Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

CAPReS: Context Aware Persona Based Recommendation for Shoppers

Joydeep Banerjee
Arizona State University
jbanerje@asu.edu

Gurulingesh Raravi

Xerox Research Center India
gurulinges.raravi@xerox.com

Xerox Research Center India

Sindhu K. Ernala
IIIT Hyderabad
eskiranmai94 @ gmail.com

Manoj Gupta

manoj.gupta@xerox.com

Shruti Kunde and Koustuv Dasgupta
Xerox Research Center India
{firstname.lastname } @xerox.com

Abstract

Nowadays, brick-and-mortar stores are finding it extremely
difficult to retain their customers due to the ever increasing
competition from the online stores. One of the key reasons
for this is the lack of personalized shopping experience of-
fered by the brick-and-mortar stores. This work considers the
problem of persona based shopping recommendation for such
stores to maximize the value for money of the shoppers. For
this problem, it proposes a non-polynomial time-complexity
optimal dynamic program and a polynomial time-complexity
non-optimal heuristic, for making top-k recommendations by
taking into account shopper persona and her time and budget
constraints. In our empirical evaluations with a mix of real-
world data and simulated data, the performance of the heuris-
tic in terms of the persona based recommendations (quan-
tified by similarity scores and items recommended) closely
matched (differed by only 8% each with) that of the dynamic
program and at the same time heuristic ran at least twice faster
compared to the dynamic program.

1 Introduction

Lack of solutions to provide a personalized shopping experi-
ence to shoppers is hurting the business of brick-and-mortar
stores (aka physical retail stores) and they are losing their
customer base to online stores who have successfully imple-
mented such sophisticated solutions. A half baked effort in
this direction by these physical retail stores via text messag-
ing has hardly helped them as most of these messages that
shoppers receive on their mobiles regarding products, offers
and deals are mostly spam and does not cater to the needs of
the shoppers, nor their context and not even remotely related
to their shopping personas. Moreover, the combination of
hectic lifestyles and the explosion of available products and
stores has tremendously increased the struggle of shoppers
in deciding what to buy and in which stores to buy and what
route (say to minimize the commute time) to take to even
reach those stores. Currently, no comprehensive recommen-
dation system is available that tries to match the needs of the
shoppers by taking into account their personas, needs and
constraints to the products and deals offered by the physical
retailers to maximize the value for money of shoppers.
Value for money (VFM) may have different implications
for different shoppers depending on their persona; there are

Copyright © 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

680

different categories of shopping personas, e.g., luxuriant,
infrequent, etc. Informally, a luxuriant shopper is one who
generally looks for products of high-end brands and that too
may be in exclusive stores. Whereas an infrequent shopper
is one who generally is a needy shopper and buys only those
products that s/he is specifically looking for and may prefer
to wait for one of the sale seasons to begin to get a good
deal. Thus, a luxuriant and an infrequent shopper looking to
buy a same product might have to be given different recom-
mendations. This makes the designing of a persona based
recommendation engine a challenging task.

Apart from shopping persona, the recommendation en-
gine needs to take care of additional constraints that shop-
per might have. These additional constraints may be upper
bounds on the money and the time that the shopper is willing
to spend on products and on commuting, respectively.

Further, we believe that such recommendation systems
can become effective only when they can make multiple rec-
ommendations where each recommendation is a set of stores
along with the products to buy in each of those stores and the
route to traverse to reach those stores. This is mainly because
of the following reasons. First, having multiple options en-
ables the user to evaluate pros and cons of the options and
gives flexibility to choose one from the list. Second, the
recommendation engine itself can continuously learn more
about the persona of the shopper by observing the options
selected by the user from the list of recommendations (the
functionality for the latter is not in the scope of this work).
Therefore, it is desirable to have a recommendation engine
that gives shoppers multiple options to select from and hence
we focus on developing such a recommendation solution.

Problem definition. In this work, we study the prob-
lem of persona based shopping recommendation in a phys-
ical retail setting where a recommendation system needs to
make top-k recommendations to the shopper for maximiz-
ing her value for money considering the above mentioned
challenges related to persona and shopper constraints.

