It is often observed that these types of
algorithms spend a significant time proving the optimality of
their output (where the only use of h is pruning).

Our framework is AND/OR Branch-And-Bound (AOBB)
guided by the static Mini-Bucket Elimination heuristic
(MBE), which, assisted by variational cost-shifting meth-
ods, is one of the best current approaches for the min-sum
problem (Marinescu and Dechter 2009; L. Otten and Dechter
2012). However, this heuristic can be weak, (e.g., mainly for

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

problems having a high induced width). A natural approach
is to improve it via dynamic look-ahead during search itself.

In the context of depth-first BnB a better heuristic may
i) allow finding an optimal solution early with less search
(and thus the best upper bound for pruning), and ii) once the
optimal bound is reached, it will help proving optimality by
better pruning of the search space.

What we show in this paper is that in the context of graph-
ical models and when using the mini-bucket heuristic, we
can bound the computation of d-level look-ahead sufficiently,
making it cost effective. This is accomplished by i) exploiting
a relationship between the residual of the heuristic and a new
concept of bucket error that can be pre-compiled, to facilitate
a selective look-ahead process combined with effective prun-
ing of the d-level lookahead tree whenever it is applied, and
ii) using an inference-based message-passing algorithm to
compute the look-ahead, thus exploiting the graphical model
structure at each node.

In Section 2, we provide background. Section 3 introduces
the notions of residual and local bucket-error of the mini-
bucket heuristic that captures the mini-bucket approximation
error. Section 4 presents the experiments and discussion. Sec-
tion 5 concludes the paper.

Background

Graphical Models A graphical model is a tuple M =
(X,D,F), where X = {Xi : i ∈ V } is a set of variables
indexed by a set V and D = {Di : i ∈ V } is the set of
finite domains of values for each Xi, F is a set of discrete
functions. In this paper we focus on the min-sum problem,
C∗ = minx

∑
f∈F f(x) wich is applicable in a wide range

of reasoning problems (e.g, MPE/MAP). The scope of f
(i.e. the subset of X relevant to f ) is noted scope(f). We
will use lower case y to denote the assignment of a set of
variables Y ⊆ X. Thus, f(x, Y ) is a function with scope
X ∪ Y partially assigned by x. In an abuse of notation we
will sometimes write f(y) with scope(f) ⊂ Y assuming that
the irrelevant parts of the assignment will be ignored.

Primal graph, pseudo-tree. The primal graph G of a
graphical model M has each variable Xi in a node and an
edge (Xi, Xj) is in G iff the pair of variables appears in
the scope of any f ∈ F. A pseudo-tree T = (V,E′) of the

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

694



�� ��

����

��

��

	�

(a) A primal graph of a graphical model
over 8 variables. We assume pair-wise func-
tions.

��

��

�� ��

	��� ��

� �

(b) A pseudo-tree T . Grayed area is TB,1

A

f(A,B)B

f(B,C)C f(B,F)F

f(A,G) 
f(F,G)

Gf(B,E) 
f(C,E)

Ef(B,D) 
f(C,D)

D

�D�A(A)

f(A,D)D

mini-buckets

f(A,H)

�D�C(B,C)

�C�B(B)

�E�C(B,C)

�F�B(A,B)

�G�F(A,F)

�B�A(A)

(c) Mini-bucket tree with i-bound of 3.
��

�� ��

��

��

�� ��

�� �� �� ��

�� ��

��

��

�� ��

��

��

�� ��

��

��

�� ��

��

	� 	�

�� ��

�� ��

��

�� ��

�� ��

��

	� 	�

�� ��

�� ��

��

�� ��

�� ���� �� �� �� �� �� �� ��

�� �� �� �� �� ��

�� �� �� ��

�� ��

�� �� �� ���� �� �� �� �� �� �� ��

(d) The AND/OR context minimal search
graph.

��

�� ��

���� ��

��

�

(e) Depth 2, look-ahead tree from B.
Minimal pruned tree in grayed area.

��

��

�� ��

��

��

��

�� ��

��

��

�� ��

��

�� ��

�� ��

�� ��

��

�� ��

�� ��

�� �� �� �� �� �� �� ��

�� ��

�� �� �� ��

�� ��

�� �� �� ��

��

� ��

��

� ��

�� �

� � �� ��

�� ��

�� �� �� �

(f) Depth 2, look-ahead search space from
B. Minimal pruned search space in grayed
area.

Figure 1

primal graph G = (V,E) is a rooted tree over the same set
of vertices V such that every edge in E−E′ connects a node
to one of its ancestors in T .

