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Abstract

Price of Anarchy measures the welfare loss caused by self-
ish behavior: it is defined as the ratio of the social welfare
in a socially optimal outcome and in a worst Nash equilib-
rium. A similar measure can be derived for other classes of
stable outcomes. In this paper, we argue that Pareto optimal-
ity can be seen as a notion of stability, and introduce the
concept of Price of Pareto Optimality: this is an analogue of
the Price of Anarchy, where the maximum is computed over
the class of Pareto optimal outcomes, i.e., outcomes that do
not permit a deviation by the grand coalition that makes all
players weakly better off and some players strictly better off.
As a case study, we focus on hedonic games, and provide
lower and upper bounds of the Price of Pareto Optimality
in three classes of hedonic games: additively separable he-
donic games, fractional hedonic games, and modified frac-
tional hedonic games; for fractional hedonic games on trees
our bounds are tight.

1 Introduction

The prisoners’ dilemma and the tragedy of commons (Os-
borne and Rubinstein 1994) are two prominent examples
where selfishness causes significant loss of social welfare.
By now, a standard measure of disutility caused by selfish
behavior is the Price of Anarchy (Koutsoupias and Papadim-
itriou 1999): this is the ratio of the social welfare in a socially
optimal outcome of the game and in a worst (social welfare-
minimizing) Nash equilibrium of the game. Good upper and
lower bounds on the Price of Anarchy have been obtained
for many classes of games (see, e.g., Roughgarden and Tar-
dos, 2007); researchers have also considered the related con-
cept of Price of Stability (Correa, Schulz, and Moses 2004;
Anshelevich et al. 2008), which compares socially optimal
outcomes and best Nash equilibria.

Importantly, the concept of the Price of Anarchy is de-
fined for a specific notion of stability, namely, Nash equilib-
rium. Nevertheless, its analogues can be defined for other
solution concepts: e.g., Strong Price of Anarchy (Andel-
man, Feldman, and Mansour 2007) measures the worst-case
welfare loss in strong Nash equilibria. Indeed, one can ex-
tend this concept beyond normal-form games and explore
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the worst-case efficiency loss caused by strategic behavior
in other types of games.

In this paper, we are interested in exploring Price of
Anarchy-like measures in hedonic games. These are games
where players form coalitions, and each player has pref-
erences over coalitions that she can be a part of (Dréze
and Greenberg 1980; Banerjee, Konishi, and S6nmez 2001;
Bogomolnaia and Jackson 2002). While the standard model
of hedonic games assumes that players’ preferences over
coalitions are ordinal, there are several prominent classes
of hedonic games where players assign cardinal utilities to
coalitions (e.g., a player may assign utilities to individual
players, and lift them to coalitions by computing the sum
or average of her utilities for players in a coalition), and in
such settings it is desirable to have a measure of welfare loss
caused by stability considerations. This agenda was recently
pursued by Bilo et al. (2014; 2015) who have analyzed the
analogues of Price of Anarchy and Price of Stability for the
concept of Nash stability in the context of fractional hedo-
nic games—a simple, but expressive class of hedonic games
that was recently proposed by Aziz et al. (2014).

Now, Nash stability is a well-known notion of stability for
hedonic games, and can be seen as the closest analogue of
Nash equilibrium for such games. However, in contrast with
normal-form games, where Nash equilibrium is clearly the
most prominent solution concept, there are several notions
of stability that are commonly studied for hedonic games.
Indeed, Nash stability focuses on individual deviations and
assumes that any player can join any existing coalition, with-
out asking permission of the coalition members. Given that
hedonic games are intended to model group formation, we
may consider modifying the notion of a permissible devi-
ation along two dimensions: first, we can allow for group
deviations, and second, we can allow (some of) the non-
deviators to veto the deviators’ moves. These two modifi-
cations have the opposite effect: the former enriches the set
of actions available to the deviators, while the latter shrinks
it. By combining these ideas and their variants, one arrives
at the well-known notions of individual stability, contractual
individual stability, core, strict core, and several others (see
an overview by Aziz and Savani, 2015; Sung and Dimitrov,
2007, propose a somewhat different classification).