Contributions of this work. This work makes the follow-
ing contributions:

C1. It proposes a dynamic programming based optimal
recommendation algorithm that makes top-k recommen-
dations; the algorithm has a pseudo-polynomial time-
complexity w.r.t the time and the budget constraints
specified by the shopper and has an exponential time-
complexity w.r.t. the number of products to be purchased.

C2. It then proposes a polynomial time-complexity heuris-
tic that also makes top-k recommendations.

C3. Via rigorous experimental evaluations using a combi-
nation of real-world data and simulated data, it compares
the efficacy of the proposed solutions.

Both the solutions are (i) persona aware; (ii) user budget
constraint aware; and (iii) user time constraint aware.

In our experiments, heuristic’s performance closely
matched that of the dynamic program (it differed only by 8%
in terms of both the persona based recommendation and the
average items recommended) and ran at least twice faster.

Organization of the paper. Section 2 discusses the re-
lated work and Section 3 briefs the system model and no-
tations. Section 4 describes a way to model the shopping
persona using similarity scores. Section 5 formally defines
the problem. Section 6 presents a dynamic programming
based optimal algorithm. Since this algorithm has a non-
polynomial time-complexity, Section 7 presents a polyno-
mial time-complexity heuristic for the same problem. Sec-
tion 8 discusses the experimental setup and evaluations of
the proposed algorithms on a mix of real-world data and
simulated data. Finally, Section 9 concludes.

2 Related Work

Modeling of user preference and personalized recommen-
dation systems has been widely studied (Kim et al. 2003;
Linden, Smith, and York 2003; Andersen et al. 2008; Hu and
Pu 2011; Elahi et al. 2013; Goldberg 1990) across different
domains but most extensively in e-commerce applications
for product recommendations to customers. This is primar-
ily due to abundant availability of user data on web usage,
shopping cart details, wish list items, click-stream details,
social media profiles, etc. However, there is no direct exten-
sion of the work done in online retail to the brick-and-mortar
stores due to stark differences in shopping activity.

One domain which forms close relevance to physical re-
tail is Location based recommendation systems using geo-
spatial data. Authors in (Bao, Zheng, and Mokbel 2012) find
a list of recommended venues for a given user within a given
geo-spatial range by considering user preferences. Similarly,
authors in (Yin et al. 2013) approach the same problem us-
ing topic modeling to capture user preferences. They look
at overlapping topics between user interest and local pref-
erence of location to incorporate personalized recommenda-
tions. Our current work however goes a step further from
giving top-k recommendations, to also give the items to pur-
chase from each store and the order in which to visit these
stores from source to destination, considering time and bud-
get constraints. In (Muralidharan et al. 2014), a system that
automatically ranks deals according to user preferences in
terms of promotions and discounts and presents them to the
user on their mobile device is presented. In extension, we
propose a system that takes user preferences in terms of
brands, popularity, budget along with deals — see Section 4.

With the rise of ubiquitous mobile computing, we see a
number of works trying to bridge the gap between online
and physical retail. Authors in (Decker, Kubach, and Beigl
2003) present a smart shelf technology based on interaction
sensing which is able to track basic simple actions, such as

681

take, return and remove, which are performed on items by
the customers to model their behavior. Authors in (Van der
Heijden, Kotsis, and Kronsteiner 2005) discuss key findings
from behavioral decision theory to provide a set of func-
tional requirements for decision making ’on the go’ in mo-
bile recommendation systems. We take inspiration from pre-
vious literature and present a system for persona based rec-
ommendation system in physical retail.

3 System Model

We consider the problem of persona based shopping recom-
mendation to maximize the value for money of the shop-
per respecting the time and budget constraints of the shop-
per. Let R = {ry,ro,rs3,...,7r,} denote a set of retail
shops where each retail shop r; € R (i € {1,2,...,n})
is characterized by a vector P; = (p;1,pi2,---,Pi|pi|)
of products available in the shop and a vector C; =
<cl-,1, Ci2y- s cmpi‘> of cost of the available products with
ci,; representing the cost of product p;; where j €
{1,2,...,|P;|}. The universe of products is denoted by
U ={p1,p2,...,pm} implying that Vi,Vj : p; ; € U.