Notation. Let T be a pseudo-tree. X̄p denotes Xp and its
ancestors in T . ch(Xp) denote the children of Xp in T . The
subtrees rooted by each ch(Xp) is denoted Tp. The same
subtrees of Tp pruned below depth d is denoted Tp,d. We will
often abuse notation and will consider a tree as the set of its
nodes, or its variables.

Example. Figure 1a displays the primal graph of a graph-
ical model with 10 binary cost functions, each one corre-
sponds to an edge in the graph. Figure 1b displays a pseudo-
tree. The ancestors of C are A and B. Its children are D and
E. The grayed area corresponds to TB,1.

AND/OR search. A state-of-the-art method to solve rea-
soning tasks on graphical models is to search their AND/OR
graph (Marinescu and Dechter 2009). The AND/OR search
tree, which is guided by a pseudo-tree T of the primal graph
G, consists of alternating levels of OR and AND nodes. Each
OR node is labeled with a variable Xp ∈ X. Its children are
AND nodes, each labeled with an instantiation xp of Xp. The
weight of the edge, w(Xp, xp), is the sum of costs of all the
functions f ∈ F that are completely instantiated at xp but are
not at its parent Xp. Children of AND nodes are OR nodes,
labeled with the children of Xp in T . Each child represents
a conditionally independent subproblems given assignments
to their ancestors. Those edges are not weighted. The root

of the AND/OR search tree is the root of T . The path from
an AND node labeled xp to the root corresponds to a partial
assignment to X̄p denoted x̄p.

A solution tree in the AND/OR tree is a subtree that (1)
contains its root , (2) if an OR node is in the solution subtree,
then exactly one of its children is in the solution tree, (3) if
an AND node is in the solution tree, then all its children are.
A solution tree corresponds to a complete assignment and its
cost is the sum-cost of its arc weights.

The AND/OR search tree can be converted into a graph by
merging nodes that root identical subproblems. It was shown
that identical subproblems can be identified by their context
(a partial instantiation that decomposes the subproblem from
the rest of the problem graph), yielding an AND/OR search
graph (Marinescu and Dechter 2009).

Example. Figure 1d displays the AND/OR search graph of
the running example. A solution tree, corresponding to the
assignment (A = 0, B = 1, C = 1, D = 0, E = 0, F =
0, G = 0), is highlighted.

AND/OR Branch-And-Bound (AOBB) is a state-of-the-
art algorithm for solving combinatorial optimization prob-
lems over graphical models (Marinescu and Dechter 2009).
It explores the set of (partial) assignments by traversing the
weighted AND/OR context-minimal search graph in a depth-
first manner, while keeping track of the current best solution
(upper bound, ub) of the subtree rooted at each node x̄p,
denoted ub(x̄p). Each AND node has an associated heuris-
tic value h(x̄p) which is a lower bound on the best cost

695



extension of x̄p to its descendents in Tp. Then whenever
h(x̄p) ≥ ub(x̄p), search below x̄p can be safely pruned.

The heuristic is also used to guide the order in which OR
nodes and AND nodes are expanded (namely, in which order
independent subproblems are considered and in which order
values for the current variable are considered).

Mini-Bucket Elimination Heuristic. Current implemen-
tations of AOBB (Kask and Dechter 2001; Marinescu and
Dechter 2009) are guided by the mini-bucket heuristic. This
heuristic is based on Mini-Bucket Elimination and is called
MBE(i) where i, called i-bound, allows trading off pre-
processing time and space for heuristic accuracy with actual
search. It belongs to the class of static heuristics, mean-
ing that it is pre-processed before AOBB starts. MBE(i)
works relative to the same pseudo-tree T which defines the
AND/OR search graph. Each node Xp of T is associated
with a bucket Bp that includes a set of functions. The scope
of a bucket is the union of scopes of all its functions before
it is processed as described next. First, each function f of
the graphical model is placed in a bucket Bp if Xp is the
deepest variable in T s.t. Xp ∈ scope(f). Then MBE(i)
processes the buckets of the pseudo-tree from leaves towards
the root. Processing a bucket may require partitioning the
bucket’s functions into mini-buckets Bp = ∪rB

r
p , where each

Br
p includes no more than i variables. Then, processing each

mini-bucket separately, all its functions are combined (by
sum in our case) and the bucket’s variable (Xp) is eliminated
(by min in our case). Each resulting new function, also called
a message, is placed in the closest ancestor bucket whose
variable is contained in its scope. MBE(i) is time and space
exponential in the i-bound.

Bucket Elimination (BE). In the special case in which the
i-bound is high enough so there is no partitioning into mini-
buckets, the algorithm is the exact bucket-elimination (BE)
scheme (Dechter 2013). The time and space complexity of
BE is exponential in the size of the largest bucket scope
encountered which is called the induced width and is denoted
w∗, for that ordering.