The classic notion of Pareto optimality has a natural in-
terpretation within this framework. Indeed, according to the



standard definition, an outcome is Pareto optimal if there is
no other outcome that makes all players weakly better off
and some players strictly better off. In the language of de-
viations and vetoes, this can be restated as follows: an out-
come is Pareto optimal if there is no group of players that can
deviate (possibly by forming several pairwise disjoint coali-
tions) so that all of the deviators are weakly better off, some
of them are strictly better off, and no non-deviating player is
negatively affected by the deviation (and therefore does not
want to veto it). Indeed, Pareto optimality is recognized as
a valid notion of stability for hedonic games (Morrill 2010;
Aziz and Savani 2015). We remark that it can be viewed as
a refinement of contractual strict core (Sung and Dimitrov
2007): the latter is defined similarly, the only difference be-
ing that the deviating players should form a single coalition.

In this paper, we introduce and study the Price of Pareto
Optimality (PPO): this is the ratio of the social welfare
in a social welfare-maximizing outcome of the game and
the social welfare in a worst Pareto optimal outcome of
that game. This concept is a direct analogue of the Price
of Anarchy—the only difference is that we maximize over
all Pareto optimal outcomes rather than all Nash equilib-
ria. (Note that defining an analogue of the Price of Stabil-
ity with respect to Pareto optimal outcomes is meaningless:
every social welfare-maximizing outcome is Pareto optimal,
and therefore the respective quantity would always be 1).
While viewing Pareto optimality as a notion of stability is
motivated by the analysis of solution concepts in hedonic
games, and our technical results pertain to hedonic games,
the definition of PPO applies equally well to arbitrary non-
cooperative games. This concept has the following intuitive
interpretation. Consider a society that is strongly motivated
by egalitarian fairness ideas, and is unwilling to change the
status quo if the change will harm any of its members. Price
of Pareto Optimality is exactly the worst-case loss of total
welfare that such a society may experience because of its
principles.

While similar measures can be defined for other notions of
stability for hedonic games, we believe that PPO is particu-
larly appealing, because every hedonic game admits a Pareto
optimal outcome; in contrast, many well-known classes of
hedonic games (including the ones considered in this pa-
per) may fail to have Nash stable outcomes. Thus, PPO is
immune to an important critique of the Price of Anarchy,
namely, that it is not clear how to interpret bounds on wel-
fare loss in welfare-pessimal Nash stable outcomes: even if
such bounds are not too bad, when a Nash stable outcome
does not exist, players may cycle among outcomes with arbi-
trarily bad social welfare. Indeed, Pareto optimality appears
to be the most decisive solution concept for hedonic games
that has this property: the set of individually stable or core
stable outcomes may be empty, and, while the contractual
strict core is always non-empty, the argument above shows
that the set of Pareto optimal outcomes is a subset of the
contractual strict core.

Our technical contribution in this paper is the study of
PPO in three classes of hedonic games: additively separa-
ble hedonic games, fractional hedonic games, and a variant
of fractional hedonic games, which we call modified frac-
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tional hedonic games. We focus on these classes of games
for three reasons. First, these classes capture a broad range
of coalition formation scenarios (see Aziz et al. 2014, for
a discussion of applications of fractional hedonic games).
Second, for fractional hedonic games bounds on the Price
of Nash Stability are known (Bilo et al. 2014; 2015), which
enables us to directly compare the quality of Pareto opti-
mal outcomes and that of Nash stable outcomes. Finally, the
analysis of PPO for these classes of games presents an inter-
esting technical challenge: we obtain non-trivial upper and
lower bounds for simple symmetric (modified) fractional he-
donic games and show that our bounds are tight when the un-
derlying network is a tree. However, perhaps the best way to
view our results is as a proof of concept, showing that PPO
is a reasonable measure, which can also be investigated in
other scenarios (including, but not limited to, other classes
of hedonic games).