A city is represented as a graph G = (V,E) where
V = {1 U Va} is a set of nodes with each node repre-
senting either a retail shop (consisting of vertices in V5) or
some other location/landmark in the city (such as an apart-
ment, an office space, a tech park, etc consisting of vertices
in V1) and F is a set of weighted directed edges with each
edge e, , representing the road connectivity between node
v, and node v, and weight of this directed edge ¢, , repre-
sents the time to travel from node v, to node v, considering
the real-time traffic information.

A shopper is denoted by w. Set 7* =
{771,#2, e ,W‘WU‘} C U denotes a set of products
that the shopper u is looking to purchase with each product
m, € 7w where k € {1,2,...,|7%|}. The source and
the destination locations of shopper w in the graph is
denoted by vy € V and v € V respectively. The budget
and the time constraint of the shopper is denoted by b“
and t* respectively. Persona of a shopper u is modeled
using similarity scores as follows. Each retail shop r; is

characterized by a vector S} = <8;7Lﬂ.1 281 s sfm " ‘>

of similarity score of the available products for a shopper
u with s}’ ; representing the similarity score of the product
m; for shopper u in retail shop r;. Section 3 discusses one
of the ways to determine these scores to model a shopper’s
persona. The recommendations of our solutions depend on
the values of these scores, however working of the solutions
is independent of the way these scores are computed.

A recommendation to the shopper contains path to be
taken by the shopper from source to destination, a set of re-
tail shops that the shopper must visit, a set of products sug-
gested for purchasing in each of these shops, the amount that
the shopper would be spending to purchase the suggested
products upon choosing this recommendation and the time
that the shopper will take to cover the suggested path.

4 Persona Modeling via Similarity Scores

In this section, we discuss an approach to model a shop-
per’s persona using similarity scoring. For a shopper, for

each product listed (for purchasing) in her query, a score is
computed. The score of a product will generally be different
for shoppers with different personas. For example, the score
say for a high-end wrist watch in a store will be higher for a
luxuriant shopper compared to that of an infrequent shopper.

The way we have computed the similarity scores to model
the shopper’s persona is as follows. Each user w is charac-
terized with a set of features I = {1, z3..., 2| p|}. The fea-
ture identification was done using demographic studies for
60 different human subjects followed by quantification of
the the feature values. The data is used to classify between
luxuriant and infrequent shoppers. The classification results
were used to generate weights W = {w1 ;, wa i, W3 4, Wa;}
for four different identified features namely brand con-
sciousness, product popularity, media influence, promotions
respectively pertaining to the two different persona class
(denoted by ¢ where ¢ = 1 for luxuriant persona and
i = 2 for infrequent persona). The weight signifies the im-
portance of a feature to a specific persona label. For any
given queried product m; the matched products are quanti-
fied for the four features discussed earlier. Let M denote
the set of all matched products. With feature values being
{fv1,..., fug} the corresponding quantified value for the
product m € M is given as {Cyy, m, ..., Cuoy,m}. With
these definitions, the similarity score s7 ;. for the product
; at a retail store r; for a user u with persona p is given by:

4
s¢ . = max g Wiy * !
F2us J:P 2
VmeM .
€ =1 1 ’Cfvj,m fUJ‘

The details of feature quantification and classification ap-
proach are excluded due to space limitation. We are aware
that there may be better ways to compute these similar-
ity scores (to model the persona). Moreover, the categories
of persona’s are not restricted to luxuriant and infrequent.
Hence, we would like to clarify that although the proposed
recommendation solutions are dependent on the similarity
scores, the working of our solutions is independent of it. Any
persona modeling which can generate such similarity scores
can be incorporated into the proposed system.

5 Problem Formulation

In this section, we formally present the problem using the
notations discussed in Section 3. First, we describe the for-
mulation to obtain a single optimal recommendation and
term it as Optimal Shopper Persona Based Recommendation
(OSPBR) problem. Then, we describe the formulation to ob-
tain top-k recommendations and term it as Shopper Persona
Based Recommendation problem (SPBR).