Notation. In the following, fp denotes an original function
placed in Bucket Bp (if there is more than one, they are all
summed into a single function), and λj→p denotes a message
created at bucket Bj and placed in bucket Bp. Processing
bucket Bp produces messages λp→i for some ancestors Xi

of Xp (i.e, Xi ∈ X̄p −Xp).

Example. Figure 1c illustrates the execution of MBE(3)
in our running example by means of the so-called mini-
bucket tree (nodes are buckets and tree-edges show mes-
sage exchanges). In this example, bucket BD is the only
one that needs to be partitioned into mini-buckets. Each
mini-bucket generates a message. In the figure, messages
are displayed along an edge to emphasize the bucket where
they are generated and the bucket where they are placed.
For instance, λD→C is generated in bucket D (as λD→C =
minD{f(B,D) + f(B,D)}) and placed in bucket C.

Extracting the mini-bucket heuristic (Kask and Dechter

1999). The (static) mini-bucket heuristic used by AOBB re-
quires a MBE(i) execution prior to search keeping all the
message functions. Let x̄p be a partial assignment. Λj de-
notes the sum of the messages sent from bucket Bj to all of
the instantiated ancestor variables,

Λj(x̄p) =
∑

Xq∈X̄p

λj→q(x̄p) (1)

The heuristic value at node x̄p is,

h(x̄p) =
∑

Xj∈Tp

Λj(x̄p) (2)

Example. In our example, the heuristic function of par-
tial assignment (A = 0, B = 1) is h(A = 0, B = 1) =
λD→A(A = 0) + λC→B(B = 1) + λF→B(A = 0, B = 1)

AND/OR Look-Ahead

OR Look-Ahead In the field of heuristic search the gen-
eral task is to find the least cost path in a weighted directed
graph from one initial node to one of the possibly many goal
nodes. The search is guided by an admissible heuristic func-
tion h(n) which underestimates the least cost path from n
to a goal state. More accurate h(n) decreases the expanded
search space (Nilsson 1980). If h is not accurate enough
it can be improved by means of a look-ahead, a technique
useful in game playing and in planning with uncertainty,
especially for anytime solvers (Geffner and Bonet 2013;
Vidal 2004).
DEFINITION 1 (look-ahead, residual). Let ch(n) be the
children of node n in the search graph and h be a heuristic
function. The d look-ahead of n is,

hd(n) = min
ni∈ch(n)

{w(n, ni) + hd−1(ni)}

where w(n, ni) is the weight of the arc, and h0 = h. The
look-ahead residual, defined by,

res(n) = h1(n)− h(n)

measures the error of h with respect to the next level.

AND/OR Look-Ahead. Focusing now on AND/OR search
for graphical models, let n be an AND node labeled by xp

terminating a partial assignment x̄p. Extending the definition
of look-ahead to the next level of AND nodes (i.e, two levels
in the AND/OR graph) we get:

hd(x̄p) =
∑

Xq∈ch(Xp)

min
xq

{w(Xq, xq) + hd−1(x̄q)} (3)

Specializing to the MBE heuristic we can show
PROPOSITION 1. If h denotes the mini-bucket heuristic, x̄p

is a partial assignment and x↓
p,d is an extension of the assign-

ment to all the variables in Tp,d

hd(x̄p) = h(x̄p) + Ld(x̄p)−
∑

Xk∈Tp,d

Λk(x̄p) (4)

696



where,

Ld(x̄p) = min
x↓
p,d

{
∑

Xk∈Tp,d

[fk(x̄p, x
↓
p,d)+

∑

Xj∈Tp−Tp,d

λj→k(x̄p, x
↓
p,d)]}

(5)
Proof. (sketch) The reformulation is obtained after expanding
the recursive definition of lookahead (eq. 3) and replacing
the generic heuristic by the MBE heuristic (eq. 2 and 1)

Ld(x̄p) is a min-sum problem over a graphical model, as
defined next.
DEFINITION 2 (look-ahead graphical model). Given a
graphical model M = (X,D,F) and messages generated
by MBE(i) along pseudo-tree T , M(x̄p, d) is the depth-d
look-ahead graphical model at x̄p. It has as variables the
set {Xk| Xk ∈ Tp,d} and has functions {fk(X, x̄p)| Xk ∈
Tp,d} ∪ {λj→k(X, x̄p)| Xj ∈ Tp − Tp,d, Xk ∈ Tp,d}.

Clearly, Tp,d is a valid pseudo-tree of M(x̄p, d), that we
call the look-ahead tree. The induced width of M(x̄p, d) is
noted lwp,d.