2 Preliminaries

We consider games with a finite set of players N
{1,...,n}. A coalition is a non-empty subset of N. The set
of all players N is called the grand coalition, and a coali-
tion of size 1 is called a singleton coalition. Given a player
i,let N; = {S C N : i € S}. For the purposes of this pa-
per, it will be convenient to define a hedonic game as a pair
(N, (v3)ien), where v; : N; — R is the utility function of
player ¢ (traditionally, a hedonic game is defined by endow-
ing each player ¢ with a weak order on N;; in contrast, our
definition assumes that we are given cardinal representations
of these orders). We assume that v;({i}) = 0 forall i € N.
For every S, S’ € N;, we say that i strictly prefers S to S” if
v;(S) > v;(S"); if v;(S) = v;(S"), we say that i is indiffer-
ent between S and S’. The value of a coalition S is defined
as V(S) = > ,cqvi(S). A coalition structure (also called
partition, or outcome), is a partition P = {Py, Pa, ..., Py, }
of N into m > 1 coalitions. We denote by P(4) the coalition
of P that includes player 4; the value v;(P (%)), also denoted
by v;(P), is the utility of i in P.
The social welfare of a partition P is defined as

SW(P)= > V(P) =) uil(P(i).
1<k<m iEN

A partition P is optimal if SW(P) > SW(P') for every
other partition P’. A partition P Pareto dominates another
partition P’ if v;(P) > v;(P’) forevery i € N and v;(P) >
v;(P’) for some i € N. A partition P is Pareto optimal if
there is no partition P’ that Pareto dominates P. In other
words, a Pareto optimal partition is an outcome that does
not permit a deviation by the grand coalition that makes all
players weakly better off and some players strictly better off.
Note that an optimal partition is necessarily Pareto optimal.

Let P be the set of all Pareto optimal partitions and let
P* be an optimal partition. Note that SW(P*) > 0, as the
players can form the partition that consists of n singletons.

Definition 1. Given a hedonic game (N, (v;);cn), the Price
of Pareto Optimality (PPO) is defined as
SW(P*)

PPO = max sy



if SW(P) > 0 for all P € P and PPO = +oc0 otherwise.

We will consider several classes of hedonic games defined
on graphs. Let G = (N, E, w) be a weighted directed graph,
where NV is the node set, E' is the edge set, and w : £ — R
is a real-valued edge weight function. We denote a generic
edge of G'by (7, j) and denote its weight by w; ;. We say that
G is unweighted and write G = (N, E) if w; ; = 1 for every
(i,7) € E; otherwise we say that G is weighted. We say that
G is symmetric if (i,7) € E if and only if (j,7) € F and
w; ; = w;,; for all (¢,7) € E. The degree of node i € N
a symmetric unweighted graph G is the number of nodes
j € N with (i, j) € E;itis denoted by ¢ (7). We let Ag =
max;en{dc(7)}. The subgraph of G induced by a subset
S C N is denoted by Gg = (5, Fg). We refer to a tree
as a symmetric and unweighted graph which is acyclic and
connected. A tree with one internal node and d > 0 leaves
is called a d-star; its only internal node is called the center.
Note that a 0-star consists of a single node (the center), while
a l-star has two nodes and we can arbitrarily take one of
them as the center and the other as the leaf. A multi-degree
star is any d-star with d > 2. A tree G is called a (d, e)-
superstar, where d, e > 2, if it has a node of degree d (the
center) that is adjacent to d internal nodes, and each of these
nodes is adjacent to e — 1 leaves. Note that a (d, e)-superstar
has diameter 4 and admits a vertex cover of size d (which
consists of all internal nodes other than the center).

We say that a hedonic game is unweighted or symmetric
if its underlying graph has these properties, and use other
graph-theoretic terminology when speaking of players and
coalitions.

Some proofs are omitted due to space constraints and can
be found in the appendix.

3 Additively Separable Hedonic Games

In this section, we consider a well-studied class of hedonic
games known as additively separable hedonic games. The
analysis of PPO for this class of games turns out to be fairly
straightforward, and can be seen as a warm-up for the more
sophisticated analysis in subsequent sections.

An additively separable hedonic game is defined by a
weighted directed graph G = (N, E, w). In this game, the
set of players corresponds to the set of nodes and the util-
ity of player ¢ from a coalition S > i is given by v;(S) =
2 jes,(ij)er Wi,j- We denote the additively separable hedo-
nic game that corresponds to a graph G by H(G).