5.1 Optimal shopper persona based
recommendation problem formulation

The OSPBR problem is defined as follows: Given (gl) a
set 7" of products that a shopper w is looking to purchase;
(g2) a time constraint ¢t and a budget constraint b* speci-
fied by the shopper; (g3) a source vy € V and a destination
vy € V location of the shopper; (g4) a set R of retail shops
and inventory of each retail shop. Each queried product 7;
in the inventory of retail shop r; is represented by a tuple

<cm , s;{m> where c;, represents the cost of the product (0

682

if not available) and s; . represents the score of the prod-
uct for shopper u; and (g5) a road network represented by
a directed graph G = (V, E) (V = {V4,V2} as discussed
earlier) with edge weights ¢, representing the time it takes
to travel from location v, to location vy, we need to find a
route (or walk) from v§ to v} along with a mapping of prod-
ucts recommended to be purchased in each of the retail shop
along the route with the objective of maximizing the scores
of products picked such that the following constraints are
satisfied: (c1) sum of edge weights in the route is no greater
than t*; (c2) each product ; € 7" is picked up at most once;
(c3) sum of costs of the products picked up is no greater than
b*; and (c4) any edge (x,y) € E is traversed at most once.
It can be shown that the decision version of this problem
is NP-Complete by reduction from Minimum Steiner Tree
problem. The proof is skipped here due to space constraint.

5.2 Shopper persona based recommendation
problem formulation

The recommendation obtained from OSPBR problem is op-
timal with respect to the sum of scores of recommended
products. Similarly, we can obtain second best, third best
and so on till k& best recommendations (referred to as top-k
recommendations). The problem of determining top-k rec-
ommendations to the OSPBR problem is termed as the
Shopper Persona Based Recommendation problem (SPBR).
For a given problem instance, it may happen that there
may not be k recommendations (respecting all the con-
straints) with each recommendation recommending all the
products from the user query to buy. In that case, a few rec-
ommendations will only suggest a subset of products to buy
from the list of products given in the user query. In such a
case, we order those recommendations as follows. A recom-
mendation that suggests a higher number of products com-
pared to the other is listed before the latter. Further, if the
number of products suggested are the same then the recom-
mendation with the highest score is listed before the other.

6 An Optimal Recommendation Algorithm

In this section, we propose an optimal algorithm using dy-
namic programming to obtain top-k recommendations for
the SPBR problem. We do this in two steps. First, we de-
scribe the dynamic program for the OPSBR problem (for
getting a single optimal recommendation) and then extend it
to the SPBR problem to obtain top-k recommendations.

6.1 Dynamic program for OSPBR problem

If we knew the order/sequence in which the products queried
by the user need to be picked up then we would directly in-
voke the dynamic program (described later in this section)
with this sequence. Since there is no pre-specified sequence,
we need to generate all possible permutations of the queried
products and for each permutation, we need to invoke the
dynamic program and chose the best output. The basic as-
sumption behind the feasibility (w.r.t. time and space com-
plexity) of the dynamic program is that in real world sce-
nario, the number of queried products are expected to be rel-
atively small for which the number of permutations are well
under system requirements. For example, with the products

queried as {m, 7o, w3}, the permutations are {7y, 7o, 73},
{m1, 73, ma}, {ma, w1, s}, {mo, w3, w1}, {m3, 71, M2} and
{m3,mo, m }. For a given permutation {73, 7o, 71 } denoted
by P and a walk from v to v, the product 73 can be picked
up from a store if and only if 73 has already been picked up.
The same holds for product 7, with respect to product 7.

With that, we now describe the working of the proposed
dynamic program. For a given permutation P, a four dimen-
sional table Dp is constructed:

D1. The first dimension captures the time constraint and is
denoted by t with ¢ € [0, ¢* + 1].

D2. The second dimension consists of the vertices V; U V5
in the road network. We will abuse the notation and refer
to u € V3 UV as a real number. So, u € [0, |V; UVa| —1].

D3. The number of products picked up is captured by the
third dimension. Similar to dimension 1, it is represented
by a variable i with i € [0, |7]].

D4. The fourth dimension represents the cost/budget con-
straint and is denoted by b with b € [0, " + 1].

An entry in the table Dp is represented by Dp[t'][v][¢][b].
A given entry stores a score for a given time ¢, vertex v,
number of products ¢ picked and cost b incurred so far based
on a substructure (to be discussed later in this subsection).