Example. In Figure 1, the depth 1 look-ahead graphical
model relative to assignment (A = 0, B = 1) contains vari-
ables {C,F}, and the functions, {f(B = 1, C), f(B =
1, F ), λD→C(B = 1, C),
λE→C(B = 1, C), λG→F (A = 0, F )}, whose induced
width is 1. Figure 1e displays the depth 2 look-ahead tree at
variable B.

Clearly, lwd ≤ min{d, w∗} and the bound is tight. In prac-
tice, only shallow look-aheads may be feasible because the
complexity of solving the look-ahead graphical model is ex-
ponential in lwd. A main source for improving the efficiency
in our look-ahead is using effective variable elimination al-
gorithms to compute the look-ahead at each node. We next
focus on the main method for bounding the look-ahead over-
head using the notion of bucket error.

Bounding the Look-Ahead Overhead

Bucket Error

The residual measures the error of one level look-ahead. For
the mini-buckets heursitic the error is originated by the mini-
bucket partitioning. In the following we will compare the
message a bucket would have computed without partitioning
(called exact bucket message and noted μ∗

k) against the mes-
sages computed by mini-buckets of the bucket (called com-
bined mini-bucket message and noted μk). The difference
between the two captures the error introduced by partitioning
the bucket.
DEFINITION 3 (bucket and mini-bucket messages at Bk).
Given a mini-bucket partition Bk = ∪kB

r
k, we define the

combined mini-bucket message at Bk,

μk =
∑

r

(minXk

∑

f∈Br
k

f) (6)

In contrast, the exact message that would have been gen-
erated with no partitioning at Bk is,

μ∗
k = minXk

∑

f∈Bk

f (7)

Notice that while μ∗
k is exact for Bk it may contain parti-

tioning errors introduced in earlier buckets.
DEFINITION 4 (local bucket-error at Bk). Given a run of
MBE, the local bucket error function at Bk denoted Errk is,

Errk = μ∗
k − μk (8)

The scope of Errk is a subset of X̄k −Xk

Example. In an MBE(3) execution as in Figure 1c the
bucket error of D is ErrD = minD[f(A,D) + f(B,D)
+ f(C,D)] - (λD→A(A) + λD→C(B,C)).

Algorithm 1 (BEE) computes the bucket errors. Follow-
ing MBE(i), it executes a second pass from leaves to root
along the pseudo-tree. When considering bucket Bk, it com-
putes μk, μ∗

k and Errk. The complexity is exponential in
the scope of the bucket after the MBE(i) execution. The
total cost is dominated by the largest scope. This number is
captured by a new parameter that we call pseudo-width.

Algorithm 1: Bucket Error Evaluation (BEE)
Input: A Graphical model M = (X,D,F), a

pseudo-tree T , i-bound
Output: The error function Errk for each bucket
Initialization: Run MBE(i) w.r.t. T .
for each Bk, Xk ∈ X do

Let Bk = ∪kB
r
k be the partition used by MBE(i)

μk =
∑

r(minXk

∑
f∈Br

k
f)

μ∗
k = minXk

∑
f∈Bk

f
Errk ← μ∗

k − μk

return Err functions

DEFINITION 5 (pseudo-width(i)). Given a a run of MBE(i)
along pseudo-tree T , the pseudo-width of Bj , psw(i)

j is the
number of variables in the bucket at the moment of being pro-
cessed. The pseudo-width of T relative to MBE(i) is denoted
psw(i) = maxj psw

(i)
j .

THEOREM 1 (complexity of BEE). The complexity of BEE
is O(n · kpsw(i)), where n is the number of variables, k
bounds the domain size and psw(i) is the pseudo-width along
T relative to MBE(i).

The pseudo-width lies between the width and the induced
width w∗ of the ordering, and it grows with the i-bound.
When the i-bound of MBE is large, computing the error
exactly may not be possible.

We next show (Theorem 2) the relationship between the
residual of the mini-bucket heuristic and the bucket errors. To
prove it we need the following lemmas which relates μk (Eq.
6) to the MBE heuristic of its parent Xp, and relates μ∗ (Eq.
7) to the combinatorial part of the look-ahead computation
(Eq. 5).
Lemma 1. If Xk is a child of a variable Xp. Then,
Λk(X̄p) = μk(X̄p)

Proof. Λk(X̄p) (see Eq. 1) is the sum of messages that
MBE(i) sends from Bk to the buckets of variables in X̄p.