Our first observation is that if all weights are non-
negative, for any pair of players 7, j with w; ; +w;; > 0in
any Pareto optimal outcome ¢ and j belong to the same coali-
tion. Thus, in this case any Pareto optimal outcome maxi-
mizes the social welfare and the Price of Pareto Optimality
is 1. On the other hand, if edge weights may be negative, the
Price of Pareto Optimality may be 400, even if the game is
symmetric.

Example 2. Let N = {1,2,3}, W12 = W21 = W13 =
wzq1 = 1, w3 = wzo = —3. Then the grand coalition
is Pareto optimal, as any deviation will lower the utility of
player 1. However, its social welfare is negative.
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The game in Example 2 contains a cycle. We will now

show that Pareto optimal partitions with negative social wel-
fare may exist even in the absence of cycles as long as we
allow asymmetric weights.
Example 3. Let N = {1, 2}, Wwi2 = ]., w21 = —2. The
grand coalition is Pareto optimal, as player 1 prefers being
with player 2 to being on her own. However, its social wel-
fare is negative.

In contrast, if the game is acyclic and weights are sym-
metric, every Pareto optimal partition maximizes the social
welfare.

Proposition 4. For every additively separable hedonic
game H(G) where G = (V,E,w) is symmetric and does
not contain cycles it holds that PPO(H(G)) = 1.

Proof. We obtain an optimal partition by removing all
negative-weight edges from G, and placing nodes in each
connected component in a coalition of their own (note that
the notion of a negative-weight edge is well-defined, since
the graph is symmetric). Indeed, as the graph is acyclic,
the social welfare of this partition is 2 2(7 HeBw, ;>0 Wij»
which is an upper bound of the social welfare of any parti-
tion of N.

It remains to argue that for any Pareto optimal partition it
holds that if w; ; > 0 then 4 and j belong to the same part of
the partition and if w; ; < 0 then ¢ and j belong to different
parts of the partition. Indeed, consider a Pareto optimal par-
tition P, and suppose that w; ; > 0, but P(¢) # P(j). Then
the deviation where P(7) and P(j) merge increases the util-
ity of ¢ and j and does not affect other players. The argument
for the case where w; ; < 0, but P(i) = P(j) is symmet-
ric: splitting this coalition along the edge (4, j) increases the
utility of 7 and 7 and does not affect other players. [

4 Fractional Hedonic Games

We will now consider fractional hedonic games. In these
games, a player’s utility is its average value for the mem-
bers of its coalition (including itself). Formally, a weighted
directed graph G = (N, E,w) defines a fractional hedo-
nic game, where the set of players corresponds to the set
of nodes and the utility of player ¢ from a coalition S' > ¢
is given by vi(S) = 157 X es,(1.5)er Wiy We denote the
fractional hedonic game that corresponds to a graph G by
F(G).

We first observe that for weighted games PPO can be un-
bounded, even if all weights are positive, the game is sym-
metric, and the underlying graph is a tree.

Proposition 5. For any M > 0 there is a symmetric frac-
tional hedonic game F(G) where G = (N, E,w) is a tree
and all weights are positive such that PPO(F(G)) > M.

Proof. Let N = {1,2,3,4}, E = {(1,2),(2,3),(3,4)},
w12 = w34 = 1, wa 3 = 2M. The grand coalition max-
imizes the social welfare, but the reader can check that
{{1,2},{3,4}} is Pareto optimal. O

Therefore from now on we will focus on symmetric un-
weighted graphs. We collect a few useful observations about
games on such graphs in the following proposition.



Proposition 6. Let G = (N, E) be a symmetric unweighted
graph with |N| > 2, and let P be a Pareto optimal partition
forF(G). Then

(a) every coalition in P is connected,
(b) if E # 0, then P contains at least one non-singleton
coalition.

The following theorem upper-bounds PPO in terms of the
maximum degree of the graph.

Theorem 7. Let G = (N, E) be a symmetric unweighted
graph with |N| > 2. Then PPO(F(GQ)) < 2Ag(Ag + 1).

Proof. Let N; denote the set of all neighbors of a node 7 in
G. Let P be a Pareto optimal partition. Note that the size
of each coalition in P is at most Ag(Ag + 1). Indeed, if
there is a coalition P, € P with |Py| > Ag(Ag + 1), then
the utility of each player in P}, is strictly less than ﬁ.
On the other hand, we can take a spanning tree of Py (P, is
connected by Proposition 6), split it into stars, and obtain a
utility of at least ﬁ for everyone in Pj. This means, in
particular, that the utility of each player in a non-singleton
coalition in P is at least m.