The initial condition for the substructure is
Dp[t'[v][i][b] = 0fort’ = 0,0 <v < |[V3 UV, —1,0 <
i < |m*,0 < b < b*. Additionally a list Ly ,;p is
maintained for each table entry Dp|t'][v][¢][b]. For t' = 0,
v as the index of v¥, 0 < ¢ < |7%],0 < b < b%, Ly 4ip
(defined next) is initialized to v¥. With same values of ¢/,
and b the list is initialized to an empty set for all other
vertex index v. This list maintains the walk from v to the
vertex in index v corresponding to the value at any table
entry t',v,14,b. A list £ is defined for all given table entries.
When transiting from a node « to node v the list maintains
the products that can be picked up from vertex v minus the
products which are already picked up in the path that ended
in vertex u. The substructure is now formulated as follows:

Dpt]v]li][b] = (DP [t" = 1][v]()b],

(M st + DI = tu s),

JjeL

max (1(DIY' — b, |/ 1)))

max

u,i’ b’

The expression maxy, i/ p (/\(Zjeﬁ Syx, + D[t' —

b,] [u][2][0])) is explained as follows:

1. Allu € V3 UV, with (u,v) € E.

2. Correspondingly ¢ — ¢,,,» > 0 which implies that we
reached vertex u at time ¢t — ¢, ;.

3. i’ < ¢ and gives the number of products already picked by
the path that ended at vertex .

4. Similarly b' < b denotes the cost at vertex u.

The value of A is set to 1 when all of the following conditions
are satisfied:

683

1. The list Ly ¢, i,y does not include the traversal of

edge (u,v).

2. v contains products indexed ' + 1 to 4 in permutation P.
3. The cost of such products from (2) (if satisfied) added

with & is < b.

If all the three conditions are satisfied then the list £ of
products is set to the products in the permutation P from
(#" +1)"" index to i*" and the sum 3~ . Sy.x, is computed
and added to D[t’ — ¢, |[u][¢'][D])- A is set to O otherwise.
This sum signifies the increase in the similarity score due to
addition of new products in the current node u.

In case A is set to 0 because one of the three conditions
is not satisfied (for all range of u,s’,b’), then it means that
we cannot pick any products from v. The next expression
v implies that we have taken a route from a neighbor u of
v but did not pick any product from v. For the expression
maxy,i p (YDt — tuv][u][i'][0'])), the value of ~ is set to
lif A\=0and ¥ <bandi <.

In qualitative terms, the values of Dp[t'][v][i][b] is com-
puted as the maximum of

a. value of path that ended at v at its previous time index,

b. maximum of all feasible paths that can end at u that is
a neighbor of v, then took edge (u,v) and some products
are picked from v,

c¢. maximum of all feasible path that can end at u that is
a neighbor of v, then took edge (u,v) and no product is
picked from v,

If the value at table location Dp[t'][v][¢][b] is due to (a)
or (b) the index of the vertex v’ is appended to Ly, ;5. It
can be shown that the value at Dp [t'][v][¢][b] is optimum for
any feasible value of t',v,4,b (aka substructure optimality
proof); the proof is omitted here due to space limitation.

Observe that the time-complexity of the dynamic program
is pseudo polynomial w.r.t. the time t“ and the budget con-
straint b* and is exponential w.r.t. the number of products
queried |7"|. In the final recommendation, order in which
the products are actually picked up is stored. So for all pos-
sible permutations P, the value max(Dp [t*][v}][|7*]][6%])
gives the recommendation to OSPBR problem.

6.2 Optimal Solution to the SPBR problem

We now discuss how to obtain top-k recommendations for
the SPBR problem using the dynamic program discussed in
the previous section. We need to consider two cases. For a
given problem instance, (i) there are > k ways to collect
all the products queried by the shopper (referred to as top-
k feasible problem) and (ii) there are < k ways to collect
all the products queried by the shopper (referred to as top-k
infeasible problem). These cases are described separately.