697



Since Xp is the parent of Xk, Λk(X̄p) is the sum of all
the messages departing from Xk, which is the definition of
μk(X̄p)

Lemma 2. If Xk is a child of a variable Xp ∈ T . Then,
L1(x̄p) =

∑
Xk∈ch(Xp)

μ∗
k(x̄p)

Proof. (sketch) In the expression of L1(x̄p) (see Eq. 5) it is
possible to push the minimization into the summation. Thus,

L1(x̄p) =
∑

Xk∈ch(Xp)

min
xk

{fk(x̄p, xk) +
∑

Xj∈Tp−ch(Xp)

λj→k(x̄p, xk)}

The set of functions inside of each minxk
are, by definition,

the set of functions in Bk placed there either originally or are
messages received from its descendent, yielding (Eq. 7)

=
∑

Xk∈ch(Xp)

min
xk

∑

f∈Bk

f =
∑

Xk∈ch(Xp)

μ∗
k

THEOREM 2 (residual and bucket-error). Assume an exe-
cution of MBE(i) along T yielding heuristic h Then, for
every x̄p

res(x̄p) =
∑

Xk∈ch(Xp)

Errk(x̄p) (9)

Proof. (sketch) From the definition of residual and Prop 1,

res(x̄p) = L1(x̄p)− (
∑

Xk∈ch(Xp)

Λk(x̄p))

From the Lemma 1 and Lemma 2,

res(x̄p) =
∑

Xk∈ch(Xp)

μ∗
k(x̄p)−

∑

Xk∈ch(Xp)

μk(x̄p)

Grouping together expressions that refer to the same child
proves the theorem.

Corollary 1. When a bucket is not partitioned into mini-
buckets, its bucket error is 0, and therefore it contributes zero
to the residual and the look-ahead of its parent.

Pruned Look-Ahead Trees

Given the error functions, we can now identify variables
that are irrelevant for lookahead (that is, their look-ahead
does not produce any improved heuristic). Once those are
identified, for each variable and look-ahead depth d, we will
prune its look-ahead subtree to include only paths that touch
variables that are relevant. If the bucket error function is
zero for a variable, the variable is clearly irrelevant for 1-
level look-ahead. However to allow more flexibility we will
identify those buckets whose average relative bucket error is
below a given threshold ε. Below, dom(Bj) denotes all the
assignments to variables in the scope of bucket Bj .
DEFINITION 6 (average relative bucket error). The aver-
age relative bucket error of Xj given a run of MBE(i) is

Ẽj =
1

|dom(Bj)|
∑

x̄j

Errj(x̄j)

μ∗(x̄j)

DEFINITION 7 (irrelevant variable). A variable Xj is ε-
irrelevant iff Ẽj ≤ ε.

DEFINITION 8 (minimal pruned d-level subtree). Given a
threshold ε, a minimal pruned look-ahead subtree T ∗

p,d for
variable Xp is obtained from Tp,d by removing ε-irrelevant
leaves Xj (recursively until quiescence).

Example. Corollary 1 identifies trivial 0-irrelevant vari-
ables. For instance, in the MBE execution displayed in Figure
1c, all variables but D are 0-irrelevant. It may happen that
variable D is also 0-irrelevant or ε-irrelevant for some small
ε, but we cannot tell from the symbolic execution displayed
in the figure. It can be detected using bucket errors.

Figure 1e shows a depth 2 look-ahead tree for B and
(grayed) the minimal pruned subtree assuming ε = 0 and
only irrelevant variables as for Corollary 1.

Algorithm 2: Minimal Pruned Look-Ahead Subtree
Input: A Graphical model M = (X,D,F), a

pseudo-tree T , i-bound, threshold ε, depth d
Output: Minimal pruned look-ahead subtrees
Initialization: Run MBE(i) w.r.t. T .
X ′ ← X
Run BEE(M, T, i)
for each Bj , Xj ∈ X do

Ẽj ← 1
|dom(Bj)|

∑
x̄j

Errj(x̄j)
μ∗(x̄j)

if Ẽj < ε then X ′ ← X ′ − {Xj} ;
for each Xp in X do

Initialize T ∗
p,d to Tp,d

while T ∗
p,d has leaves in X ′ do

Remove leaves Xj /∈ X ′ from T ∗
p,d

return T ∗
p,d for each Xp

Algorithm 2 describes the generation of pruned look-ahead
trees for each variable.

Experimental Evaluation

Algorithm Setup. We experimented with running AND/OR
branch-and-bound (AOBB) guided by MBE(i) with
moment-matching (Ihler et al. 2012). To ensure a fixed search
space for all algorithms we used pre-computed variable or-
derings. We tried 2-3 different i-bounds for each problem
instance, aiming at a diversity of heuristic accuracy.