Let P* be an optimal partition. Let S denote the set of
all players that form singleton coalitions in P; by Proposi-
tion 6 S forms an independent set in GG. Consider an arbi-
trary player ¢ in N \ S. Let D(i) = P*(i) N S N N;, and
let d(i) = | D(i)|. We define the following payment scheme:
we pay 1 to node ¢ to keep for itself, and also give it another

dEii()le units of currency, and ask it to pass on % to each

OH+1
of the nodes in D(4). In this way, we directly give at most
2 units of payoff to each node in NV \ S and 0 to nodes in
S, but the nodes in S will then receive some transfers from
their “neighbors” in the optimal partition P*.

We will now argue that under this payment scheme each
player gets at least as much utility as in the optimal partition
P*. Consider first a player in N \ S. It gets to keep 1 unit
of payoff, and it gets at most that much utility in P* (in un-
weighted fractional hedonic games the utility of every player
is at most 1). Now, consider a player j € S. If in P* player
7 also forms a singleton coalition, we are done. Otherwise,
let F'(j) = N; NP*(4). By Proposition 6 S forms an inde-
pendent set in G, so all nodes in F'(j) belong to N \ S. Pick
r € F(j) so that d(r) > d(¢) for all £ € F(j). By construc-
tion, r belongs to P*(j), and all d(r) nodes in D(r) also
belong to P*(j). Thus, |P*(j)| > d(r) + 1, and therefore
the utility of j in P* is at most |F'(j)|/(d(r) + 1). On the
other hand, if ¢ is some other node in F(j), then it transfers
% > ﬁ units of payoff to j (where the inequality holds
by our choice of r), so the sum of transfers received by j is
atleast |F'(j)|/(d(r) + 1), which is exactly what we wanted
to prove.

To conclude, under our payment scheme we paid at most
2 to each node in N \ S, and, after the transfers, each
node received at least as much as in P*. Therefore we have
2|N\ S| > SW(P*), and since each node in N \ S earns at
least m in P, the Pareto optimal solution has social
welfare at least AcléVA\i‘rl) > 5 AS!(/XZ;?U. Thus, the Price
of Pareto Optimality is at most 2Ag(Ag + 1). O
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For fractional hedonic games on unweighted trees, we can
show a better bound on PPO. We use the following charac-
terization of the structure of optimal partitions.

Lemma 8 (Bilo et al., 2014). Let G = (N, E) be an un-
weighted tree with |N| > 2, and let P* be an optimal
partition for the fractional hedonic game F(G). Then every
Py € P* is a dy-star for some dj, > 1.

Using the notion of a labelling function (Bilo et al. 2014),
we obtain the following upper bound on the social welfare
of an optimal partition.

Lemma 9. Let G = (N, E) be an unweighted tree with
IN| > 2, and let C be a minimum vertex cover of G. The
social welfare of any optimal partition for the fractional he-

22e) - |C)

Ag+1
Lemma 8 states that every coalition in an optimal partition
is a star. In contrast, Pareto optimal partitions consist of stars
and superstars.

donic game F(G) is at most <

Lemma 10. Ler G = (N, E) be an unweighted tree with
IN| > 2, and let P be a Pareto optimal partition for the
Sractional hedonic game F(G). Then every coalition in P is
either a star or a superstar.

Our next lemma describes neighbors of singleton coali-
tions in Pareto optimal partitions.

Lemma 11. Let G = (N, E) be an unweighted tree with
IN| > 2. Let P be a Pareto optimal partition for the
fractional hedonic game F(G). If P contains a singleton
P = {i} then every j such that (i,j) € FE satisfies the fol-
lowing conditions:

(a) j is not in a singleton,
(b) j is not the center of a superstar,

(c) 7 is not the leaf of a superstar.

A direct consequence of Lemma 11 is that, in a Pareto
optimal partition, a player in a singleton coalition can be
adjacent only to the center or a leaf of a d-star with d > 1,
or to the internal nodes of a superstar.