Case 1. top-k feasible problem To obtain the top-k opti-
mal recommendations from the dynamic program described
earlier, we maintain a list (’)Z? .4 at each entry of the ta-
ble Dp[t'][v][#][b]. The list has the following properties —
(i) it can hold a maximum of k& elements, (ii) each element
consists of the accumulated similarity score and the path
in the graph G to obtain the score, (iii) the list is sorted

Algorithm 1: Substructure to obtain the list O i OF
top-k recommendations in the dynamic table

Data: An entry D [t'][v][¢][b] in the dynamic program and
list OF ;s witht <t —1,0" <wv,i <iand
b <b.
Result: The list Of’v,i,b
covering all the products from the user query) begin
Initialize Oﬁ,v,i,b to {};
for V elements in list OZ),LWL , do
Include the element in Of v.i,p 10 {} such that the
elements maintain a non decreasing order w.r.t. score
and no element in the existing list has a perfect
matching between the products collected and the
retail store from which it is collected (we name the
latter condition as C);

AW N =

5 for V feasible transitions given by the equation

)‘(Zieﬁ Szvﬂ'j + D[t/ — tuo][u][ip][bp]) of the
substructure in Section 6.1 do

6 for V elements in such a feasible transition do

7 Include the element in the list OF w,i,p 1 (1) the
number of elements in the list is k and the
element has a higher score than the last element
in the list OF +,p and (2) the number of
elements in the list is less than k. For both (1)
and (2), the condition C should be satisfied;

8 Maintain the non increasing order w.r.t. score;

9 for V feasible transitions given by the equation
YDt — tu,o][u][i][bp]) of the substructure in
Section 6.1 do

10 | Perform Steps 6-8;

u return OF

,0,1,b

in a non-increasing order of the score. The initial condi-
tions are set as follows: (a) for ' = 0, v index of v¥,
i < |7%|and 0 < b < b“, the list consists of one element
with 0 as the score and v* as the path, (b) for ¢’ = 0,v =
index of V3 UV \ v, i < |7*],0 < b < b“, an empty list is
initialized. After this initialization, using Algorithm 1, top-
k recommendations can be determined and the list O
can be filled with these recommendations.

Observe that with £ = 1 the algorithm uses the same sub-
structure as that in the previous subsection. For £ > 1, it
maintains a list of [(with [< k) elements at each position
which essentially are the first / optimal recommendations
(with each recommendation covering all the products from
the query). It is also evident that |OF ;| < |OF, . i 4|
with ¢t/ < t/,v' = v,7 = 1, < b. Hence the number of

. . 7) .
elements in the list Otu, index of v, | b AT€ the possible < k

recommendations for the given permutation P. Hence ! < k
optimal recommendations (with each recommendation cov-
ering all the products from the query) to SPBR problem can
be obtained by choosing the best [recommendations from
the list O7, for all possible permutations P.

t*, index of vy, |7 |,bv

,0,%,b

Case 2. top-k infeasible problem The Optimal Solution
to SPBR problem for the case where there are < k different

684

Algorithm 2: Heuristic Solution to the SPBR Problem

Data: (1) A road network G = (V1 U Va2, E) with edge
weights e, on each edge (z,y) € E, (2) Two vertices
vs,vq € V{ U V5, (3) Two positive integers t* and b
representing time and cost constraint respectively, (4) A
list of items 7%, (5) For each v € V4 a sublist of items
m, C 7", (6) For each item p in set 7, a tuple of form
< Tpu, Spu, Cpv >, (7) a positive integer K, (8) A pre
determined value P.

Result: A structure X'. Each element of the structure consist

of two parts (1) a directed path from vstqrt t0 Vend,
(2) Let V' C V and V' be the set of vertices in a
given path. The second part of the structure holds a
list of items 4, with v € V'. Additionally the data
structure maintains the ordering defined in Section 5.2
and has a maximum capacity of K. Insertion of
elements in X satisfies the condition that for any two
pair of elements there exists no perfect matching
between the products collected and the retail store
from which it is collected.

1 begin
2 Initialize the data structure X to NULL;
3 Create a heap data structure to retrieve the shortest paths

from v, to vgq using Eppsteins P-shortest path algorithm
(Eppstein 1999);

4 Set currentPath = first shortest path;

5 while length of currentPath < t* do

6 Create a set 7' C 7" which contains the union of all
items that are available at the retail shops contained
in the path ;

7 For each item 7; € 7'* create a set of doubles
{(Sil, C,'1), (Sig, Cilz), ey (Sili, Cili)} denoting all

of its occurrences in the path. Here s;; denotes the
similarity score and c;; denotes cost of j th
occurrence of the item m; € 7' ;