We run Algorithm 2 for pre-processing, yielding a minimal
pruned look-ahead subtree for each variable, When the BEE
computation (and its table) gets too large (e.g. over 106) we
sample (e.g. 105 assignments). Within each i-bound setting,
we varied the look-ahead depth from 0 to 6.
Benchmarks. Includes instances from genetic linkage anal-
ysis (pedigree, largeFam) and medical diagnosis
(promedas) (see Table 2). In total, we evaluated 59 prob-
lem instances with induced widths ranging from 19 to 120.

698



instances Lookahead i-bound
(n,w,h,k,fns,ar) depth ε / rv / nel / ptime / time / spd / nodes / red ε / rv / nel / ptime / time / spd / nodes / red ε / rv / nel / ptime / time / spd / nodes / red

Pedigree networks

i=6 i=10 i=20

LH(0) - / - / - / 0 / 8628 / 1.00 / 4764 / 1.00 - / - / - / 0 / 311 / 1.00 / 175 / 1.00 - / - / - / 48 / 55 / 1.00 / 3 / 1.00
pedigree7 LH(1) 1.0 / 111 / 88 / 0 / 6895 / 1.25 / 3637 / 1.31 1.0 / 76 / 67 / 1 / 257 / 1.21 / 135 / 1.30 0.01 / 52 / 51 / 52 / 59 / 0.93 / 3 / 1.16

(867,32,90,4,1069,4) LH(3) 1.0 / 111 / 137 / 0 / 5761 / 1.50 / 2020 / 2.36 1.0 / 57 / 89 / 1 / 233 / 1.33 / 96 / 1.82 0.01 / 52 / 83 / 52 / 59 / 0.93 / 2 / 1.80

LH(6) 1.0 / 111 / 164 / 0 / 4681 / 1.84 / 519 / 9.17 1.0 / 57 / 116 / 1 / 481 / 0.65 / 53 / 3.30 0.01 / 52 / 94 / 52 / 65 / 0.85 / <1 / 3.88

i=5 i=8
LH(0) - / - / - / 0 / 1262 / 1.00 / 826 / 1.00 - / - / - / 0 / 35 / 1.00 / 23 / 1.00 - / - / - / - / - / - / - / -

pedigree18 LH(1) 0.01 / 151 / 134 / 0 / 912 / 1.38 / 564 / 1.47 0.01 / 92 / 82 / 0 / 20 / 1.75 / 13 / 1.76 - / - / - / - / - / - / - / -

(931,19,102,5,1185,5) LH(3) 0.01 / 151 / 203 / 0 / 691 / 1.83 / 311 / 2.66 0.01 / 92 / 132 / 0 / 12 / 2.92 / 6 / 4.00 - / - / - / - / - / - / - / -

LH(6) 0.01 / 93 / 192 / 0 / 300 / 4.21 / 66 / 12.47 0.01 / 92 / 152 / 0 / 13 / 2.69 / 2 / 11.06 - / - / - / - / - / - / - / -
LargeFam linkage networks

i=17 i=18
LH(0) - / - / - / 33 / 10427 / 1.00 / 6730 / 1.00 - / - / - / 34 / 4349 / 1.00 / 2809 / 1.00 - / - / - / - / - / - / - / -

lf3 11 53 LH(1) 0.01 / 78 / 73 / 36 / 8611 / 1.21 / 4875 / 1.38 0.01 / 75 / 70 / 36 / 3653 / 1.19 / 2116 / 1.33 - / - / - / - / - / - / - / -

(1094,39,71,3,1567,4) LH(3) 0.01 / 78 / 96 / 35 / 5481 / 1.90 / 1674 / 4.02 0.01 / 75 / 91 / 36 / 2750 / 1.58 / 901 / 3.12 - / - / - / - / - / - / - / -
LH(6) 0.01 / 78 / 101 / 36 / 20147 / 0.52 / 583 / 11.55 0.01 / 75 / 98 / 36 / 10918 / 0.40 / 323 / 8.68 - / - / - / - / - / - / - / -

i=10 i=12 i=14
LH(0) - / - / - / 0 / 1507 / 1.00 / 926 / 1.00 - / - / - / 0 / 39 / 1.00 / 26 / 1.00 - / - / - / 0 / 18 / 1.00 / 12 / 1.00

lf3 15 53 LH(1) 0.01 / 80 / 71 / 1 / 1149 / 1.31 / 671 / 1.38 0.01 / 80 / 77 / 2 / 37 / 1.05 / 22 / 1.20 0.01 / 80 / 76 / 3 / 18 / 1.00 / 10 / 1.20