We are now ready to present our upper bound on PPO of
fractional hedonic games on trees.

Theorem 12. Let G = (N, E) be an unweighted tree with
|N| > 2. Then PPO(F(G)) < Ag + 2.

Proof. Let C be a minimum vertex cover of G and let P =
{Py, Py, ..., Py} be aPareto optimal partition with m > 1
coalitions. Let Q1 be the set of indices of the d-stars in P
with d > 1, and let 5 be the set of indices of the superstar
coalitions in P. Let Q@ = Q1 U Q-.

Note that the number of singleton coalitions is m — |Q)|
and by Proposition 6 we have |Q| > 1. Fix a k € Q; and let
P, be a dj-star with center . Since di, = dp, (1:) < Ag,
the value of P, can be bounded from below as

_ 2 2
Tdp4+17 Ag+1

Now, fix a k € Q, and let Py, be a (di, e, )-superstar with
center 7. Since d, = dp, (rr) < Ag and e;, > 1, the value

V(Py) 6P, (Tk)- (D



of P, can be bounded from below as
o Qdkek 2dk.ek 25pk (Tk)
_dk6k+1_dkek+6k Ag+1°

For every k € (@, define the set C as follows: if Py
is a dj-star with d, > 1, then C, = Py, and if Py is a
(dk, ex)-superstar with center ry, then C, = {j € Py :
(rg,7) € E}. By construction, CY, is a vertex cover of Pj.
Let C' = |J,, Ck. Clearly, since |Q| > 1, we have C” # 0.
Moreover, as C}, covers Py, every edge inside any coalition
in @ is covered by C’. By Lemma 11 a player in a single-
ton coalition can be adjacent only to the center or a leaf of
a dy-star with d;, > 1, or to the internal nodes (other than
the center) of a superstar coalition. Thus, each player in a
singleton coalition is adjacent to some player in C’. As a
consequence, all the edges incident to a player in a singleton
coalition are covered by C". Thus, since G is a tree, there are
at most | Q2| edges that are uncovered by C”, which lie out-
side of any coalition: these are edges connecting a subgraph
induced by a coalition in @5 to the rest of the tree. Hence, a
cover of N can be obtained by adding to C’ at most another
|Q2| nodes. Thus, if C'is a minimum vertex cover of G,

V(Fy) (@)

IC] < |C+1Qq
= (X 0ntw+ )+ Y ) +1Q2]
keQ1 kEQ2
= (X onew)+lel 3
keEQ1UQ2
Combining (1) and (2) we obtain
SW(P) = Y V(B)+ > V(R)
keQ keQ2
> A 2 1( Z op, (%) + Z 5Pk,(7°k))
¢tV kEQ:
2
= moril 2 ont)
2
> s(lol-1el) )
2
> AG+1OC*’$W””) )

where (4) follows from (3), and (5) follows from observing
that each non-singleton coalition contributes at least 1 to the
social welfare, and hence SW(P) > |Q|. From (5) we ob-

tain 5
xo53) 10 ®)

Let P* be an optimal partition. Combining (6) and
Lemma 9, we get

sw(P) = (

2A o C
SW (P (Agu) | 2A¢
< =Ag+——<Ag+2.
SW(P) (Ac2+3) el Ag+1

O
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The following proposition shows that the upper bound given
by Theorem 12 is optimal up to a small additive factor.

Proposition 13. There exists a fractional hedonic game on
an unweighted tree G = (N, E) for which the Price of
Pareto Optimality is strictly greater than Ag — 1/3.

Proof sketch. Let G be a (d, d)-superstar with center . Let
{i1,142,...,1q4} be the neighbors of r, and for k = 1,...,d
let S;, be the set consisting of i; and the leaves of G that are
adjacent to 4. It can be shown that the partition P = {N}

is Pareto optimal; its social welfare is SW(P) = % < 2.

We now give a lower bound on the social welfare of an
optimal partition. Let R = S;; U {r}. Let us consider the
partition P’ = {R,S;,, Sis,--.,5:,}. It is easy to see that
the value of R is %, and the value of every coalition .S, ,

with 2 < k <d, is @. Thus, the social welfare of P’ is

2d  2d-1)% _ 2d
= + >
d+1 d d+1

Hence, the Price of Pareto Optimality is strictly greater than

SW(P')

+2(d—1).