8 Choose the occurrence for each item m; with
minimum cost ;
9 Sort the occurrences in non decreasing order of cost

and choose the maximum number of occurrences that
can be included with budget b“. Let the
corresponding items be denoted as 7' C 7.
Attempt to include the solution in &;

10 The greedy approach of MCKP (Pisinger 1995) is
employed here. An iterative approach is used to reach
a local optima based on improvement of a metric.
The improvement metric is taken as the change in
similarity score, when occurrence of one item is
replaced by same item with a better similarity score.
The initial point of the iteration is taken as the
solution generated in line 9. For each possible metric
make an attempt to insert the solution in X’;

1 Set currentpath = next shortest path ;

12 return X ;

recommendations such that each recommendation can cover
all the products queried by the shopper can be directly ob-
tained from the approach described in the previous subsec-
tion. The | < k optimal recommendations can be obtained
by choosing the best [recommendations satisfying the order
described in Section 5 from the list O7, for

t¥, index of vy, |7 |,bv
all possible permutations P and 1 < 4, < |7%|.

©

S
@

S

Average Similarity Score

o
2

Average Number Of items Collected
o

o

Recommendation Number

(a) Average similarity score of the recom-
mended products per recommendation id

Recommendation Number

(b) Average number of products recom-
mended per recommendation id

6
Instance Number

(c) Running times per problem instance
for outputting top-6 recommendations

Figure 1: Comparison of the proposed heuristic and the dynamic program in terms of the average similarity scores of the
recommended products, average number of products recommended and their running times for infrequent shoppers.

7 kShoRe: A Heuristic for SPBR problem

We now present a heuristic, kShoRe, for the SPBR prob-
lem. The heuristic makes top-k Shopping Recommendations
and is essentially adapts a two step approach. In the first
step, time constraint is handled and in the second step, the
budget constraint and the selection of the queried items are
handled. The pseudo-code for the heuristic is given in Al-
gorithm 2. The heuristic satisfies the time and cost con-
straint but relaxes the item covering constraint. The time-
complexity of the heuristic is polynomial since the (i) Epp-
stien’s Algorithm (Eppstein 1999); (ii) greedy approach for
Multiple Choice Knapsack Problem (Pisinger 1995) and (iii)
while loop on Line 5 in Algorithm 2 are all polynomial.

8 Experimental Setup and Evaluations

The experiments were performed using a mix of real-world
data and randomly generated data. The road network was
generated using the real-world data, i.e., stores, their loca-
tions, inventory and their costs, landmarks and commute
time between each of these nodes were generated from
real-world data whereas user queries (products to purchase,
source and destination, cost and time constraints) were gen-
erated randomly. Specifically, the data was generated as fol-
lows. The road network (i.e. landmarks, stores, and com-
mute times) was generated using Google Directions, Places
and Geocode APIs for a locality called Whitefield in Ben-
galuru city in India. In that locality, 39 stores and 39 land-
marks were extracted within 7 km from its center. The uni-
verse of products U was populated by crawling the web of
those retail stores that have their own websites. Then the
inventory for each of the retail stores in the road network
were filled with the relevant products from the universe U.
20 user queries were randomly generated in which 4 queries
were for purchasing 2 products and 16 queries were for pur-
chasing 3 products. The cost and budget constraints were set
to INR 2500 (Indian Rupee) and 35 mins respectively. The
source and destination of the shopper for each query were
chosen such that there is at least one path that satisfies the
time constraint. From now on, each query is referred to as
as problem instance. Out of the 20 generated problem in-
stances, 10 were for luxuriant and 10 were for infrequent
shoppers. Accordingly, for each instance, similarity scores
were computed as discussed in Section 4; similarity score
for a given product is a real number in the range 0 to 1.