(1480,32,71,3,2171,4) LH(3) 0.01 / 80 / 112 / 1 / 887 / 1.70 / 413 / 2.25 0.01 / 80 / 116 / 2 / 31 / 1.26 / 14 / 1.90 0.01 / 80 / 114 / 3 / 13 / 1.38 / 5 / 2.17
LH(6) 0.01 / 80 / 134 / 1 / 1401 / 1.08 / 198 / 4.68 0.01 / 80 / 138 / 2 / 65 / 0.60 / 8 / 3.28 0.01 / 80 / 129 / 3 / 28 / 0.64 / 3 / 3.41

Promedas networks
i=20 i=23

LH(0) - / - / - / 7 / 10645 / 1.00 / 3528 / 1.00 - / - / - / 43 / 9228 / 1.00 / 3048 / 1.00 - / - / - / - / - / - / - / -
or chain 151 LH(1) 0.01 / 106 / 98 / 15 / 9398 / 1.13 / 2930 / 1.20 0.01 / 103 / 96 / 53 / 21603 / 0.43 / 3948 / 0.77 - / - / - / - / - / - / - / -

(1911,94,165,2,1928,3) LH(3) 0.01 / 106 / 148 / 15 / 8278 / 1.29 / 2176 / 1.62 0.01 / 103 / 136 / 53 / 5895 / 1.57 / 1559 / 1.96 - / - / - / - / - / - / - / -
LH(6) 0.01 / 106 / 172 / 14 / 9402 / 1.13 / 1123 / 3.14 0.01 / 103 / 160 / 52 / 5934 / 1.56 / 757 / 4.03 - / - / - / - / - / - / - / -

i=15 i=20 i=24
LH(0) - / - / - / 0 / 2958 / 1.00 / 1328 / 1.00 - / - / - / 4 / 917 / 1.00 / 403 / 1.00 - / - / - / 64 / 542 / 1.00 / 210 / 1.00

or chain 230 LH(1) 0.01 / 82 / 78 / 3 / 2590 / 1.14 / 1086 / 1.22 0.01 / 68 / 63 / 8 / 863 / 1.06 / 364 / 1.11 0.01 / 64 / 62 / 72 / 506 / 1.07 / 184 / 1.14

(1338,61,109,2,1357,3) LH(3) 0.01 / 82 / 111 / 3 / 2169 / 1.36 / 739 / 1.80 0.01 / 60 / 95 / 8 / 800 / 1.15 / 290 / 1.39 0.01 / 64 / 95 / 70 / 435 / 1.25 / 130 / 1.61
LH(6) 0.01 / 82 / 123 / 3 / 3552 / 0.83 / 379 / 3.50 0.01 / 40 / 91 / 8 / 1180 / 0.78 / 202 / 2.00 0.01 / 64 / 107 / 70 / 615 / 0.88 / 83 / 2.52

Table 1: Statistics on pedigree, largefam, promedas instances for exact solutions. We selected 2-3 i-bounds for each instance,
aiming to vary magnitudes of search, ranging from significant to minimal (dictated by our memory limit of 4Gb for constructing
the MBE heuristic). The time and nodes are emphasized in bold. For each i-bound, we box the best particular time across the
different look-ahead depths.

Benchmark # inst n k w h |F | a

Pedigree 17 387 3 19 58 438 4
1015 7 39 143 1290 5

LargeFam 14 950 3 32 66 1383 4
1530 3 40 95 2352 4

Promedas 28 735 2 41 77 749 3
2113 2 120 180 2134 3

Table 2: Benchmark statistics. # inst - n. of instances, n - n.
of variables, w - induced width, h - pseudotree height, k -
max. domain size, |F | - n. of functions, a - max. arity. The
top value is the min. and the bottom value is the max. for that
statistic.

Results

In Table 1, we report detailed statistics across a representa-
tive set of instances from our benchmarks. The main three
columns cover the different i-bounds. Each tuple reports
the ε, and the number of ε-relevant variables (rv), as well
as the number of variables where look-ahead was applied
(i.e., whose pruned trees were not empty) (nel). We report
preprocessing time (in seconds) (ptime), total CPU time (in
seconds) (time), its associated speedup (spd), the number of
nodes generated (in millions of nodes), and its associated
ratio of node reduction (red). We report a subset of depths

for space reasons.
Deeper look-ahead yields smaller search space. As ex-
pected, we see universally across all our experiments that
more look-ahead results in smaller search space . However,
this is not always cost effective.
Look-ahead benefits weaker heuristics more. For exam-
ple, on pedigree7 the best speedup at i=6 is 1.84 while the
best speedup at i=10 is 1.33; on pedigree18 the best speedup
at i=5 is 4.21 while the best speedup at i=8 is 2.92.
For weaker heuristics, deeper look-ahead is more effec-
tive. For example, we observe that on pedigree7 the best
look-ahead at i=6 is d=6 while the best look-ahead at i=10 is
d=3; on pedigree18 the best look-ahead at i=5 is d=6 while
the best look-ahead at i=8 is d=3.
Weaker heuristics will invite more look-ahead for the
same ε. We observe how the threshold of 0.01 yields a frac-
tion of ε-relevant variables leading to a small subset of vari-
ables where look-ahead is applied (lhn). These numbers also
differ depending on the heuristic strength.
Figure 2 presents best speedups using scatter diagrams as
well as avg/min/max best speedups per benchmark set.