2d
=L 4+ 2(d-1) d
art =~ "V g (1— 2y > _

5 d—(1 d—&—l)*AG 1/3.

O

It is interesting to compare our bounds on PPO with
bounds on the Price of Nash Stability obtained by Bilo et
al. (2014; 2015). Bilo et al. argue that the social welfare in
Nash stable outcomes of simple symmetric fractional hedo-
nic games may be arbitrarily bad, simply because players
may be stuck in the grand coalition. In contrast, PPO allows
group deviations, and therefore it can be reasonably low in
low-degree graphs.

5 Modified Fractional Hedonic Games

In fractional hedonic games, the value that a player ¢ assigns
to a coalition is averaged over all members of that coali-
tion, including % itself. Arguably, it is more natural to com-
pute the average value of all other members of the coali-
tion. This approach gives rise to a new class of hedonic
games, which we call modified fractional hedonic games;
to the best of our knowledge, this class of games has not
been considered in prior work. Formally, a weighted directed
graph G = (N, E,w) defines a modified fractional hedo-
nic game, where the set of players corresponds to the set
of nodes and the utility of player ¢ from a coalition S' > 1,
|S| > 2,is given by v;(S) = ‘S‘%l 2 jes,(ij)er Wi as we
assumed for any hedonic game, the utility of player ¢ from
the singleton coalition {7} is 0. (Equivalently, we say that
the utility of player ¢ from a coalition S > 4, |S| > 1, is
given by v;(S) = m 2 jes (ijer Wig)- We de-
note the modified fractional hedonic game that corresponds
to a graph G by MF(G).

Modified fractional hedonic games share many proper-
ties of fractional hedonic games; for instance, the example
in Proposition 5 can be adapted to show that for weighted



graphs PPO may be unbounded, observations in Proposi-

tion 6 also apply to modified fractional hedonic games, and

so does the upper bound on PPO for general symmetric un-

weighted graphs (Theorem 7). However, for general sym-

metric unweighted graphs and unweighted bipartite graphs

we can obtain a much stronger upper bound on the PPO.
We first derive a bound on the optimal social welfare.

Lemma 14. Let G = (N, E) be a symmetric unweighted
graph with |N| > 2. Let C be a minimum vertex cover of G.
The social welfare of any optimal partition for the modified
fractional hedonic game MF(G) is at most 2|C|.

Proof. Let P = {P;, Py,..., P!} be an optimal partition
for MF(G). Consider some k£ € {1,...,m}. If |P}| = 1,
we simply have V(P}) = 0. Thus, suppose that |P;| > 2.
Let Cp, = P N C and let I, = P} N (N \ C); note that
P¥ = Cr UI, C = U<, Ck, and Iy, is an independent
set. We have -

V(P,:) ZieP,j 5P,;‘ (Z)

[Cxl + 1] = 1
2(ICw Il + 3IChl (1l = 1))
- |Ck| + |1x] — 1
o (Il + 30 - 1) _ o )
|Ck| + |Ix] — 1 -

The last innequality in (7) follows from observing that | I, |+
1(|Cx| = 1) < |Ck| + |I| — 1 whenever |Cy| > 1, and that
(7) is equal to 0 when |Cy| = 0.

Finally, we bound the social welfare of P: SW(P) =
Z1gk§m V(PI:) < Z1§kgm 2|Ck| = 2‘C|- O

A crucial difference between fractional hedonic games
and modified fractional hedonic games is the structure of
Pareto optimal solutions: in modified fractional hedonic
games, we are able to show that Pareto optimal solutions
consist of stars and triangles only.

Lemma 15. Let G = (N, E) be a symmetric unweighted
graph with |N| > 2. Let P be a Pareto optimal partition
Sor the modified fractional hedonic game VF(QG). Then every
coalition in ‘P is either a star or a clique.

The next lemma describes the structure of Pareto optimal
partitions in more detail.

Lemma 16. Let G = (N, E) be a symmetric unweighted
graph with |N| > 2. Let P be a Pareto optimal partition for
the modified fractional hedonic game MF(G). For every edge
(i,7) € E with P(i) # P(3), it holds that if i in P forms
a singleton, is a leaf of a multi-degree star or a node in a
triangle, then j in P is either the center of a multi-degree
star or a node in a 1-star.