685

We ran both the dynamic program and the heuristic for
each of these 20 problem instances to obtain top-6 recom-
mendations. For each recommendation number/id, the aver-
age similarity scores, the average number of products rec-
ommended by both the approaches were observed. Further,
the running times of both the approaches for each problem
instance to give the top-6 recommendations were also ob-
served. These observations are plotted for infrequent shop-
pers in Figure 1. As can be seen from Figure 1b and Fig-
ure la, the performance of the heuristic is very close to that
of the optimal dynamic program in terms of the average
number of products recommended and their average similar-
ity scores for each of the recommendations. The cumulative
average similarity score of heuristic is approximately only
8% lower than that of the dynamic program with the max-
imum difference being less than 15%. This difference be-
ing less than 8% for the number of products recommended
metric. As can be seen in Figure lc, the heuristic outper-
forms the dynamic program w.r.t. the running time of the
algorithms as it ran at least twice faster compared to the dy-
namic program. Similar performance behavior was observed
in experiments for luxuriant shoppers as well.

9 Conclusions

This work studied the problem of persona based shopping
recommendation for physical retail stores and proposed a
dynamic program and a heuristic for making top-k recom-
mendations considering shopper persona and shopper’s con-
straints. Dynamic program is an optimal solution with a
non-polynomial time-complexity whereas heuristic is a non-
optimal solution with polynomial time-complexity. In our
experimental evaluations using a combination of real-world
and simulated data, the performance of the heuristic closely
matched that of the dynamic program as the recommenda-
tions provided by the heuristic differed with that of the dy-
namic program in terms of shopping persona and the num-
ber of products recommended by only 8% and ran at least
twice faster. In future, we intend to design an approximation
algorithm for this problem, obtain relaxed local solutions us-
ing branch and bound techniques, perform more rigorous ex-
perimental evaluations to show the performance of the solu-
tions and verify the goodness of the recommendations using
humans-in-the-loop.

References

Andersen, R.; Borgs, C.; Chayes, J.; Feige, U.; Flaxman, A.;
Kalai, A.; Mirrokni, V.; and Tennenholtz, M. 2008. Trust-
based recommendation systems: an axiomatic approach. In
Proceedings of the 17th international conference on World
Wide Web, 199-208. ACM.

Bao, J.; Zheng, Y.; and Mokbel, M. F. 2012. Location-
based and preference-aware recommendation using sparse
geo-social networking data. In Proceedings of the 20th In-

ternational Conference on Advances in Geographic Infor-
mation Systems, 199-208. ACM.

Decker, C.; Kubach, U.; and Beigl, M. 2003. Revealing the
retail black box by interaction sensing. In null, 328. IEEE.

Elahi, M.; Braunhofer, M.; Ricci, F.; and Tkalcic, M. 2013.
Personality-based active learning for collaborative filtering
recommender systems. In AI* [A 2013: Advances in Artifi-
cial Intelligence. Springer. 360-371.

Eppstein, D. 1999. Finding the k shortest paths. SIAM J.
Comput. 28(2):652-673.

Goldberg, L. R. 1990. An alternative” description of person-
ality”: the big-five factor structure. Journal of personality
and social psychology 59(6):1216.

Hu, R., and Pu, P. 2011. Enhancing collaborative filtering
systems with personality information. In Proceedings of the
fifth ACM conference on Recommender systems, 197-204.
ACM.

Kim, J. K.; Cho, Y. H.; Kim, W. J.; Kim, J. R.; and Suh,
J. H. 2003. A personalized recommendation procedure for
internet shopping support. Electronic commerce research
and applications 1(3):301-313.

Linden, G.; Smith, B.; and York, J. 2003. Amazon. com rec-
ommendations: Item-to-item collaborative filtering. Internet
Computing, IEEE 7(1):76-80.

Muralidharan, K.; Gottipati, S.; Ramasubbu, N.; Jiang, J.;
and Balan, R. K. 2014. mydeal: a mobile shopping assis-
tant matching user preferences to promotions. In Proceed-
ings of the 11th International Conference on Mobile and
Ubiquitous Systems: Computing, Networking and Services,
238-247. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering).

Pisinger, D. 1995. A minimal algorithm for the multiple-
choice knapsack problem. European Journal of Operational
Research 83(2):394-410.

Van der Heijden, H.; Kotsis, G.; and Kronsteiner, R. 2005.
Mobile recommendation systems for decision making’on
the go’. In Mobile Business, 2005. ICMB 2005. Interna-
tional Conference on, 137-143. IEEE.

Yin, H.; Sun, Y.; Cui, B.; Hu, Z.; and Chen, L. 2013. Lcars:
a location-content-aware recommender system. In Proceed-
ings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, 221-229. ACM.

686