Figure 3 provides a comparison of average speedups be-
tween the full look-ahead tree vs the minimal pruned tree, as
a function of the look-ahead level d, using a fixed threshold
of 0.01. The full look-ahead tree corresponds to applying

699



Figure 2: Total CPU times for using no look-ahead plotted against best total CPU times for any level of look-ahead (in log scale).
Each point in the gray region represents an instance where the look-ahead heuristic has better time performance for some setting
of the depth. We also report the number of instances which were actually solved and the average speedup across these instances.

Figure 3: Average speedups relative to using no look-ahead per depth for the minimal and full look-ahead subtrees.

lookahead naively. We observe here the advantage of using
minimal pruned trees. For example, on the pedigree in-
stances, there is almost no speedup on average when using the
full look-ahead subtree by a depth of 3, but using the minimal
pruned tree allows look-ahead to remain cost-effective.

Conclusion

This paper opens up an investigation on the use of look-ahead
in graphical models. We address the challenge of finding
an effective balance between the look-ahead overhead and
its punning power, by exploiting the graphical structure. We
have showed a general relationship between the residual of
the mini-bucket heuristic and a local bucket-error due to
the mini-bucket algorithm. This relationship shows that the
residual (and consequently depth-1 look-ahead) can be pre-
compiled using a message-passing like computation. As such,
we showed that the bucket-errors can assist in controlling the

look-ahead at any depth. We showed empirically that even
this simple mechanism of identifying irrelevant variables
can be instrumental in making deep-level look-head cost-
effective. In addition, for the mini-bucket heuristic, we have
characterized look-ahead as an inference task, which allows
a full inference solving approach. In the future, we plan to
automate parameter selection for optimizing look-ahead, and
explore the potential for anytime combinatorial optimization.

Acknowledgements

We thank the reviewers for their valuable feedback. This
work was suppported in part by NSF grants IIS-1065618, IIS-
1526842, and IIS-1254071, the US Air Force under Contract
No. FA8750-14-C-0011 under the DARPA PPAML program,
and MINECO under projects TIN2013-45732-C4-3-P and
TIN2015-69175-C4-3-R.

700



References

Bu, Z.; Stern, R.; Felner, A.; and Holte, R. C. 2014. A*
with lookahead re-evaluated. In Edelkamp, S., and Barták,
R., eds., Proceedings of the Seventh Annual Symposium on
Combinatorial Search, SOCS 2014, Prague, Czech Republic,
15-17 August 2014. AAAI Press.
Dechter, R. 2013. Reasoning with Probabilistic and De-
terministic Graphical Models: Exact Algorithms. Synthesis
Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers.
Geffner, H., and Bonet, B. 2013. A Concise Introduction
to Models and Methods for Automated Planning. Synthesis
Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers.
Ihler, A.; Flerova, N.; Dechter, R.; and Otten, L. 2012. Join-
graph based cost-shifting schemes. In Uncertainty in Ar-
tificial Intelligence (UAI). Corvallis, Oregon: AUAI Press.
397–406.
Kask, K., and Dechter, R. 1999. Branch and bound with
mini-bucket heuristics. Proc. IJCAI-99.
Kask, K., and Dechter, R. 2001. A general scheme for
automatic search heuristics from specification dependencies.
Artificial Intelligence 91–131.
L. Otten, A. Ihler, K. K., and Dechter, R. 2012. Winning
the pascal 2011 map challenge with enhanced and/or branch-
and-bound. In Workshop on DISCML 2012 (a workshop of
NIPS 2012).
Marinescu, R., and Dechter, R. 2009. Memory intensive
and/or search for combinatorial optimization in graphical
models. Artif. Intell. 173(16-17):1492–1524.
Nilsson, N. J. 1980. Principles of Artificial Intelligence.
Tioga, Palo Alto, CA.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems.
Morgan Kaufmann.
Vidal, V. 2004. A lookahead strategy for heuristic search
planning. In Proceedings of the Fourteenth International
Conference on Automated Planning and Scheduling (ICAPS
2004), June 3-7 2004, Whistler, British Columbia, Canada,
150–160.

701