Another important observation is that Proposition 6 ex-
tends to modified fractional hedonic games.

Proposition 17. Let G (N, E) be a symmetric un-
weighted graph with |N| > 2, and let P be a Pareto optimal
partition for MF(G). Then
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(a) every coalition in P is connected,

(b) if E # ), then P contains at least one non-singleton
coalition.

The following upper bound on the Price of Pareto Opti-
mality is optimal up to a small multiplicative factor.

Theorem 18. Let G = (N, E) be a symmetric unweighted
graph with |N| > 2. Then PPO(MF(G)) < 2.

Proof. Let P = {Py, P,,..., Py} be a Pareto optimal par-
tition with m > 1 coalitions. From Lemma 15, P contains
only stars and cliques. Let Q)1 be the set of the indices of the
multi-degree stars in P, let ()2 be the set of the indices of
the 1-stars in P, and let (Y3 be the indices of cliques with
more than 3 nodes in P. Let Q = @1 U Q2 U Q3. Note
that the number of singleton coalitions is m — |@Q| and by
Proposition 17 we have |Q] > 1.

In the remainder of this proof, we define a vertex cover C’
and compare its size with the social welfare of P. For every
k € Q1, let rj be the center of the multi-degree star Pj,. For
every k € @, define the set C as follows: if k& € @ then
Cr = {rp}, if k € Q2 then Cy, = P, while if & € Q3
then C}, is an arbitrary subset of Py, of size |P;| — 1. Note
that C, is a vertex cover of the subgraph induced by Pj;. Let
Ca, = Ukeq, Cr: Ca, = Ureq, Ok Co, = Ureq, Or-
Define C" = Cq,, U Cp,, U Cp, - Since Q] > 1, C” is non-
empty. We will show that C’ is a vertex cover for G. Since
Cy, is a vertex cover of the subgraph induced by Py, every
edge inside any coalition in @) is covered by C".

Now consider an agent i € N and an edge (i, j) € E with
P(i) # P(j); we will argue that (7, §) is covered by C”. First
observe that C’ contains the centers of all multi-degree stars
(Cégl) and the nodes of all 1-stars (C’Qg). Hence, if i is the
center of a multi-degree star or any node in a 1-star then
(i,7) € E is covered. Otherwise, if ¢ is a singleton, a leaf of
a multi-degree star or a node in a triangle, then again every
(i,7) € E is covered because j belongs to C”. In fact, from
Lemma 16, j can only be either the center of a multi-degree
star or a node in a 1-star. We can conclude that C” is a cover
for G. Thus, let C' be a minimum vertex cover of G. We get

SW(P) = > V(P)+ > V(P)+ >, V(R
kEQ: kEQ2 keQs
= 2Q1]+2(Qaf + ) |P]
keQs

2ChH, | +1Ch, | +1Ch, | + Qs

> (ICq,|+1Cq,1 +1Cq,l) = IC = |C].

Here the second equality follows from the fact that [C, | =
@], [Co,| = 2(Q2| and [Ch | = 3 g, (1P — 1) =
> keq, [Pkl — |Qs]. Combining this bound and Lemma 14,
we get PPO(MF(G)) < 2. O

For symmetric unweighted bipartite graphs, we can use
Lemma 15 to show a stronger result.

Theorem 19. Let G = (N, E) be an symmetric unweighted
bipartite graph with |N| > 2. Then PPO(MF(G)) < 1.



6 Conclusion

We have introduced the notion of Price of Pareto Optimal-
ity (PPO) and obtained upper and lower bounds on PPO in
three classes of hedonic games; one of these classes (modi-
fied fractional hedonic games) is new, and, as shown by our
results, it is substantially different from the class of frac-
tional hedonic games. There are many open problems sug-
gested by our work. For instance, it is not clear if the upper
bound in Theorem 7 is tight; in fact, we do not have exam-
ples of fractional hedonic games on symmetric unweighted
graphs whose PPO exceeds A¢. More broadly, we believe
that PPO is a useful measure, and it would be interesting
to compute or bound it for other classes of (cooperative and
non-cooperative) games.
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